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We calculate charge-transfer profiles and layer magnetizations for Cu/Ni-like superlattices in the
tight-binding approximation. The efFects of local and nonlocal electron-electron interactions and
magnetic band splitting are included only in the diagonal elements of the Hamiltonian. We discuss
the importance of considering the electrostatic interactions among layers through a Madelung-type
term.

I. INTRODUCTION

Artificially made metallic multilayers have offered in
the last years an interesting field of research. Much
work has been done experimentally in order to study
physical phenomena which seem to be characteristic of
these materials and, as a consequence, a large number of
metallic multilayer systems are being synthetized nowa-
days. Among the phenomena studied, the supermodulus
efFect, 2 that is, anomalous values of the elastic constants
of these systems, either larger or smaller than the values
corresponding to the constituents of the superlattice, and
the magnetic properties of the metallic interfaces have
attracted our attention.

In order to explain the appearance of the supermod-
ulus effect Grimsditch et al. suggested that it may be
due to the charge transfers within these layers. On the
other hand, early LMTO calculations for Cu jNi super-
lattices by Jarlborg and Freeman give very small charge
transfers that change sign depending on the number of
layers. This has led us to calculate, within a simple tight-
binding model, the charge transfer profiles. We have lim-
ited ourselves, for the moment, to superlattices whose
constituents have the same crystalline structure. Actu-
ally, we have focused on Ni jCu-like systems with inter-
faces perpendicular to the fcc [ill] direction, this direc-
tion being the technologically more interesting one. As
these materials can be constructed with a variable num-
ber of layers, the calculations were made as a function
of the number of layers and also of overall concentration.
Magnetism in the Ni-like type of atoms was also consid-
ered, with the aim of studying the effect of interfaces in
the magnetization of the samples.

In actual superlattices of two metals that are very close
in the Periodic Table, the interfaces are not abrupt, as
there is a tendency toward mixing, but as a first ap-
proximation we consider that the interfaces are perfect
and make use of periodicity in order to calculate local
densities of states.

Previous calculations of the electronic structure of sys-
tems made of transition metals in amorphous, bilayer,

or superlattice structures have been performed by differ-
ent methods. In the tight-binding calculations by Fal-
icov, Tersoff, and Victora they postulate local charge
neutrality, and LMTO or LAPW calculations have been
performed only for a few specific systems. We have
chosen the tight-binding formalism because it has the
advantage that it is possible to increase the complexity
of the model by introducing one by one different contri-
butions to the Hamiltonian. In this way it is possible
to evaluate the relative contribution of each of these ef-
fects on the properties we are studying. In the present
work the effects of local and nonlocal e -e interactions
and magnetic band splitting were studied by including
them only in the diagonal elements of the Hamiltonian.
To calculate charge transfers and magnetizations we used
the Hartree-Fock approximation and evaluated the long-
range electrostatic contributions by an explicit Madelung
term. In this first approach to the problem we have also
replaced d orbitals by five degenerate s bands. As our aim
is to introduce the d-orbital symmetry in future work,
this will enable us to separate effects coming from the
superlattice symmetry from those stemming from orbital
symmetry.

II. DESCRIPTION OF THE MODEL

We consider a tight-binding (TB) Hamiltonian with
nearest-neighbor interactions for a superlattice growing
in the fcc structure along the [111]direction.

The superlattice consists of N~ layers of A-type atoms
and N~ of B-type atoms, periodically repeated, A and
B being transition metals. The TB Hamiltonian in the
Hartree-Fock approximation, written in a local orbital
basis set, has the general form

/ f I

ij io jo
~ ~ I2)g)m)7A )0
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where c, (c; ) is the creation (annihilation) operator of
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an electron state on lattice site i, m denotes the band,
and o the spin and t; are the nearest-neighbor hopping
elements of the Hamiltonian. The c~ are the single-
site Hartree-Fock energies. The de'erent contributions to
the Hamiltonian, such as the e -e interaction and the
magnetic effects are introduced by us through different
approximations of the diagonal terms of the Hamiltonian,
that is, as different ways of evaluating the c, . The c;
are to be related to their values in the pure metal atoms,

, through n,.(E)dE, (4)

A recent paper shows that fairly good results are ob-
tained for the magnetic properties on surfaces using a
constant split between majority and minority bands, ob-
tained from molecular calculations. Following this idea
we have held mo fixed in the iterative process. We cal-
culate the electronic occupations, n;, per site and spin,
through

+V; n; + with n, (E) being the local density of states per site on
plane i with spin o',

m (gm)
m(M )Jimm ' nim' &r + &~i

m' (gm)

1
n; (E)=

Op
d k ) i C,' (k) i b(E —s, (k)).

