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The zero-temperature universal conductivity of two-dimensional (2D) films at the superconductor-
insulator transition is studied. The existence of a finite conductivity at T = 0 and the universality
class for this transition is discussed. Neglecting disorder as a first approximation, so the transition
is from a commensurate Mott-Hubbard insulator to a superconductor, we calculate analytically the
universal conductivity for the 2D pure boson Hubbard model up to the first order in a large-N
expansion and numerically by Monte Carlo simulation of the (2+1)-D XY model. From the Monte
Carlo results we find the universal conductivity to be cr' = (0.285 6 0.02)o'q, where o'& = Rg =
h/(2e) 6.45 kA. An analysis in one dimension suggests that in the presence of disorder, the
universal conductivity in films might be somewhat smaller than this value. The possible existence
of universal dissipation in He films is also discussed brieAy.

I. INTRODUCTION

Recent experimental attention has focused on the de-
struction of superconductivity by disorder in thin two-
dimensional (2D) filnis. By systematically varying
the thickness of amorphous films in situ, it has been
possible to tune through a (T = 0) superconductor-
insulator transition. Films thinner than some criti-
cal thickness show insulating behavior at low ternper-
atures, whereas thicker films become superconducting.
This transition was probed in earlier work by varying
the microscopic disorder in amorphous-composite indium
oxide (n-InO~) films, at, fixed thickness. A closely related
superconductor-to-insulator transition has been studied
in artificially constructed Josephson-junction arrays" by
systematically varying the ratio of charging and Joseph-
son energies. In each of these experiments, the normal-
state sheet resistance, R~ (measured at some specified
temperature well above the material's bulk transition
temperature) can be viewed as a control parameter used
to tune through the superconductor-insulator transition,
in much the same way as temperature is used to tune
through thermal (T g 0) phase transitions. Over the
years a number of groups have observed that the criti-
cal value of this normal 8/ale resistance, R~, which corre-
sponds to the border between superconducting and insu-
lating (or nonsuperconducting) behavior at lotv temper-

atures, is close to Rq = h/(2e) 6.45 kA, the quantum
unit of resistance. A number of theoretical papers
have been written trying to explain this observation.

Recently a scaling theory for the superconductor-
insulator transition has been advanced, by two of us and
Geoffrey Grinstein, i s which predicts that in 2D, right
at the transition, the system will be metallic with a fi-
nite resistance at T = 0. Moreover, the value of the
resistivity in this T = 0 metallic state, R*, was predicted
to be universal, insensitive to microscopic details and de-
pending only on the universality class of the transition.
The notion of a universal resistivity at T = 0 at the
superconductor-insulator transition in 2D should not be
confused with the earlier and diferent idea of a "univer-
sal" critical value of the normal state resistance,
R~. Since the resistance has a temperature dependence
in the normal state, the latter quantity, R~, will clearly
depend on the temperature at which it is defined, and
thus cannot be truly "universal. " In contrast, R* is
uniquely defined, being a property of the film at zero
temperature. Vfe argue below that R' will be close to,
but not precisely equal to the quantum of resistance Bq.

From the modern scaling theories of the 2D free-
electron system, it is understood that even with small
disorder all electron states are localized and diffusion is
absent. Here we wish to emphasize diA'erences from the
disordered 2D fermionic system. We argue below that
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the relevant degrees of freedom near the superconductor-
insulator transition are bosonic. Moreover, the repul-
sive interactions between the bosons cannot be neglected,
since otherwise at T = 0 all particles will Bose condense
in the lowest energy state which, in the presence of dis-
order, is localized. ' We assume that these differences
define a distinct universality class for the superconductor-
insulator transition in disordered 2D films and R* can be
determined from the properties of this universality class.

Since all systems on the critical surface in parameter
space flow to the same fixed point, it seems plausible
that R* might be universal. However, not all quanti-
ties related to a critical surface are universal. Indeed, at
usual finite temperature transitions, for example, in the
Ising model, the values of the microscopic coupling con-
stants which place the system on the critical surface are
nonuniversal due to the existence of irrelevant operators.
We might worry that R* depends on these nonuniversal
microscopic coupling constants. However the analysis we
present below provides strong evidence that the critical
conductivity, o* = R*, is more like a universal ampli-
tude than a coupling. Moreover, according to the "two-
scale-factor universality" hypothesis, all dimensionless
critical point amplitudes are universal. A well-known
example is the universal jump of the superfluid density
at the Kosterlitz-Thouless transition in the 2D classical
XY model. The conductivity is dimensionless for the
2D quantum case and is therefore also universal.

YVhat universality class is the fixed point in? We hy-
pothesize that the T = 0 superconductor-insulator phase
transition is correctly described by a model of interact-
ing charge 2e bosons moving in a 2D random potential.
Loosely speaking we assume that the Cooper pairs have
already formed prior to the transition to superconduc-
tivity. More specifically, we expect that the Cooper pair
size (defined below) remains finite at the transition, even
though a pair coherence length, (, diverges. In this case,
on the scale of ( the Cooper pairs look like point bosons
near t,he transition. To be more concrete, consider the
spatial dependence of the pair correlation function:

G2(xl) xi) x2i x2) = (c1(xl)cg(xi)cl (x2)cl(x2)),

where c (x) is an electron annihilation operator with spin
o. In the superconducting phase as ~xi —x2~ co
(with )xi —xi) and (x2 —x2) finite) G2 in Eq. (1.1)
factorizes as G2 g'(xi —x'i)@(x2 —x2), where @(x)
is the Cooper pair wave function. One expects that
g(x) exp( —~x~/(&), which defines the Cooper pair size,

In the insulating phase, but close to the transition,
as ~xi —x2~ ~ oo, G2 should still factorize, taking the
form

G2 —e ~"' "'~~~/*(xi —xi)@(x2 —x2) .

The Cooper pair size can then be defined from @(x), as
above, even in the insulating phase. We hypothesize that
upon approaching the (T = 0) transition to superconduc-
tivity, g diverges but (& remains finite.

From Eq. (1.2) it is clear that in the insulating phase (

is essentially a Cooper pair localization length. A single
electron "localization" length, (i, can also be defined in
terms of the imaginary part of the single electron (rather
than pair) retarded Green's function G(x, x', E —p):

1
[1mG(x + x', x'; 0) (' = e

x'

Here 0 is the system volume. This single electron local-
ization length, while clearly finite in the insulating phase,
is also expected to be finite in the superconducting phase
since electrons can propagate coherently only as pairs.
Indeed, (i should be roughly comparable to (z, and, like
the pair size, should remain finite at the transition. In
a Fermi liquid phase (i would be infinite, but since the
transition is directly from insulator to superconductor
it seems likely to us that it remains finite (noncritical).
This scenario is quite closely analogous to nematic tran-
sitions in classical XY models, 2 wherein (e2'&) orders
but the XY' order parameter (e'+) remains zero and the
associated ferromagnetic correlation length noncritical.
The nature of the competition between localization and
superconductivity on the insulating side of the transition
remains an active area of study and debate.

Our hypothesis that the superconductor-insulator
transition is in the same universality class as bosons mov-
ing in a random potential is supported by direct calcu-
lation for the 1D case. Giamarchi and Schulzso solve
a model of fermions with an attractive interaction and
show that the universality class for the transition from
insulator to s-wave superconductor is the same as the su-
perfluid to insulator transition in a model of disordered,
interacting (repulsive) bosons; that is, the fermi degrees
of freedom are not relevant. Since (1+1) dimensions
is the "lower critical dimension" for this transition,
we do not expect any logarithmic corrections to o* in
(2+1) dimensions, as found for disordered noninteract-
ing electronsi7 (i.e. , weak localization). There remains
however the possibility that fermionic degrees of freedom
cannot be neglected. This would almost certainly mean
the existence of marginal variables (as for a Fermi liq-
uid) which would destroy our assumption of a single fixed
point. (This point is discussed further in Sec. IX.) We
note that the spin susceptibility might prove to be a use-
ful probe of the nature of the insulating state near the
transition point.

Another possible eA'ect has recently been noted which
is argued to occur in granular systems. For Joseph-
son coupling between large grains mediated by hop-
ping through a small grain, the sign of the Josephson
coupling can be reversed. This leads to a random
frustration, in granular systems which, while not nec-
essarily invalidating the boson picture, could change the
boson universality class. However, if such effects are im-
portant, one would expect to see them also in the classi-
cal regime at finite temperatures, perhaps even destroy-
ing completely the finite temperature superconducting
phase. 3~

In order to discuss the scaling properties of the re-
sistance near, but not precisely at, the superconductor-
insulator transition, it is useful to define a parameter 6
which measures the "distance" to the T = 0 transition.



UNIVERSAL CONDUCTIVITY OF T%0-DIMENSIONAL FILMS. . . 6885

For example, b can be taken as b = (E, —I)/t„where / is
the film thickness and 8, the critical thickness, or alter-
natively b = (Riv —R&)/R& with R~ the film's normal
state resistance. In either case, at T = 0 the frequency-
dependent resistance near the transition, i.e. , at small b

and cu, is expected to satisfy a scaling form

R(b, T = 0, i~) = (h/4ez)P(ab/~'~'"), (1.4)

where P(z) is a dimensionless scaling function of the di-
mensionless argument, z—:ab/~i~', and z and v are
critical exponents of the T = 0 transition. A particu-
lar choice of normalization, say 0 P(z)~ —0

——1, makes
the scaling function P(z) universal. The constant a is
nonuniversal. Away from the transition, b g 0, as u ~ 0
the resistance diverges on the insulating side (b ) 0) and
vanishes on the superconducting side (b ( 0) of the tran-
sition. For small but nonzero frequencies, as b is taken
to zero and the transition is approached, the resistance
will have a finite limit, since finite dissipation is always
possible at finite frequencies. The limiting value at the
transition, R' = (h/4e )P(0), being independent of ur

(for small enough u) will remain finite as u —+ 0 and
should be universal. The bulk of this paper is devoted to
evaluating R" from Eq. (1.4).

Experimentally, it is of course impossible to work
at zero temperature, and moreover resistance measure-
ments are typically dc. Thus, when comparing with
experiments, a more appropriate scaling form is the
temperature-dependent dc resistance:

R(b, T, ~ = 0) = (h/4e )Q(bb/T'~") . (1.5)
This form should be valid for small enough b and T. As
in Eq. (1.4), Q(y) is a dimensionless universal scaling
function [B&Q(y)~z 0 ——1]. Again, away from the transi-
tion, b g 0, the resistance either vanishes or diverges in
the zero temperature limit depending on the sign of b.
For finite temperatures as the transition is approached,
say from the insulating side (i.e. , b ~ 0+), the resis-
tance is again expected to have a finite (and temperature-
independent) limit. This is because at T g 0 conduction
is always possible (R ( oo), and being out of the super-
conducting phase R will be nonzero. The simplest and
most natural scenario is that the resistance at the tran-
sition in this limit, (h/4e )Q(0), will be the same as that
obtained from Eq. (1.4). Indeed, it seems likely to us
that for real disordered films, no matter how the tran-
sition (b ~ 0) is approached, be it at finite u, finite T,
or with both T and ~ finite, the resistance obtained will
have the same unique and universal value.