In this expression n;~~ =( c,. tc; &, U;~~~ are the
intrasite Coulomb integrals in the solid, and J, ~ the
corresponding exchange ones. Ae,. ~ ~ is the "Madelung
term, " which is important due to the symmetry of the
superlattices and will be considered in detail in Sec. IV.

In this first stage of research we take into account only
the d orbitals and consider that these orbitals have spher-
ical symmetry, that is, the d orbitals are replaced by five
degenerate 8 bands. Hence, we omit the m indexes in the
rest of the paper. The values of the t;&'s are chosen so
that t~~ and t~~ give the bandwidths of A and B bulks
and t~~ is the arithmetic mean of the preceding ones.

We finally have for the diagonal elements of the Hamil-
tonian,

= s,'+—(9U; —4J;)Ag; —cr
' (U;+4J;)+b,s;

In this expression C~ (k) and sz (k) are the eigenvec-
tors and eigenvalues, respectively, and Op is the cell vol-
ume in reciprocal space. The points in reciprocal space
are selected at random, so that it has not been neces-
sary to obtain the shape of the first Brillouin zone. The
Fermi level is determined by the conservation of the total
number of electrons:

n(E)dE = Q, Q +Aug + +Br'

with n(E) the total density of states. Once the values of
n; and so the charge transfers are obtained, the diagonal
elements of the Hamiltonian are recalculated, and the
process repeated unt, il self-consistency is achieved. The
magnetizations per layer atom, m;, are finally obtained
from the self-consistent values of n;+ and n;

In Eq. (3) s'; = s, + io(9U; —4J;)g, and Ag; = g;—
g, being g; and g,. the d-orbital occupations on the ith
site of the superlattice and pure material, respectively.
Therefore, g; = 5(n;+ + n; ), and m; = 5(n;+ —n; ) is
the magnetization of the ith atom in units of p@, + or-
for o. indicating, respectively, majority or minority spins.

To carry out the calculations we assume J;=0 as it is,
in general, much smaller than U, .io On the other hand,
the same U~ is used for A and B atoms (magnetic and
nonmagnetic), as the values of intrasite Coulomb inte-
grals do not change much along each transition series
and we are considering A and B belonging both to the
first series. We therefore use only a single parameter U
to account for charge transfers and magnetic efFects.

The Hamiltonian is solved self-consistently, in an it-
erative way. As the periodicity of the superlattice is
taken into account we work in reciprocal space. Due
to the periodicity in the z direction and to the fact that
all atoms are identical in each plane we denote, from
now on, with index i the atom number within a cell
(i = l, N with N = N~ + N~). We start, then, diago-
nalizing the Hamiltonian matrix H(k) for the two values
of o, beginning with Lg; = 0 and m; = mo, mo being
the bulk magnetization of the pure magnetic material.

III. DIFFERENT APPROXIMATIONS FOR THE
SELF-ENERGIES

A. Nonmagnetic problem

We consider first the nonmagnetic problem, that is,
rno ——0. Three different ways of performing the charge
self-consistency have been tried,

(a) Average self-consistency. In this case the itera-
tive process is carried out by taking for s, (and similarly
for sP),

where —eLg is the average charge transfer in the N~
layers. In this case the site energies of all atom layers of
type A are the same.

(b) Self-consistency layer by layer. In this ap-
proximation the site energies are

s; = s', + (igo)UAg;.

A different charge transfer is used as input for each
layer in the iterative process.
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(c) Layer by layer self-consistency plus
Madelung contribution. Using approximations (a)
and (b), which give reasonable results for the charge
transfers in alloys, the total charge transfers from the
A-type to B-type layers (or vice versa) increases as
N = N~ + N~ becomes larger. The large electrostatic
interactions due to the special symmetry of a superlattice
must be taken into account. To do this we introduce an
additional term in the diagonal elements of the Hamilto-
nian, which consists of a sum in real space of electrostatic
potentials over all lattice sites:

(9)

In order to evaluate the sum we assume that the su-
perlattice consists of N circular planes of radius R per-
pendicular to the z direction. In the limit N and R
going to inanity the solutions of the problem should
verify that (i) all atoms belonging to the same plane
have the same charge transfer; (ii) all cells are equiv-
alent; and (iii) inside a cell, site i is equivalent to site
N~ —i + l(i = 1, 2, . . . , N~) and site N~ +j is equivalent
to N —j + l(j = 1,2, . . . , N~).

Then, due to periodicity in the zy plane we can rewrite

(12)

The V;~ contain the interatomic electron-electron and
electron-ion contributions between atoms sitting on site
B.; and R~.

I";„ is a sum over the sites of plane r. Due to the fact
that the charge transfers should be equal in all cells, we
can reduce the sum further by introducing a matrix G,
such that

B. The magnetic problem

In order to take into account magnetism we use Eq. (3),
with m; = ms, for the site energies of the magnetic ele-
ment in the superlattice and solve the Hamiltonian layer
by layer self-consistently, including the Madelung contri-
bution.

For the site energies of the magnetic layers, we have
then,

~ = ) G,~Dr/~ with G,~
=

G;z contains the contribution to the electrostatic energy
per electron and site due to all equivalent planes with
charge —e Lg&. 2N, +1 is the number of cells considered
in the z direction.

It is easy to see that G;z depends only on
~

i —j ~, so
that we can use only g(/)= Gi~ with /=~ i —g ~

+1 and
due to the symmetry inside the cell, we should have

g(l) = g(N —/+ 2). (14)

where 4 = Umo/5 and mo is the bulk magnetization of
the magnetic material. As already discussed, only one
parameter, U, is used to account for charge transfer and
magnetization. We selected the value of U in such a way
as to obtain the experimental magnetization of the bulk
magnetic material.

IV. THE MADELUNG SUM

The sum in Eq. (9) of the electrostatic potentials over
real space presents problems of convergence that are
usual in systems showing planar geometry. Therefore,
it is worthwhile to describe with some detail how the
difTiculties were solved in this particular case.

Taking into account that for
~

R.; —R~
~

much larger
than the lattice parameter V~ (1/ ~

R., —R~ ~)Ar/~ and
that for small values of the interatomic distance correla-
tion effects appear, we interpolate with

V;( —p;( Ag) with p;( ——

The exponent v- =2 is usual in molecular calculations
and 7 =1 has been used by Giner et a/. for calculations
in alloys.

To study the convergence of the Lz~ ) we notice that
the physics of the problem does not change if we subtract
a constant from all the g(l)'s. By choosing this constant
to be the minimum of all the g(l)'s we avoid divergences
and can compare increasing ranges of the sum. We may
summarize the results obtained in the following way, if
N, ( N (2N, + 1 and 2N + 1 being the number of cells
considered along the z and z directions, respectively), the
g(l)'s converge to different values if the relation N /N,
is varied and Eq. (14) does not hold. For N, » N, g(l)
converges to the same value independently of the relation
N /N, and Eq. (14) is verified. The results obtained
depend, therefore, on the way in which the limits are
taken.

To clarify this point we attempted a diAerent kind of
calculation for a finite slab, without considering period-
icity along z. To simplify the problem further we used
a rigid-band model, with rectangular densities of states.
This led to a linear system of N N equations. The re-
sults obtained were (i) there exists a border effect, which
cancels charge transfers in the NIr/2 and N~/2 border
layers of the slab; (ii) a few cells inside the borders the
charge transfers, Ag;, already have the same values as
those of the central cell of the slab and fulfill the sym-
metry properties which led to Eq. (14); and (iii) these
values for Ag; in the central cell are independent of N
and N, , provided that N and N, are sufFiciently large.

We compared the values obtained for the cell in the pe-
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riodic system in the limit N, » X, with those obtained
for the slab and saw that the values corresponding to the
central cells of the slab coincide with those of the periodic
problem in this limit.

We understand that these are intrinsic properties of
the I/r dependence of the Coulomb interaction and of the
planar structure of the superlattice and do not depend on
the rigid-band model used to solve the problem. There-
fore, all subsequent calculations for the periodic problem
were made with N, && N and using symmetry to evalu-
ate the Madelung sum [Eq. (13)].