Unfortunately, for the disorder-free boson models that
we study in the bulk of this paper, there appear to be fur-
ther subtleties. Specifically, for the disorder-free boson-
Hubbard model at commensurate density which we con-
sider in Secs. III—VI, although the resistance obtained
from Eq. (1.4) is finite and universal at, the transition,
the dc resistance at finite temperatures, Eq. (1.5), is ap-
parently zero, at, least within the context of a controlled
large-N expansion. This can be traced to the fact that
for a collection of particles in a translationally invariant
system, or for particles on a periodic lattice but in the ab-
sence of umklapp scattering, the dc resistance vanishes

identically, because the particles are free to accelerate.
This "pathology" will clearly not be present in real disor-
dered films which are not translationally invariant. (Real
disordered films, at finite temperatures away from the
superconducting phase, will most certainly have a non-
vanishing dc resistance. ) Because of this "pathological"
feature of the pure boson Hubbard model, we confine our
analysis of this model to T = 0, and evaluate the univer-
sal resistance from Eq. (1.4).

In this paper we discuss various methods to estimate
and evaluate the universal T = 0 conductivity, o', at the
superconductor-insulator transition in 2D film systems.
A brief outline is as follows. Duality between vortices and
charges will be discussed briefiy in Sec. II. In Sec. III,
as a first approximation, disorder is neglected and a pure
boson Hubbard model is considered. When the boson
density is commensurate with the lattice, this model de-
scribes a transition from a Mott-Hubbard insulator to a
superconductor. Although this transition is expected to
be in a diA'erent universality class from that of the exper-
imental systems, s where the insulating state arises from
disorder, is it is, nonetheless, useful to study it as a first
step toward a theory of the disordered system. Section IV
describes a simple mean-field treatment, formulated in a
particle-number representation, which allows for an es-
timate of the universal conductivity in the pure boson
Hubbard model. In Sec. V, the first order large-N cor-
rection to the Hartree approximation is computed
exactly for this model and, compared, in Sec. VI, with
Monte Carlo calculations for the 3D XY' model. Even
though zero-disorder systems are not in the appropriate
universality class for real disordered films, our results il-
lustrate various approaches to the theoretical calculations
and provide an estimate of o*. Furthermore these results
clearly demonstrate the validity of our central idea: the
(2+1)D critical conductivity is a dimensionless univer-
sal amp/itude analogous to (for example) the universal
jump in superfluid density in the 2D Kosterlitz-Thouless
transition.

Superconductor-insulator transitions in one dimension
are considered in Sec. VII, wherein an appropriate uni-
versal conductance is defined. This conductance is then
evaluated at both the Mott insulator to superconductor
transition in the pure case, and the localized insulator
to superconductor transition in the presence of disor-
der. The possible existence of universal dissipation in

He films is discussed in Sec. VIII and Sec. IX is reserved
for a summary and discussion.

II. VORTEX FLOW AND DUALITY PICTURE

Since we are assuming that it is sufficient to use a
boson description of the degrees of freedom of the sys-
tem, we can consider the following gedankenexperiment
to estimate the universal film resistance. As shown in
Fig. 1, let the film be fed by electrodes which are bulk
superconductors characterized by a phase 0 = 0 for the
lower electrode and some time-varying e(t) for the up-
per electrode. The boson degrees of freedom of the film
are described by a complex field Q(r, t) whose phase con-
nects smoothly to that of the electrodes. The film is a
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FIG. 1. Schematic diagram for vortex currents and Charge
current between two electrodes with phases 8 = 0 and 8 =

I = 2en (2 2)

where n, is the flux of Cooper pairs flowing between the
electrodes. The resistance is then

V h (n,
I (2e)s I, n,

(2 3)

In the superconducting phase there are no free (i.e., un-
bound) vortices, so that n and the (linear) resistance
vanishes. In the Mott-Hubbard insulator charge is im-
mobile due to the gap, so that R = oo. In the disordered
insulating phase, (Cooper pair) charge is immobile due
to localization. It is natural to speculate that right at
the superconductor-insulator transition, both charge and
vortices are mobile. If they are, and, moreover, exactly
one vortex crosses the system for each Cooper pair which
flows through the system, then the resistance is precisely
h/(2e)~, the quantum resistance. Our Monte Carlo re-
sults, described in Sec. VI, reveal that at the Mott insu-
lator to superconductor transition, R* 3.5Rq, a value
close to but not equal to Rg. Why might this be7

"weak link, " that is, a place where phase slips can oc-
cur. Resistance in the film is then due to vortex flow.
These vortices can be thermally generated which causes
the finite-temperature superconducting transition to be
of the Ekosterlitz-Thouless type. However for films of the
critical thickness, T, is driven to zero. At T = 0, vor-
tices are present at the superconductor-insulator transi-
tion and in the insulating phase purely due to quantum
fIuctuations.

The voltage across this weak link is given by the
3osephson relation

~ h .U= —8= —n (2.1)
2e 2c

where we have used the fact that the rate of phase slip
is proportional to the flux n of vortices flowing across
the sample perpendicular to the current. More precisely,
n~ is the flux of positive vortices to the right in Fig. 1,
plus the flux of negative vortices to the left. Each vortex
gives a phase slip of 2n. Similarly, the current is given
by

It turns out that there exists a duality transformation
of the path integral description of the system which inter-
changes the roles played by charges and vortices.
Roughly speaking, the idea is the following. A vortex is
an excitation which gives a Berry's phase of +2+ if a par-
ticle adiabatically encircles it. Thus a stationary vortex
has a particle current winding around it. Conversely, we
know from the fractional quantum Hall efFect that if a
vortex is adiabatically dragged around a closed path, the
Berry's phase is +2m% where N is the expected number
of charges inside the path. Hence (as pointed out very
early in a seminal paper by Haldane40), if we view vor-
tices as particles, they see the original charges as their
vortices. Thus a particle can be localized by having a
current of vort, ices flowing around it. This causes the lo-
cal phase to be completely uncertain and hence allows
the particle number to be certain.

We can imagine interchanging the roles played by the
charges and vortices. If the action were invariant un-
der this operation, the superconductor-insulator transi-
tion would be self-dual. In this case, right at the tran-
sition one would expect n = n„and the critical re-
sistance would be precisely Rq. There are two reasons
why the superconductor-insulator transition in real films
is not expected to be self-dual. Firstly, in zero magnetic
field there is a symmetry between positive and negative
vortices. Such a "particle-hole" symmetry is presumably
not present for the Cooper pair charges in real 2D films.
(The model studied in Secs. III and IV below which de-
scribes a transition from a commensurate Mott-Hubbard
insulator to superconductor in the absence of disorder
does have a boson "particle-hole" symmetry. ) Secondly,
vortices interact logarithmically whereas (Cooper-pair)
charges interact via a 1/i potential. However, it seems
plausible that the transition might be "close" to being
self-dual.

An applied perpendicular magnetic field breaks the
symmetry between positive and negative vortices.
Thus the magnetic-field-tuned superconductor-insulator
transition, which is believed to be in a difFerent uni-
versality class from the zero-field transition, is perhaps
"closer" to being self-dual. Indeed, the field-tuned tran-
sition for a model of logarithmically interacting (Cooper-
pair) charges should be exactly self-dual. ss In this case,
the squares of the longitudinal and Hall resistances
should sum to exactly [h/(2e)2]~. Experimentally at the
field-tuned transition, the Hall resistance appears to
be very small and the longitudinal resistance is roughly
4.5—5.5 kO, close to but not equal to the quantum of
resistance h/(2e) 6.45 kO.

In zero magnetic field a lattice model of logarithmically
interacting bosons with a density commensurate with the
lattice (an integer number per site) will have a particle-
hole symmetry at the transition from a Mott-Hubbard
insulator to superconductor. The transition in this model
should then be self-dual with a critical resistance of
exactly h/(2e) . Clearly the (zero-fiel) superconductor-
insulator transition in real disordered 2D films will be
more complicated, though.

The duality picture can give us further physical in-
sight into the nature of the insulating and superconduct-
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ing phases and the reason for an unstable fixed point
separating them. The superconducting phase is a con-
densate of bosons and a vacuum phase for the vortices.
A logarithmic confining potential develops between vor-
tices with strength proportional to the superQuid density
of the particle condensate. 43 Under rescaling in the su-
perconducting phase, the fixed point is unstable because
confinement of the vortices raises the superHuid density,
further increasing the confinement. On the other hand,
the insulating phase can be viewed as a condensate of vor-
tices and a vacuum (or frozen Bose glass) of charges. s

In this state one can have a finite current of vortices
(phases slips leading to a finite voltage) at no cost in
current. At the critical point, both charges and vortices
are mobile. This represents an unstable fixed-point sep-
arating the two phases. In summary, the fact that there
is an approximate duality between charges and vortices
at the superconductor-insulator transition, suggests that
the universal resistance should be near but not precisely
the quantum resistance, Rg.

III. BOSON HUBBARD MODEL

'H = U) (n; —np) —t) b, b, ,

('& I

(3.1)

Rather than study a model of charge 2e bosons mov-

ing in a random potential, for calculational simplicity
we neglect the disorder and consider a pure boson Hub-
bard model with an integer number of bosons per site.
Then the vanishing of the Mott-Hubbard gap yields
the insulator-superconductor transition. This transition,
however, is not in the same universality class as that in
a model with impurities, wherein the transition is from
a superconductor into a gapless, localized Bose-glass in-
sulator. Consequently, the universal resistance deduced
from the pure boson Hubbard model should not be com-
pared directly to the experiments.

For simplicity we assume the bosons move on a square
lattice. Changes in the symmetry of the lattice are not
expected to modify the critical phenomena, though. The
Hamiltonian of the pure boson Hubbard model is given
by

) (0,0~) —J ) cos(0; —0&) .
j (»)

(3.3)

Note that the first term in Eq. (3.3) is simply a ferro-
magnetic coupling in the (imaginary) time direction, so
that in space-time the action is essentially a (2+1)D XY
model. It should be emphasized that the action has this
classical (2+1)D XY-like form only when np is an integer.
For noninteger no, the action would have an additional
(imaginary) term of the formss

tonian in Eq. (3.2) can be obtained (approximately)

from Eq. (3.1) by putting b = ~npe'8 and n~

(I/i)(B/cI0z), provided we take J = npt. If np is an
integer, as we consider below, it can be eliminated from
Eq. (3.2) by a shift, n& ~ n~ + np, reducing the first
term to the more familiar form, U—(B/00&)2. The ratio
of the two parameters J and U determines the phase of
this model. In the limit U/ j )) 1, the hopping is sup-
pressed and the wave function of the system is roughly
@(0i, . . . , 0~ ) 1 where N, is the number of sites of the
system. This is the Mott insulating phase. We can inter-
pret this wave function as saying that every rotor is in its
ground state (of kinetic energy). Hence we have a charge
vacuum. Equivalently we can interpret ~@~ 1 as say-
ing that all possible phase angle configurations are nearly
equally probable. The disordered phase angle configu-
ration is due to a condensation of quantum-Auctuation-
induced vortices.

In the other limit, U/J (( 1, a variational wave
function with a parameter, A, could be taken as

ttt(ttt, , tttr ) eprp (A +tert pns(9s —ttt)) represent-

ing (for large A) the superfluid phase. Somewhere be-
tween these two limits, a phase transition occurs. 4

The Mott insulator to superconductor transitions in
the Hamiltonians in Eqs. (3.1) and (3.2) at integer filling,
np, are in the universality class of the (2+1)-D classical
XY model. ' This can be understood most easily by
representing the partition function of the Hamiltonian

as a path integral in a basis diagonal in 0&. The
associated action can be written as S = I dry with a
Lagrangian:

(I 0'R'= U) ~

—. —np
~

—j) cos(0; —0 )) (V)

(3 2)

which is expressed in terms of a phase angle at each site
0&, and conjugate momenta (I/i)(0/00&). The Hamil-

where b and bz are .boson creation and destruction op-
erators at site j, respectively, and n& are number oper-
ators. The parameters t and U represent, respectively,
the nearest-neighbor-hopping matrix elements and the
intrasite (Coulomb) charging energy. The average den-
sity is controlled by the parameter no which we take to
be a large integer. The summation (ij) ranges over all
nearest-neighbor pairs.

The boson Hubbard model in Eq. (3.1) is closely re-
lated to (i.e. , in the same universality class as) the quan-
tum rotor model

bS = i p) nf dr 8, . tp, (3.4)

IV. BOSON HUBBARD MODEL IN THE
HARTREE-FOCK APPROXIMATION

In this section we solve the boson Hubbard model at
integer filling in a simple mean-field approximation. This
has the advantage of giving a diR'erent perspective on the
problem and is physically rather clear.

The standard path integral formulation of the Hamilto-
nian in Eq. (3.2) is in the phase representation, as shown
in Eq. (3.3). Here we will work in the conjugate (particle-
number) representation. In this description vortices do
not explicitly appear. The physical picture is that, in
the Mott-Hubbard insulating phase there is a charge ex-
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citation gap between the "upper Hubbard band" and the
"lower Hubbard band. " Thus we can view the system as a
semiconductor. We have a simple physical picture of the
optical (i.e. , finite frequency) conductivity of a semicon-
ductor; photons with energies above the gap can be ab-
sorbed by the production of particle-hole pairs. The rate
of absorption is given by Fermi s golden rule and is essen-
tially the square of a matrix element times a particle-hole
density of states. Thus, even in the absence of disorder,
the conductivity is not infinite because there are no car-
riers present except for the pairs produced by the pho-
toabsorption.

Imagine approaching the T = 0 phase transition by
first letting the Mott-Hubbard gap go to zero and then
taking the frequency to zero. The semiconductor analogy
makes clear the source of dissipation at the transition;
it is the production of gapless "particle-hole" pairs of
bosons. This physical picture of a critical (gapless) state
is very diA'erent from that used in previous mod-
els which invoked some external source of dissipation to
explain early experiments on granular films which found
that an apparently universal normal s/a/e resistance cor-
related with the destruction of superconductivity at low
temperatures. In these models, a local phase degree of
freedom (a phase "particle" in a washboard potential)
corresponding to the boson field was coupled to some
external source of dissipation, due to quasiparticle tun-
neling across the weak links. The dissipation was in turn
related to the normal s/a/e resistance of the film. An
essential difficulty was that quasiparticles freeze out at
low temperatures so that the normal state dissipation is
essentially unrelated to the very low dissipation at low
temperatures.

In the present model, the dissipation does not have
an extrinsic source, but is due to the gapless excitations
in the boson system itself at its critical point. Thus
it is not the normal state resistance which determines
the dissipation at low temperatures, but rather a self-
consistent dissipation generated internally by the dynam-
ical fluctuations at the critical point. Indeed, it is the
Cooper pairs which are diA'using at the zero-temperature
superconductor-insulator transition. We believe that the
value of the critical normal s/ate resistance which deter-
mines the destruction of superconductivity at low tem-
peratures, will in general not be universal. Rather, it
is the actual resistance of the film at zero temperature
which is predicted to be universal at the transition.

Taking the Hamiltonian in Eq. (3.1) with no integer,
the conductivity is given by

Re(T(~) = —(L h~) 'ImII ((u+ ib), (4.1)

where J is the system size. The retarded correlation
function is

II„(te)—:J Ch e [ — 6(t )'(['1e'(t'), J, (D)']) ],
(4.2)

and the current operator for charge e* particles is

(4.3)

where b is a near-neighbor vector.
As mentioned above we will begin with the large-U

insulating state. When t = 0, the ground state has no
particles on every site and the cost to add an extra par-
ticle is U. There is a large manifold of degenerate states
corresponding to the fact that the particle can be added
to any one of the sites. This degeneracy is lifted by the
kinetic energy (t g 0) which spreads the states out into
the "upper Hubbard band, " which has a width (in mean
field) of 8t Sim.ilarly, it costs energy U to create a hole in
the "lower Hubbard band, " but this band also acquires
a finite width. Thus the actual band gap is

2E = 2(U —4t) . (4 4)

For a square lattice with lattice constant a, the dispersion
relation for both bands is

s(k) = U —2t[cos(k a) + cos(k„a)j, (4.5a)

s(k) = U —4t + t(ka)' .

Converting to plane-wave variables

(4.5b)

bt = ) .-*""b„',
N,

(4 6)

the current becomes

J = ) 2 sin(k a) b&b], . (4 7)

The correlation function is then readily evaluated, pro-
vided that we view the current operator as creating a
"particle" in the upper Hubbard band and a "hole" in
the lower Hubbard band, each of which propagate freely
and do not interact:

(4 9)

where uT = 2A/h. This expression has a simple physi-
cal interpretation. It is the (transition) density of states
for particle-hole pairs of energy u. We see that it van-
ishes for energies below the gap and rises linearly above
threshold. Note however one additional very important
feature of Eq. (4.9): The factor of t2 from the current
matrix element has been canceled out because the larger
is t, the wider are the bands and hence the smaller the
one-body density of states.

With this result the conductivity is readily found to be

(~)= —& 2 ) 4sin (k a)b~~—R (e'«)' - . & ] 2s(k) l
h' „(, h )

(4.8)

Since we are interested only in frequencies just above the
gap, we can make the long-wavelength (quadratic) ap-
proximation to the dispersion relation for s(k) to obtain
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Q 2

Reo(~) = — e(ur —~T) .
h 4

(4.10) d z
l

VP* (x) VP (x) + ro P' (x)P (x)

e'
h 4

(4»)
This result diA'ers by a factor of 2 from the leading

large-N limit to be derived in the next section. This is
because at the N = oo critical point, the model describes
noninteracting, linearly dispersing bosons, whereas we
have assumed a quadratic dispersion. Taking instead
(near the critical point)

e(k) = /As+ (ck)'

the current operator becomes

(4»)

(4.13)

so that the final result is

Setting the gap to zero at the critical point and then
taking the limit of zero frequency, we obtain the result

(5.1)

where o. = 1, . . . , M, and the summation convention for
the repeated indices is assumed. The parameter up is a
constant representing a short-range repulsive interaction.
This 3D classical action is equivalent to the 2D quantum
model at zero temperature in a path integral representa-
tion, provided one of the three coordinates is interpreted
as the imaginary time axis. Let us take the imaginary
time axis along the z direction, so that k, in momentum
space now means the frequency. Imposing a vector po-
tential source field and taking the second derivative of the
free energy with respect to the source field, as detailed in
Appendix A, we arrive at a formula for the conductivity

Q 2

oM(ik, ) = — d z[(P'(x)P (x))6(x)

—2(J (x)J (0))] e'"'", (5.2)

2 2

Re o (~) = „— e(~ —cuT), (4.14)

where e* is the carrier charge, and we have defined k =
k, z,

in agreement with the leading large-N result of Sec. V.

and

3(x) = —.[P'(x)VP (x) —P (x)VP" (x)], (5.3)

V. LARGE-N EXPANSION OF
THE UNIVERSAL CONDUCTIVITY

FOR THE ISOTROPIC
3D CLASSICAL XY MODEL

As discussed in Sec. III, the superfiuid to insulator
transition in the boson Hubbard model at integer filling
is in the same universality class as the isotropic 3D clas-
sical XY model. We now consider this model problem.
For the XV model, the order parameter dimensionality,
N, is 2. In the limit where N goes to infinity, the model
is exactly soluble. Here we calculate the universal con-
ductivity as a power series in 1j¹

Since universal quantities, such as the conductivity,
depend only on the universality class of the transition
and are insensitive to microscopic details, we are free to
choose a convenient form of model action, provided it is
in the same universality class. Here we take a Ginzburg-
Landau-type action to calculate the universal conductiv-
ity. Then, with M complex fields Pi, . . . , PM(N = 2M),
the action of the model is given by

J"17[/] 0 e

J&[4] e '
Using the Fourier transformation

p (x)= ) e'q" p q,0

where 0 is the volume of the 3D system we have

~ = ) .(V'+ ro)4*q 4 q

and the conductivity (per fiavor) is given by

c 1
o(ik, ) = —p(k, )h k,

with

(5 4)

(5.5)

(5.7)

Qd p
p(k~) = 2

(2 )s (&q &q) ~
(2 )s (~q—k/2~p+k/2~P —k/2'4+k&)~ (5.8)

where we have dropped the fiavor indices of the P field to
represent one among the M fields. Power counting shows
that p(k, ) oc k and hence o(k, ) is just a combination
of some fundamental physical constants. Note that the

conductivity and the sheet conductance are equivalent
quantities in the (2+1)-D case under consideration.