V. RESVLTS

We applied the models described to a superlattice of
Ni-type atoms (A) and Cu-type ones (B). The bulk oc-
cupations of the d bands were taken as gN;

——8.6 and
gc„——9.6, considering that the s-band occupation of
the first transition series is approximately 1.4 in all the
cases. We get the off-diagonal Hamiltonian elements
from the bandwidths of Moruzzi, '

lN;N;
——0.307 ev

and tcucu = 0.230 eV and also cc ~N; = —1.1 eV.
For U we set 1.7 eV, in order to obtain rnN0' ——0.59 in
units of p~. For the lattice parameter we took a = 3.52

A. Nonmagnetic results

In Table I we show the results obtained using the differ-
ent ways of achieving self-consistency for the particular
case NN; ——Nc„——4. i = 1 indicates the interface layer
and increasing i indicates inner layers. We see that mod-
els (a) and (b) give similar results for the charge transfers
and for the averages, but local self-consistency leads to
a decrease in the charge fluctuations in Ni with respect
to the results obtained doing self-consistency in the aver-
age. When introducing the Madelung contribution with
7 =2 we obtain an average charge transfer similar to the
one obtained in (a) and (b) and large fluctuations on Ni.
The profiles obtained using model (c) with r =1 follow
the same trends as those obtained in Ref. 9 for Nb/Zr
multilayers making I APW calculations and on the other
hand the values of the charge transfers obtained in this
way are of the same order of magnitude as those calcu-

lated by Giner et al t4. for transition metal alloys and
by Jarlborg and Freeman for Cu/Ni superlattices s The
average charge transfers within model (c) with 7=1 are
much less than within the other models and essentially
concentrating on the interface layers. When using v=2,
even if for an increasing number of layers the average
charge transfer diminishes, the transfers at the interfaces
are unphysically large. In molecular calculations the pa-
rameter U is usually taken to be much larger than in a
solid, of the order of 10 eV, and then, in that case, v=2

dq t.
The important aspect, which is not evident when an-

alyzing results for a superlayer with N = 8, is that t, he
charge transfers obtained within models (a) and (b) do
not go to zero as N is increased, leading to unphysically
large total charge transfers. This does not happen in
model (c).

From now on and taking into account the previous con-
siderations, all results shown have been obtained using
model (c) with r=l.

In Table II we show the results obtained for superlat-
tices having increasing numbers of Ni and Cu layers. It
is seen that the average charge transfer diminishes as N
increases, the total charge transfer among the two ma-
terials remaining almost the same. As N increases the
charge transfer concentrates more and more at the inter-
face layers.

In Table III we study the effect of composition. We
see that the total charge transfers are larger when the
number of Ni layers is greater than the number of Cu
layers and that the transfers concentrate mainly at the
interfaces as before.

B. Magnetic problem

In Table IV we show the values obtained for the mag-
netization in superlattices having the same number of Cu
and Ni layers. It is seen that within this model the mag-
netization increases at the Ni interfaces with respect to
Ni bulk and decreases in the internal layers. The average
magnetization per Ni atom is larger than in the bulk and
is nearly the same in all cases studied.

In Table V we show the results for NN; ——3 and differ-

TABLE I. Self-consistent charge transfer results for a Cu/Ni superlattice with NN; = Nc„= 4
using different approximations for the self-energies, (a) average self-consistency, (b) layer by layer
self-consistency, (c) layer by layer self-consistency plus Madelung contribution. i indicates layer
number and increases with increasing distance from the interface, Ag; = g; —go, — Eg average
charge transfer per atom type in units of e.

c(7-=2) c (r =1)

Cu

Ni

0.2
0.37

—0.12
—0.45

0.29

—0.29

0.24
0.37

—0.29
—0.32

0.31

—0.31

0.22
0.34

—1.42
0.86

0.28

—0.28

0.19
0.03

—0.35
0.13

0.11

—0.11
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TABLE II. Charge transfers for Cu/Ni superlattices as a
function of modulation wavelength using approximation (c),
7. = 1, Dg = absolute value of the total charge transfer from
one constituent type to the other in units of e.

Nc„——NN; =3 Nc =NN =4 Nc =NNi=5

0.16 0.11

—0.11

Qg = 0.48 Dg =0.44

Cu 1 0.15 0.19
2 0.17 0.03
3

Ni 1 -0.31 -0.16 -0.35
2 0.14 0.13
3

0.21 0.09
0.06

—0.09
—0.33 —0.09
0.06
0.09
Ag = 045

0
2

C)

0
—2 —1

Energy (eV)

I I f

0

0
et)

4

TABLE III. Same as