To calculate the expectation value in Eq. (5.8) we want
to treat the P4 term in Eq. (5.1) perturbatively in the
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large-N limit. We must choose —= ---- + --C3--- + --CO- ~ ~ ~

(5.9) FIG. 2. The dressed interaction to O(l/N).

where gp is a constant, to obtain a sensible limit. The
1/N expansion involves selecting diagrams of successive
orders in I/N. One way to simplify the diagram selection
and counting is the int, roduction of an auxiliary field,
(, to decouple the P4 term:

diagrams shown in Fig. 2:

u(k) = 1+mu. II(k) ' (5.17)

+——('(x) + i((~)p' (~)g (x)) .
1N
2 gp

(5.10)

where the factor of M comes from the sum of the con-
tributions of each of the M complex P fields, and II(k)
[shown in Fig. 3(a)] represents the polarization of one of
the fields with momentum transfer k, and is defined by

The functional integral with respect to (, gives back the
P4 term In .this new action, the interactions are only me-
diated by the ( field and the ( propagator gives all 1/N
factors. The parameter rp represents the square of the
bare one-particle excitation energy gap, but many-body
eKects due to the interactions renormalize rp. At, the crit-
ical point, the renormalized excitation energy gap van-
ishes and the correlation length becomes infinite. In or-
der to get the correlation function at the critical point, we
extract the excitation energy gap renormalization term
by shifting the ( field,

dsq
Gp(k+ q)Gp(q) (5.18)

Z(k) = d q, u(q) [Go(k+ q) —Go(q)] (5.19)

in the 30 case. We also need to define the self-energy

[Fig 3(b)1:

with (,
" determined by

where Ss(r is defined byso

—S «t(j ~[y] e-sly, tl

Then the action becomes

d z
~

WP'(x) V'P (x) + r P'(x)P (x)

(5.11)

(5.12)

(5.13)

where we have subtracted the zero-momentum part be-
cause it has already been absorbed in the renormalization
of r."

Now the 1/N expansion is implemented by replacing up

by u(q) and up by r in Eq. (5.6), and calculating physical
quantities in powers of u. The perturbative expansion
of )()(k, ) up to the first two leading-order terms can be
represented by the diagrams shown in Fig. 4. At N = oo
we can simply neglect the P term and the action becomes
Gaussian so that

d , [Gp(q) —2q.'Go(q) Go(k+ q)]
2ir) s

+-—((x) + i(,"(x)P'(x)P (x) + —(,"(,' ~,
1 2

2 gp gp

(5.14)

(5.20)

At the critical point r vanishes and the integrals in Eq.
(5.20) can be evaluated giving

up to some constant, where the physical (renormalized)
gap parameter is

[P (k, )],„;t ——is&, .C.
'0) (5.21)

r = rp+i(,'

Now the free P propagator is given by

(5.15)

The first 1/N correction can be expressed as

(5.16)
II(k)=- -Z(k)= k

The two-body interaction coupling with momentum
transfer k, which is mediated by the ( field and renor-
malized by the polarization insertion, can be calculated
up to leading order in 1/N in the large-N limit from the FIG. 3. (a) Polarization bubble; (b) self-energy.
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]()~'&(k, ) = —2 J' Z(q) [Gp(q)]2 —4 q'E(q)Gp(q+ k) [Gp(q)]2

Pp
u(q —p)Gp(q+ k)Gp(q)Gp(p+ k)Gp(p)q p (5.22)

At the critical point these integrals can be evaluated ex-
actly (see Appendix B) giving

then the following partition function:

[p~'~(k. )].,;t; = —
—,', (-',g) k. , (5.23) Z = Tre exp I~ ) cos[(I](x) —8(x+ 6)] (6 1)

where the correlation function critical exponent g is

(5.24)

Finally, inserting Eqs. (5.21) and (5.23) into Eq. (5.7)
and taking k, —+ 0 yields the universal dc conductivity
to O(1/N):

1 32 ')
(5.25)

with

2r ((2e)2&
8], h

(5.26)

~' = O.251( ')'
.

h
(5.27)

It would also be interesting to compute the universal
conductivity within an e expansion, where e = 4 —d,
along the lines of Hohenberg et al. and Bervillier. 2

VI. MONTE CARLO CALCULATION OF cr

In this section we discuss the results of numerical quan-
tum Monte Carlo calculations for the universal conduc-
tivity at the Mott insulator to superAuid transition. Here
we find it convenient to study a "hard-spin" representa-
tion of the 30 classical XY model, rather than the "soft-
spin" Ginzburg-I andau form studied in Sec. V. Consider

In Eq. (5.26) we have replaced e' by the Cooper pair
charge 2e. For the XY model M = 1. Thus the first
order correction to the universal conductivity in the 1/N
expansion, reduces the value by about 36% from the N =
oo result yielding

where the sum is over near-neighbor bonds of a simple
cubic lattice, 6 = z, y, or z, and periodic boundary con-
ditions are assumed. We simulated this using a variety
of techniques, including the Metropolis method with the
"checkerboard" algorithm for vectorization on the NCSA
Cray-XMP and the Wolff algorithm. 52 We also performed
some limited simulations on the dual-transformed model
which involves integer-valued currents Qowing on the
lattice links. Most of the data was taken with the
Metropolis code since it produced the most statistically
independent samples in the least time.

our first task is to find the critical point. A series
expansion study by Ferer, Moore, and Wortis found

K* = 0.4539+ 0.0013 = Ko + 0.0013 . (6 2)

8(xp + Lz) = 0(x()) + 8 . (6 3)

This imposes an average twist V'8 = (8/L). Note that
we can absorb this twist if we redefine the angles as fol-
lows:

In order to reduce the uncertainty in I~ *, we have located
the transition by finite-size scaling studies of the stifFness
with respect to imposing a twist on the boundary. This
is proportional to the superAuid density and, as we shall
see, takes a universal value at the critical point. In addi-
tion, it is closely related to the universal conductivity.

Specifically, consider the change in free energy when
we change the boundary conditions from being periodic
in all directions to periodic in d —1 dimensions but with a
twist, 0, in the remaining dimension, z say. Throughout
this section we will refer to the spatial dimension as d =
3 since we are dealing with a classical model in (2+1)
dimensions. If xo is the coordinate of a site in the first
layer perpendicular to the z axis, then we have

8(x) ~ ]]I)'(x) = 0(x) ~ 8—
L

(6.4)

p (k)=2Q — 4 ~+ so that the 0 satisfy periodic boundary conditions but
the Hamiltonian is modified to

PH = —K ) cos[9(x) —0(x + (I)) —Ag(x)], (6.5)
m, 6

where

FIG. 4. Diagrams for the first two terms in large-N ex-
pansion of p(k, ).

0
A (x) = —,A])(x) = 0(b g z).I' (6.6)
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where, following Appendix A, one can define a wave vec-
tor dependent stiffness, p(k), such that

p(k) = I&(cos[8(x) —8(x + z)])
—I~2) (J (x)J (0))e'"", (6.8)

Here in the (2+1)D case the "temperature" T = I/P,
is a parameter which controls quantum fluctuations, not
the thermodynamic temperature. Equation (6.5) is just
the Hamiltonian used to compute the conductivity in Ap-
pendix A. Following the same steps, one finds, to lowest
order in V'8, that the change in free energy per site is
given by

(6.7)

recovers Eq. (6.14) in the bulk limit. Generalizing the
stiA'ness to finite k, the wave vector can only appear in
the combination kL according to finite-size scaling, so

p(k) = „p(aL'~'t, kI.),
1

(6.16)

(6 17)

where p is another universal scaling function. Note that
a universality class for finite systems is specified not only
by the bulk universality class but also by the shape of
the system and the boundary conditions. Hence p will

depend on shape and boundary conditions except in the
limit which describes bulk behavior.

Specifying now to d = 3 and T = T„we have

where the current Jg(x) is given by

Jb(x) = sin[8(x) —8(x+ 6)]. (6.9)

Note that p(0) is proportional to the superfluid density,
p„by

(6.10)

and, as shown in Appendix A, the dc conductivity is
related to p(k) by

o=lim
e' p(k)

k~0 (6»)

(6.12)

Next we discuss the scaling of p(k). General arguments
require that, since the singular part of the free energy is
in fact a density, it must obey

where Q(z) = p(0, z). Hence for k = 0, Lp(0) is univer-
sal at T, and plots of Lp(0) against T for difFerent sizes
should intersect at T, . This is the analog of the universal
superfluid density at T, in 2D.

We computed Lp(0), and also I [Bp(0)/c)It] using the
technique of Ferrenberg and Swendsen at the nominal
critical point Ko = 0.4539 to produce the curves shown
in Fig. 5. As a check, other data was taken by actually
varying the coupling Ic. We see that, as expected, the
lines approximately intersect at a value of 0.454, near
the nominal value I~0 and inside of the region defined
by the error bars of Ferer, Moore, and Wortis in Eq,

~ 6 I I I I

~

I I I 1

~

I I I i

)

I I I I0.

where ( is the correlation length, d is the dimensionality
and, according to "two-scale-factor universality, "~O C is a
universal constant. The origin of the critical free energy
is phase Huctuations

(6.13)

L=16
L=12
L=8

and, using ((V'8) ) (, one finds

p(0) = c'( (6.14)

where C' is also universal according to two-scale-factor
universality. Generalizing Eq. (6.14) to finite sizes we

assume that the size enters only through the ratio L/(
Since ( t, where t is the reduced "temperature, "
we can take the scaling variable associated with L to be
I ~"t. The finite-size scaling ansatz is then

p(0) = L, ,P(aL" t) (6.15)

where p is a scaling function and a is a nonuniversal met-
ric factor associated with the reduced temperature. The
generalization of two-scale-factor universality to finite-
size systems5 is the statement that everything in Eq.
(6.15) is universal apart from the metric factor a. In
particular, there is no additional metric factor associated
with L. Note that for large z, p(z) z(" 2&" so one

I

[

0.4
0.452 0.453 0.454 0.455 0.456

K

FIG. 5. StiR'ness p(0) times L as a function of lattice size L
and coupling constant I( from Monte Carlo simulations. The
simulations were performed at the nominal va.lue Iso ——0.4539
of the critical coupling for lattice sizes 8, 12, and 16 . Values
of p(0) for K g Ks were determined from simulated values
of Bp(0)/BK. The vertical bars at the end of the lines are
estimates of the statistical error in Lp(0). Finite-size scaling
implies that the lines in the figure will cross at the critical
point. This gives K' = Ao + 0.0005, and Lp(0) = 0.49 + 0.01
at A = K'. The value of Lp(0) at K = K' is expected to be
universal, as discussed in the text. Horizontal line indicates
error bars from the series expansion of Ref. 54.
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(6.2). The value of the critical coupling which we obtain
is consistent with that of Li and Teitel58 who used a
similar finite-size scaling method.

From Eq. (6.11) we see that the conductivity is ob-
tained by taking first the limit L ~ oo with k small but
finite and then letting k —+ 0. Hence the argument of the
scaling function in Eq. (6.17) tends to infinity. In this
limit, presumably, one has Q(z) z in order to have a
well-defined limit as L ~ oo and so

a' . f'Q(z)
g'q x~oo l z j (6.18)

Note that k = 2mn/L where n is an integer, so we can
write

cr(n) Q(2z n)
(6.19)

Ir(n, L/n) +C ——— +''
og n

(6.20)

for some value of the constants n and c.
To find o' we have plotted 0.(n, L/n) for various sizes

and values of n against the variable

(6.21)

where to get o*, we need to take n in the range 1 « n «
L. For large z we expect that Q(z) can be expanded
in powers of 1/z, i.e. , Q(z) = az + b + O(l/z), so, if
n is not too large cr(n) = a* + const/n. Unfortunately
this form does not fit our data well because, for the sizes
studied, we cannot simultaneously satisfy the conditions
n » 1 and n « L. We must therefore include corrections
to scaling which arise because the ratio n/L is finite,
so o is a function of both n and L/n, i.e., o(n, L/n).
Since o(n, L/n) refers to the behavior of a finite system
and tends to a finite value as both its arguments tend to
infinity, it is reasonable to assume that it varies smoothly
in this limit, i.e. ,

Do (n, L/n)
OI&

K=KO
(6.23)

as well as by simulations at nearby values of K. There is
a fairly well-defined range of K near the nominal critical

0.5

0.4
b

0.3

0.2

whose boundary is determined by the condition that both
have the same volume, we calculate the dependence on
the lattice cutoA' and find that c = 0.228. The correction
due to a finite sample size mainly comes from the fact
that in a finite system, r in Eq. (5.16) does not vanish
even at the bulk critical point. Following the method
provided by Brezin, sg we obtain r = 3.786/I2 at the bulk
III = oo critical point. Substitution of Eq. (5.16) with this
value of r into Eq. (5.20) yields cn = 0.155. The value of

at the N = oo critical point is then determined from
these two corrections to be roughly 0.68, which is in good
agreement with the optimal value of o, = 0.74 deduced
above from the Monte Carlo at the A Y (III = 2) critical
point.

There is some interaction between the uncertainty in
K' and the uncertainty in n. We have investigated this
by simulations at the nominal critical value Ko which
compute

and choose the value of o. which causes the data to fall
onto a single curve. This is shown in Fig. 6 for five differ-
ent values of I~ near the nominal critical value Ko. The
solid curves correspond to lattices of size 8, the dashed
curves 12, and the dotted curves 16 . At each value of
K, a smooth curve fit to the data for a given system size
L is compared to the corresponding smooth curve for a
different size L'. The discrepancy between the curves is
defined to be

dz[al. (z) —ol. (z)]2, (6.22)

where ( is a cutoff taken to be 0.3. This error is summed
over the different pairs of curves and for five values of
I~ near the nominal critical value K' is shown plotted
in Fig. 7 as a function of o;. These results suggest the
optimal value of o, is 0.74 + 0.08 and are consistent with
a transition at K* = Ko. We can also obtain an analytic
estimate for o; by calculating the correction to o* due
to a lattice cutoff and a finite sample size at N = oo.
Taking a, spherical rather than a cubic Brillouin zone,

I I I I I I I I I I I I I I I I I I I I I I I I0
—0.4 —0.2 0.0 0.2

n/n —n/L
0.4

FIG. tI. Monte Carlo result for the conductivity II'(n, L/n)
divided by op as a function of the scaling variable n/n —n/L
for various lattice sizes and coupling constants. The stud-
ied lattice sizes are 8 (solid curves), 12 (dashed curves),
and 16 (dotted curves). The curves are obtained by smooth
(spline) interpolation between the Monte Carlo data points.
The simulations were done at A = Kp, and the conductivity
at other values of E was computed from simulated values of
Bo'/BK The three upp. ermost curves have K = Ko + 0.001,
and then, in order from top to bottom, A = Ap + 0.0005,
Kp Ap —0 0005, and Ap —0 001. For each value of A, the
corresponding value of o was chosen to make the curves for
different lattice sizes to be as c?ose together as possible; cf.
Figs. 7 and 8. The best scaling behavior is found for K = Ap,
and this shows that Ir'/og = 0.285 + 0.02, where the error
estimate corresponds to the error in K' [the statistical error
in a(n, L/n) is negligible].
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0.10
0.04

Q. OB
0.02 (

0.06

0.04

b
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—0.02
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Q 00

—0.04
I I I I I I I I 1 I I t I I I I I I I

0.5 0.6 0.7 0.8 0.9 1.0 —0. 1 0.0 0.1 0.2
CX I1—I1

FIG. 7. Integrated discrepancy between the Monte Carlo
data for the conductivity at different lattice sizes for n/n-
n/L between —0.3 and 0.3. The integration is performed by
smooth (spline) interpolation between the Monte Carlo data
points. Curve (a) has K = Iia + 0.001, (b) has I& = Ka +
0.0005, (c) has K = K', (d) has K = K' —0.0005, and (e)
has A = Ao —0.001. The minimum of each curve determines
the value of a where the scaling is best, and these values
are used in Fig. 6. The best scaling and least discrepancy is
found at K = Ao, and the corresponding optimal value of n
is o. = 0.74 + 0.08, where the error estimate comes from the
error in K.

o, = 0.74 + 0.08 . (6.24b)

From the value of the scaling curve for the conductivity
at z = 0 we obtain for the critical value

= 0.285+ 0.02, (6.25)

point Ko for which there exists an n which gives good
scaling behavior as shown in Fig. 8. Taking all this into
account (and using the results from the scaling of the
superfluid density) we estimate

(6.24a)

FIG. 8. Monte Carlo results for Ao'„/aq = [o(n, L/n)—
rrs(n)]/oq, plotted as a function of n/n —n/L for different
lattice sizes and couplings. The constant aa(n) is the con-
ductivity at size 8 and coupling A = K'0. The lattice sizes
are 8 (plus signs are MC points and solid curves are inter-
polated), 12 (crosses and dashed curves), and 16 (squares
and dotted curves). The uppermost group of three curves has
K = Ko + 0.001, and, following in order from top to bottom,
A = Ao + 0.0005, Ao, Ko —0.0005, and Ko —0.001. For each
K, the corresponding value of n was determined in Fig. 7 to
minimize the discrepancy between the curves. The least dis-
crepancy and hence best scaling is obtained for the middle
three curves, which have A' = Ao, cf. Fig. 6.

for the energy was an order of magnitude larger.
The good agreement obtained between the 1/N expan-

sion of the P4 theory and the Monte Carlo results for the
XY model are further confirmation of our universality
hypothesis since the former is a "soft spin" model while
the latter is a "hard spin" model. They differ signifi-
cantly in their microscopic details but lie in the same
universality class.

VII. UNIVERSAL CONDUCTANCE AT
jLD SUPERCONDUCTOR-INSULATOR

TRANSITION

where all errors represent approximately one standard de-
viation. This numerical result is in good agreement with
the result of the large-N expansion to order 1/N, when
extrapolated to N = 2; cr" /oq —0.251. (Recall that at
N = oo the result is vr/8 = 0.393.) Assuming geometric
convergence of the 1/N expansion (for which there is no
justification) the discrepancy is consistent with the ex-
pected size of the next (1/N ) term in the series. Most
of the uncertainty in the numerical result is in the value
of I&* and o. rather than direct statistical uncertainty in
rr(n, L/n). The latter was found to be about +10 4 for
runs of 4 x 10s sweeps of the 16 lattice (with a measure-
ment being made every second sweep). The autocorrela-
Cion time for the conductivity was about one sweep for
the checkerboard algorithm. The autocorrelation time

In Secs. III—VI we have ignored the effects of disorder
and focused on the pure boson Hubbard model which,
at integer Ailing, has a transition from a superconduc-
tor into a commensurate Mott-Hubbard insulator. In
real amorphous thin film systems, though, the insulating
phase is presumably due to the localizing effects of disor-
der, rather than lattice commensurability, so that the ex-
perimentally relevant transition is from superconductor
into a localized "Bose glass" insulator. This transition is
believed to be in a different universality class from the
Mott insulator to superconductor transition and will thus
have a different value of its universal conductivity (in two
dimensions). Can one estimate how close these two uni-
versal conductivities will be? As we show below, some
progress can be made by studying these two transitions
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in the one-dimensional case. First, though, it is neces-
sary to generalize the notion of a universal conductivity
away from two dimensions.

In two dimensions, conductivity and conductance have
the same dimension, and are dimensionless when ex-
pressed in units of e /h. Away from two dimensions only
the conductance remains dimensionless. It is thus useful
to define a dimensionless conductance g(u, k ) in terms
of a frequency and wave-vector dependent conductivity
o (~, k ):

g(~, k ) = (h/e' )o (ice, k )k (7 1)

Here the wave vector k is taken to lie parallel to the
applied electric field and resultant current, i.e. , in the
z direction. At the 2D superconductor-insulator transi-
tion (Secs. III—VI) we have implicitly put k = 0, before
taking the zero frequency limit. At the superconductor
insulator transition in d g 2, though, the u and k -+ 0
limits must be specified with care in order to end up with
a finite result for the conductance. To see this, first note
that from scaling, right at the superconductor-insulator
transition, g(ur, k) can be written in the form

g(cu, k) = g(ck/u)'I') (7.2)

with g(X) a universal scaling function, z the dynami-
cal exponent, and c a nonuniversal constant. At finite

and in the k —+ 0 limit, so that the scaling vari-
able X = ck/ui~' ~ 0, the conductance must vary as

g(X) X2 " [since the conductivity o'(u g 0, k = 0) is

finite], and thus diverges or vanishes away from d = 2. In
the large-X limit the behavior of g(X) will also in general
depend on dimensionality. In 2D at the superconductor
to Mott-Hubbard insulator transition, g(X) can be cal-
culated exactly within the large-N limit of Sec. V. At
N = oo the result is

g':—g(X'), (7.4)

obtained from Eq. (7.2) by taking k and ur ~ 0, keep-
ing the scaling combination X = ck/uiI' = X" fixed, is
both universal and unique. Below we evaluate this uni-
versal conductance in the one-dimensional case, at both
the pure and disordered superconductor-insulator transi-
tions.

To this end, consider a 1D system of repulsively in-
teracting bosons, with short-range interaction, moving
in a periodic potential, u cos(2xz), plus a random po-
tential V(z). This model has been studied in detail in

(X) = &I+X' '

so that g(X) varies as X for large arguments. As we show

below, in one spatial dimension g(X) 1/X for large X,
at both the Mott-insulator to superconductor transition
in the pure case and at the Bose glass to superconductor
transition with disorder.

Since in one dimension g(X) vanishes for both small
and large arguments, it must have a unique maximum
at some special value of X, say X*. Consequently, the
conductance at this point

Z = D8(z, 7.) exp( —S)

with S= Sa+Sp+ SR, and

(7.5)

K
Sp ——

27r
dzdr[C, '(0 8) + C2(0 8) ], (7.6)

Sp = —u cos[2x(po —l)z + 28(z, r)],
7

(7.7)

SR —— bp(z)t9 8(z, r) +
X i T

i28(z, 7 l +

(7 8)

Here, Sti describes the second sound mode of the super-
fluid phase in the absence of an external potential, with
second sound velocity C2 ——(p, /mz) I where p, is the
superfluid density, m the boson mass, and ~ = Dp/Dp the
compressibility. Sp and SR represent the contributions
from the periodic and random potentials, respectively.
When S& ——SR ——0, superfluid correlations decay as a
power law, (b(z)bt(0)) ~z~

I2 with an exponent K.
This parameter is related directly to p, and the compress-
ibility

(irI& )
—= m/p, ~ . (7.9)

The parameter I& defined in Eq. (7.9) should not be con-
fused with the dimensionless coupling constant for the
3D XY model in Sec. VI, which is also denoted by I&.

In arriving at Eq. (7.7) it was assumed that the Bose
density po was nearly commensurate with the periodic
potential, po 1. In Eq. (7.8), —bp(z) and ( are the
contributions of the random potential V(z) with Fourier
components near k = 0 and k = +2m'po, respectively. For
convenience, these can be taken as satisfying a Gaussian
white-noise distribution.

The Mott insulator to superconductor transition oc-
curs at a commensurate density, po

——1 in Eq. (7.7), and
with no randomness, SR ——0. As discussed in Ref. 16,
this phase transition is perturbatively accessible in u, the
strength of the periodic potential. A renormalization-
group analysis shows that the superconducting phase at
u = 0 is stable with respect to small u, for Ix smaller
than a critical value K~ ——&. For K ) I&M the po-
tential u is relevant and the system locks into a Mott

Refs. 16 and 30, by employing a representation of 1D
bosons due to Haldane, which expresses the relevant
low-energy features of the Hamiltonian in terms of an
operator II(z) which represents (small) deviations of the
Bose density from its mean value. As reviewed in Ap-
pendix 8 of Ref. 16, a functional integration represen-
tation can be obtained by working in a basis of states
diagonal in an operator 8(z), defined as 8 8(z) = +II(z).
The field 8(z) should not be confused with the phase of
the boson field, denoted as 0 in other sections. Prom Eqs.
(4.6)—(4.10) in Ref. 16, the partition function at T = 0
can be expressed as a path integral over the field 8(z, r)
(with r imaginary time):
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insulating phase. The value of K at the transition, I&M,
is universal.

A similar analysis reveals that in the absence of
a periodic potential, the superconducting phase is stable
with respect to weak disorder for Ia less than a critical
value KG —3, whereas for K & KG weak disorder is rel-
evant and grows under renormalization. This is taken to
signify the formation of a localized, disorder-dominated
insulating phase, i.e. , a Bose glass. At the Bose glass to
superconductor transition, I~ is universal with a value
I&~ ——3.

In order to evaluate the universal conductance, g' in
Eq. (7.4), at these two transitions, it is necessary to cou-
ple the bosons to a (1D) "vector" potential A(z). Min-
imal coupling dictates that 8 p is replaced by 0 ip-
ie'A/fi, where p is the phase of the boson field (denoted
8 in other sections), i.e. , b(z) = ~pe'&. As discussed in
Appendix B of Ref. 16, 0 p = zII8, where II& is a mo-

mentum conjugate to the field 0 which appears in the
action Eqs. (7.6)—(7.8). In the Hamiltonian correspond-
ing to the Lagrangian in Eq. (7.6), one must thus put
II& ~ II& —(ie'A/xh). This change corresponds to an
additive contribution to the Lagrangian, and hence to
the action in Eq. (7.5): S ~ S+ S~ with

elude that in the one-dimensional case, an appropriately
defined universal conductance is reduced from its value
at the pure Mott insulator to superconductor transition
by a factor of 4 when disorder is present and the transi-
tion is into a localized (Bose glass) insulating phase. The
possible implications of this 1D result for the 2D case are
briefly discussed in Sec. IX.

VIII. DISSIPATION IN HELIUM-4
FILMS AT THE SUPERFLUID-

INSULATOR TRANSITION

The purpose of this section is to explore the possibility
that there exists a mechanical analog of the universal
electrical resistance, namely, universal dissipation might
be found in torsion oscillator experiments done on 4He
films. The experiments must be done in the limit that
the critical temperature approaches zero, that is, at the
T = 0 superfluid-insulator transition. We are assuming,
here, that destruction of superfluidity at T = 0 for low
density of absorbed 4He is due to the localizing effects of
the disordered substrate (rather than due to formation
of commensurate solid phase).

The dissipation in a two-dimensional electrical conduc-
tor is

S~ ——(ie*/n h) dz d7.A(z, 7.)0,8(z, 7.) . (7.10) P=3 EA, (8.1)
An expression for the conductivity can then be obtained
directly by differentiating the free energy twice with re-
spect to the "vector" potential, as in Eq. (A3) in Ap-
pendix A. Upon inserting the conductivity into Eq. (7.1),
this gives for the dimensionless conductance,

g(~, k) =
I I (10(~,k)l'),(2~k '

) (7.11)

where the average is to be taken with respect to the ac-
tion in Eq. (7.5).

The conductance can now be readily evaluated at the
two transitions discussed above, since the action S at the
fixed points is Gaussian (S~ ——S~ ——0). Performing the,

average in Eq. (7.11) using the action So in Eq. (7.6)
gives

where P is the power, J is the (2D) current density, E is
the in-plane electric field, and A is the area. This can be
rewritten in terms of the conductivity

CTp —g E2+—
2e* (8 2)

e*Q 2

)
h

(8.3)

where h is Planck's constant and g* is a universal dimen-
sionless conductance of order unity. Hence

where e* is the carrier charge and I" = e*E is the
force acting on each carrier. Now at the superconductor-
insulator transition we have

g(~, k) = g(Cpk/cu), (7.12a)
P = F Ag*/h. (8 4)

with

2 ( X
g(X) = —.

l (7.12b)

The universal scaling function g(X) in Eq. (7.12b) has a
maximum at X* = 1. The universal conductance at the
transition, g' = g(X'), is then given by

g* = I/I~', (7.13)

where K* is the universal value of K.
As noted above, at the Mott insulator to superconduc-

tor transition K is universal with a value of 2, so that the
dimensionless conductance g* = 2. At the Bose glass to
superconductor transition, K* = 3, so that the universal
conductance is somewhat smaller, g* = 2. We thus con-

X = csin(~t). (8.5)

The acceleration of the oscillator and hence of the sub-
strate holding the He atoms is

At the superfluid-insulator transition for 4He absorbed
on disordered 2D substrates, we also expect a universal
dimensionless conductance g'. Since 4He is neutral (lacks
1/r Coulomb interactions), though, the value of g' is
expected to differ from the value at the superconductor-
insulator transition.

We now relate the power dissipation in Eq. (8.4) to
the damping (Q factor) in a mechanical oscillator ex-
periment. For simplicity, consider a linear rather than
a torsional oscillator. Let the linear oscillator have an
in-plane coordinate X, which in the absence of damping
obeys
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a = —b,u) sin(~t). (8.6)

If we go to the rest frame of the substrate (which is os-
cillating in the laboratory frame), then there will be a
pseudoforce (inertial force) acting on the 4He atoms of
mass m

which appears to be hopelessly too small to be observ-
able. The only way around this is to have the helium
mass a more significant fraction of the oscillator mass.
It may be possible to do this with grafoil or some other
system. Increasing the area of the Mylar film will not
help. Making the Mylar vastly thinner, might help.

F =ma (8.7)

when they are stuck on the substrate. Using this force in
Eq. (8.4) yields

P= g'Aa .
h

(8.8)

Averaging this over one cycle of the oscillator using the
acceleration from Eq. (8.6) yields

rn2
(P) = -A ~ Ag™

2 h
(8.9)

In the limit of very weak damping, the energy lost per
cycle to dissipation in the 4He film will be given by

2x
bE/cycle = P =+A~ Ag'

h
(8.10)

On the other hand, the energy stored in the oscillator is

E = —,'Mo~ (8.11)

bE/cycle m, (~A 1
2irE h (Mo j (8.12)

Note that, very fortunately, the amplitude of oscillation
4 has dropped out of the final expression leaving us with
a universal number times a simple geometric property of
the oscillator.

The expression for the torsion oscillator is essen-
tially identical, provided that it is the type used by
McQueeneys~ in which a Mylar film is rolled up on a
cylinder whose axis is that of the oscillator. The driving
force varies slightly with radius, but the only eA'ect is to
replace one power of rn by the moment of inertia of the

He film and to replace the Mo by the moment of iner-
tia of the oscillator. To about 20% accuracy, the mean
square radius is the same for the two and so the ratio
of the moments of inertia is essentially the ratio of the
masses.

The most convenient form to evaluate the answer is

(8.13)

since the quantum of circulation is approximately

—= 10 cm s.3 —2

h
(8.14)

The frequency of McQueeney's oscillator is ~ = 8 x 10
s i. Ms is about 4 gm. Hence m/Mo is about 1.6x 10
A is about 2 x 104 cm2. The final result is

g-' = 2.5 x10-", (8.15)

where Mo is the mass of the oscillator (dominated by the
substrate). Taking the ratio of these gives us the Q of
the oscillator in the presence of the damping:

IX. SUMMARY AND DISCUSSION

We have studied various approaches to estimating and
calculating the value of the universal conductivity of
2D films at the superconductor-insulator transition. We
have argued that the relevant model is charge 2e bosons
moving in a random potential. Our central notion is that
the conductivity of a 2D quantum boson system is a uni-
versal amplitude in the same sense that the jump in su-
perfluid density of the 2D classical XY model is a uni-
versal amplitude. A duality mapping between vortices
and charges is useful to understand the occurrence of the
superconductor-insulator transition.

Neglecting disorder as a first approximation, we
have calculated the universal conductivity at the Mott-
insulator to superfluid transition in the pure boson Hub-
bard model at integer filling, which belongs to the univer-
sality class of the isotropic 3D classical XY model. We
find good agreement between an analytic 1/N calcula-
tion for a "soft spin" model and numerical Monte Carlo
simulations of a "hard spin" model. The result of the
Monte Carlo simulation is cr' = (0.285 + 0.02)oq.

The notion of a universal conductivity is generalized to
the one-dimensional case, and an appropriately defined
universal conductance is evaluated at both the Mott insu-
lator to superconductor transition in the pure case and at
the Bose glass to superconductor transition in the pres-
ence of disorder. The possible existence of universal dis-
sipation in He films, which is a mechanical analog of the
universal conductivity, was discussed briefly.

Even though our results provide an estimate for the
universal conductivity of 2D films, disorder must be in-
cluded to consider the appropriate universality class and
to compare calculation with measurement. The analysis
presented in Sec. VII shows that in the one-dimensional
case, an appropriately defined universal conductance is
reduced from its value at the pure Mott insulator to su-
perconductor transition by a factor of 4 when disorder
is present and the transition is into a localized (Bose
glass) phase. This suggests that in the case of disor
dered 2D films, the value of the universal conductivity
might be somewhat smaller than our estimate for the
pure 2D case of o.* 0.285o.g. In addition, though,
the long-ranged 1/r Coulomb interaction should really be
taken into account. In one dimension a 1/r interaction
actually destroys the superconducting phase45 (and the
transition) entirely. Although this is not expected to be
the case in two dimensions, the Coulomb interaction
is a relevant perturbation at the transition, modifying
exponents and other universal quantities. At this
point we can only guess how 0* will be modified upon
inclusion of the Coulomb interaction.

Unfortunately there is no convenient mean-field the-
ory for the disordered case about which to do a 1/N
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R(T, b) = (h/4e )Q(bb/T ~' ), (9 1)

expansion, and although formal e expansions exist in
principle, 5 they are probably not useful for practi-
cal calculations. It is for this reason that we have fo-
cused on the zero-disorder case here. We have numerical
Monte Carlo calculations presently underway to address
the questions of disorder and Coulomb interactions.

Real experiments are of course limited to finite tem-
peratures, so it is natural to ask how low a temperature
is actually necessary to measure the universal (T = 0)
conductivity. Firstly, it is necessary that temperatures
are low enough that a, boson description is valid. In
practice, this can be determined as follows. It is first
necessary to estimate a "mean-field" transition temper-
ature, T, , for those films on the superconducting side
of the superconductor-insulator transition. T, could
be defined as the temperature at which the resistance
drops to, say, half of its normal state value. Alterna-
tively, a T, could be extracted by fitting the fluctua-
tion conductivity to Aslamazov-I arkin theory. In either
case, due to fluctuations, T, for each given film will be
larger than the true Ikosterlitz-Thouless transition tem-
perature, T„at which the resistance actually vanishes.
This latter temperature can either be determined from
the nonlinear I —V characteristicsss (V Is) or from
the magnetoresistance (R B). Both T, and To will
typically decrease when the film is made dirtier or thin-
ner. Extrapolating to the superconductor-insulator tran-
sition, T, vanishes (by definition) but T, will in gen-
eral still be finite, with some value, T, . Since boson
physics sets in below T, , the temperature at which
the Cooper pairs are "formed, " to measure the universal
conductivity it is necessary, but perhaps not suf5cient, to
cool below T, . The magnitude of T, will clearly be sys-
tem dependent —in granular films it tends to be close to
the bulk transition temperature, but can be much smaller
for amorphous films. For example, Valles, Dynes, and
Garnoss have presented tunneling and transport data in-
dicating that both the gap and T, clearly drop rapidly
with increasing disorder suggesting that T,

*
might be

inaccessibly low.
In addition to being below T, , it is necessary that

temperatures are low enough to be within the critical
regime of the T = 0 transition. This can be deduced
empirically by checking to see if the resistance versus
temperature curves scale appropriately (see below). To
this end, it is useful to define (as discussed in Sec. I) a
parameter b which measures the "distance" to the T = 0
transition and can be taken, for example, as b = (E, —
E)/E, where E is the film thickness or b = (Rrv —R~)/R~
with R~ the film's normal state resistance. In the critical
regime (small b and T) the resistance should satisfy a
scaling form as in Eq. (1.5):

where Q(z) is a universal scaling function, with
0 Q(z)~ —o

——1, b is a nonuniversal constant, and z
and v are critical exponents of the T = 0 transition.
The scaling function Q(z) should approach a constant as
z = bb/Ti~'" -+ 0 and diverge or vanish exponentially
as z tends to positive or negative infinity, respectively.
Theory predicts z = 1, which is consistent with re-
cent experiments, and from theoretical arguments 6 v
should be bounded below by 1. If a given set of resis-
tance data is at low enough temperatures to be in the
critical regime, it should collapse onto a universal func-
tion Q(z) when plotted versus the scaling combination
b/TiI'", with zv() 1) taken as an adjustable parameter.
If it does, then (4e~/h)[Q(z = 0)j i could be taken as
the measured value of the universal conductivity.

Recent experiments by Hebard and Paalanen on the
magnetic-field tuned superconductor-insulator transition
in thin 20 films, show precisely such expected scaling,
with b taken as the "reduced" magnetic field, b = B B,. —
A quick inspection of the recently published data by Hav-
iland, Liu, and Goldmani and Lee and Ketterson~ on the
zero magnetic-field superconductor-insulator transition
in amorphous films, suggests that temperatures have not
been taken low enough to enter the critical regime and
measure the "universal" conductivity. As noted above,
granular films are expected to have a more accessible crit-
ical regime (up to higher temperatures) and might be
better systems in which to test theoretical predictions of
a universal conductivity.

ACKNOW LEDC MENTS

We would tike to acknowledge illuminating conversa-
tions with M. E. Fisher, G. Grinstein, and D. H. Lee. The
work at, Indiana University was supported in part by NSF
Grant No. DMR-88-0'2383, DOE Grant No. DE-FG02-
90ER45427, and the National Center for Supercomputer
Applications Grant No. PHY890017N. The work at the
University of California, Santa Cruz, was supported by
NSF Grant No. DMR-87-21673. The work at Umea, Uni-
versity was supported by the Swedish Natural Science
Research Council.

APPENDIX A

Here we discuss the precise form of the Kubo formula
for the conductivity for the models studied in the text.

Consider first the Ginzburg-Landau action in Eq. (5.1).
In the presence of a vector potential A(x), this action
becomes

afe

8= d x
]
%+ A(x) 14'(x) % — A(x) IW (x) +xo 0" (x)4 (x)+ —(0„'(x)4 (x)]'),

h g
"

))i 2
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where e" is the boson charge and, for generality, we have
written down the model in d dimensions. We take the
d —1 "space" dimensions to be of length I, and the "time"
dimension, denoted by z, to be of length I... which is
equal to Ph in order to represent the original (d —1)-
dimensional quantum problem at inverse temperature P.
We are interested in the uniform dc conductivity, which
is obtained by setting the space components of the wave
vector k to be zero and only letting the time component,
k, , vanish at the end of the calculation. Noting that
{Ji) = h(bF—/bA), E = BA—/Bt, and {Ji) = aE, we
see that the uniform, frequency dependent conductivity
is given by49

h 03F
k, ~ - aA. (x)aA. (0)' (Alo)

Proceeding as before one finds that o(ik, ) is again given

by Eq. (A8) but with

p(k) = I&{cos 8(x) —0(x+i) )

—I~3) {J(x)J (0))e'"", (A11)

positive displacement along the coordinate axes, and

Aq(x) = f„A d/. The conductivity is then given
by

k, bA (x)bA (0)
(A2)

where

Jg(x) = sin br(x) —8(x+ b) (A12)
where the functional derivatives are with respect to a
component of A in one of the space directions, z say,
k = (0, 0, . . . , k, ), and F, the free energy, is given by

This gives Eq. (6.8) of the text.

APPENDIX B
I" = —lnZ (A3)

with

(A4)

Performing the derivatives is straightforward and gives

re"'& 2 ((k)=~ „-I— {&"()&())
(, h) k,

~

—2 d"z{J (x)J (0))e'""

p(')(0) = o, (B1)

where the superscript denotes leading (zeroth) order in

1/Ã [see Eq. (5.20)]. Using a simple relation

Here we evaluate, to the first order in a systematic
1/N expansion, the universal conductivity at the criti-
cal point between the Mott insulator and superconductor
phase. Specifically, employing the action in Eq. (5.1) we

calculate the conductivity using expressions Eqs. (5.7)
and (5.8). Let us first calculate it at N = oo. We begin
by proving

(A5) [Go(q)1 = -»q-[Go(q)]", (B2)

where the current J(x) is defined by

J(x) = —.[&*.(x)~4 (x) —(t (x)~4;(x)l (A6)

where Go(q) is the N = oo propagator defined in

Eq. (5.16) we have

The conductivity (per fiavor) is given by &'&(0) = 2
d q 8

[q Go(q)] = o.2+3 q

where

p(k) = 2{/'(x)P(x))
d"z{J,.(x)J,.(0))e'"'"

(A7)

(A8)

This means that the first term of Eq. (5.20) can be re-
placed by the value of the second term evaluated at
k = 0. [Actually the boundary terms in Eq. (B3) are
not well defined when q~ goes to infinity. But in a system
with periodic boundary conditions, the full expression for
q is sinq and the boundary terms in Eq. (B3) vanish
by periodicity. ] Using this relation, at the critical point,
we have after some algebra

which gives Eqs. (5.7) and (5.8) of the text.
Let us now discuss the classical XY' model, Eq. (6.1),

in d —1 space dimension plus one time dimension. Adding
a vector potential, it can be written, on a simple cubic
lattice, as

p rr = K) coc(8(x) ——8(x+ 8) ——„A'c(x)),
x,b

(A9)

where b = z, y, . . . , z, runs over t, he neighbors with a

p(i)(0) —0 (B5)

Using Eq. (B2) and integrating by parts with respect to
p, we have from Eq. (5.22)

dq 2q 1 1 l 1
[P ( .)]-i& —

(2 )3 g 2 (

(B4)

Now let us consider the 1/N correction, p& ~(k, ) in Eq.
(5.22). Again, we want to first prove
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('"(o)=—2 f ~ .~(~))Go(~))'+
d'q

,~(q) q I [Go(q)]' I—
r2~s ( q

d qd p 0
, u(q —I )GO(I ) (q [Go(q)]')

(86)

In the last step we used the definition of Z(q) in Eq. (5.19). Then, using this relation, we have at the critical point

dsq q2 ( 1 1 dsq dsp q~p ( 1 1

(2m)s q
'

(q (q+ k) (2x) q p (q p (q+ k) (p+ k)

d'q q. (I 1 & (q. d'p p.= —8 3 2 I 2 —,E,(q) + —u(q —p) + 4A(k, ), (8
(2~) q (q (q+ k) ) (q (2x) p

where

A(k, ) = u(q —p)
* *d'qd'p q*p* ( 1

2x s q2p2 ( q2

1 '(1
(q+ k)') (p' (p+ k)') (88)

and E, means the self-energy at the critical point. But

f d'p J'- 1

(2~)s p4
—u(q —p) = ——

2Bq

so that Eq. (87) becomes

dsp 1 1 0
(2 ).—,u(q- I) = -» ~.(q) (89)

—&E,(q) —— Z, (q) + 4A(k, ) .
q+ ) «q- )

(810)

Z, (q) = —)7q lnq+ const x q (811)

Ultimately we will take the limit that k, goes to 0,
so only very small q and p in the above integrands con-
tribute. In this region we can take

1
q p=)

Then

d ~+2(1 e('Y'(9 P))
y2

d3"(1 ~ (a-v))
4 (814)

=-1 1 = 2u(q —p) =
M II(q —p)

=6m gq —p (812) A(k, ) = —6)7
p

p
, uk(y)&k(y) (815)

[&('&(k,)]„,, = -4&
dsq q2 ( 1 1

(2~)s q2 (q2 (q+ k)~)

where the exponent g to order 1/N is given in Eq. (5.24).
Plugging Eq. (Bll) into Eq. (810) yields

where

d'p p. ( 1

(p+k) )'"
The Feynman trick is useful for the calculation of the
integral in gk(y), and we have upon integration by parts

= —)7[P( l(k, )]„;t+4A(k, ) . (813)
qi(y) =

8z y

1
—[ ~I, 1—~)ky+~~y k]

But, using the Fourier transform and Green's theorem,
we have Now Eq. (815) becomes.

(817)

A(k, ) = — k, dn dP du(1 —u2) (818)

The integration with respect to y gives

A(k, ) = —— k, dn dP du(l —u )[(A+ B) ln(A+ B) —Aln A —B ln B], (»9)
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where

g = Qn(l —n) + inu, B = QP(1 —P) —iPu . (B20)

The imaginary part of A(k, ) vanishes because the imaginary part of the integrand is an odd function of u. After some
algebra we obtain

(B21)

Therefore, from Eqs. (B13) and (B21), the I/N correction is

which is Eq. (5.23).

'Current address: Department of Physics, Swain Hall West
117, Indiana University, Bloomington, IN 47405.

~Permanent address: Department of Physics, University of
California at Santa Cruz, Santa Cruz, CA 95064.
D.B. Haviland, Y. Liu, and A.M. Goldman, Phys. Rev.
Lett. 62, 2180 (1989).
S.J. Lee and J.B. Ketterson, Phys. Rev. Lett. 64, 3078
(1990).
A.F. Hebard and M.A. Paalanen, Phys. Rev. B 30, 4063
(1984).
L.J. Geerligs) M. Peters, L.E.M. de Groot, A. Verbruggen,
and J.E. Mooij, Phys. Rev. Lett. 63, 326 (1989).
H.M. Jaeger, D.B. Haviland, B.G. Orr, and A.M. Goldman,
Phys. Rev. B 40, 182 (1989), and references therein.
S. Tyc, A. Schuhl, B. Ghyselen, and R. Cabanel (unpub-
lished).
T. Wang, K. M. Beauchamp, D. D. Berkely, B. R. Johnson,
J.-X. Liu, J. Zhang, and A.M. Goldman, Phys. Rev. B 43,
8623 (1991).
S. Chakravarty, G. Ingold, S. Kivelson, and A. Luther,
Phys. Rev. Lett. 56, 2303 (1986).
M.P.A. Fisher, Phys. Rev. B 36, 1917 (1987).
A. Kampf and G. Schon, Phys. Rev. B 36, 3651 (1987).
W. Zweger, J. Low Temp. Phys. 72, 291 (1988).
R.A. Ferrell and B. Mirhashem, Phys. Rev. B 37, 648
(1988).
A. Gold, Z. Phys. B 81, 155 (1990).
See other references in Ref. 5.
M.P.A. Fisher, G. Grinstein, and S.M. Girvin, Phys. Rev.
Lett. 64, 587 (1990).
M.P.A. Fisher, P.B. Weichman, G. Grinstein, and D.S.
Fisher, Phys. Rev. B 40, 546 (1989).
E. Abrahams, P.W. Anderson, D.C. Licciardello, and T.V.
Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
A. Gold, Z. Phys. B 52, 1 (1983).
T.V. Ramakrishnan, Phys. Scr. T 27, 24 (1989).
D. StauKer) M. Ferer, and M. Wortis, Phys. Rev. Lett. 29)
345 (1972); P.C. Hohenberg, A. Aharony, B.I. Halperin, and
E.D. Siggia, Phys. Rev. B 13, 2986 (1976); C. Bervillier,
ibid 14, 4964 .(1976).
To see this within the renormalization-group framework,
note that such an amplitude, Y say, can either be calculated
from the original couplings in the theory, {A;),or from the
new couplings, (A;(E)), obtained by integrating degrees of
freedom between the cutoK, B, and Be . However, because

Y is dimensionless, we have Y(A, ) = 5 (Ii, (E)) with no ad-
ditional E-dependent prefactors. Letting f ~ oo, (IC;(/)) ~
(A' ) the fixed-point values which are universal. Since Y is
just a function of universal parameters, it must be universal
itself.
J.M. Kosterlitz and Q J Thouless) J Phys C 6) 1181
(1973); D.R. Nelson and J.M. Kosterlitz, Phys. Rev. Lett.
39, 1201 (1977).
K. I&im and P B. Weichman, Phys. Rev. B 43, 13 583
(1991).
See also, E. Granato and J.M. Kosterlitz, Phys. Rev. Lett.
65, 1267 (1990).
D.H. Lee and G. Grinstein, Phys. Rev. Lett. 55, 541 (1985).
M. MR) B.I. Halperln) and P.A. Lee) Phys. Rev. B 34) 3136
(1986).

"M. Ma and P.A. Lee, Phys. Rev. B 32, 5658 (1985).
A. Kapitulnik and G. I&otliar, Phys. Rev, Lett, . 54, 473
(1985); CT. I&otiiar and A. Kapitulnik, Phys. Rev. B 33,
3146 (1986).
L. Zhang and M. Ma (unpublished).
T. Giamarchi and H.J. Schulz, Europhys. Let t. 3, 1287
(1987); Phys. Rev. B 37, 325 (1988).
L.I. Glazman and K.A. Matveev, Pis'ma Zh. Eksp. Teor.
Fiz. 49, 570 (1989) IJETP Lett. 49, 659 (1989)j.
B.I. Spivak and S.A. I&ivelson) Phys. Rev. B 43, 3740
(1991). Implicit in this work is the assumption tha. t in a
granular superconductor, local moments (from localized un-
paired electrons) can coexist with superconductivity.
L.I. Glazman and S.M. Girvin (unpublished).
X.G. Wen and A. Zee, Int. J. Mod. Phys. B 4, 437 (1990).
D.H. Lee and M.P.A. Fisher, Phys. Rev. Lett. 63, 903
(1989); M.P.A. Fisher and D.H. Lee, Phys. Rev. B 39, 2756
(1989).
B.J. va.n Wees, Phys. Rev. B 44, 2264 (1991).

"R. Fazio and G. Schon, in Proceedings of the ICTPS '90 In;
ternational Conference on the Transport Properties of Su
perconductors, Bio de Janeiro, Brazil, 1990 (World Scien-
tific, Singapore, 1990).
M.P.A, Fisher, Phys. Rev. Lett. 65, 923 (1990).
D.P. Arovas, J.R. Schriefkr, and F. Wilczek, Phys. Rev.
Lett. 53, 722 (1984).
F.D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
A.F. Hebard and M.A. Paalanen, Phys. Rev. Lett. 65, 927
(1990).
M.P.A. Fisher (unpublished).



6902 CHA, FISHER, GIRVIN, WALLIN, AND YOUNG

S. Ma, Statistical Mechanics (World Scientific, Singapore,
1985), Chap. 29.
S. Doniach, Phys. Rev. B 24, 5063 (1981).
M.P.A. Fisher and G. Grinstein, Phys. Rev. Lett. 60, 208
(1988).
The trial variational state vga defines a classical sta-
tistical mechanics model through

~ g(8&, . . . , 8zg, )
exp[2''R, (8i, . . . , 8~, )] which undergoes a 2D I&osterlitz-
Thouless transition at a critical value of A. However this
is a poor approximation to the true quantum phase tran-
sition in the boson Hubbard model Eq. (3.1), which is in
the universality class of the 3D XY model, not the 2D XY
model.

"S.Chakravarty, S. Kivelson, G. Zimanyi, and B.I. Halperin,
Phys. Rev. B 35, 7526 (1987).
S. Chakravarty, G. Ingold, S. I&ivelson, and G. Zimanyi,
Phys. Rev. B 37, 3283 (1988).
G.D. Mahan, Many Body Physics, 2nd ed. (Plenum, New
York, 1990), Chap. 3.
S. Coleman, Aspects ofSym'metry (Cambridge University
Press, New York, 1985), Chap. 8.
S. Ma, Phys. Rev. A 7, 2172 (1973).
U. Wolff, Phys. Rev. Lett. 62, 361 (1989}.
G.G. Batrouni, R.T. Scalettar, and G.T. Zimanyi, Phys.
Rev. Lett. 65, 1765 (1990); W. Ixravth and N. Trivedi, Eu-
rophys. Lett. 14, 627 (1991).
M. Ferer, M.A. Moore, and M. Mortis, Phys. Rev. B S,
5205 (1973).

B.D. Josephson, Phys. Lett. 21, 608 (1966); M.E. Fisher,
M.N. Barber, and D. Jasnow, Phys. Rev. A 8, 1111 (1973).
The latter authors introduce the term "helicity modulus" to
denote the superRuid density. They also give a phenomeno-
logical justification for the use of the same stiffness in Eq.
(6.7), where it refers to an externally imposed average twist,
and in Eq. (6.13), where it refers to spontaneous fluctua-
tions in the local twist.
V. Privman and M.E. Fisher, Phys. Rev. B 30, 322 (1984);
see also the article by V. Privman, in I'inite Size Scaling
and Numerical Simulation of Statistical Systems, edited by
V. Privman (World Scientific, Singapore, 1990).
A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett. 61,
2635 (1988).
Y.-H. Li and S. Teitel, Phys. Rev. B 40, 9122 (1989).
E. Brezin, J. Phys. (Paris) 43, 15 (1982).
Evidently the update algorithms we use are more efBcient
in relaxing slow twists in the spin directions (global boson
currents) than in relaxing the total energy.
F.D.M. Haldane, Phys. Rev. Lett. 47, 1840 (1981).
D.F. Mcgueeney, Ph. D. thesis, Cornell University.
See, for example, A.F. Hebard and M.A. Paalanen, Phys.
Rev. Lett. 54, 2155 (1985).
T.K. Ng, Phys. Rev. B 43, 10204 (1991).
3.M. Valles, Jr. , R.C. Dynes, and j.P. Garno, Phys. Rev. 8
40, 6680 (1989); 40, 7590 (1989).
J.D. Bjorken and S.D. Drell, Relativistic Quantum Meehan
ics (McGraw-Hill, New York, 1964), p. 170.


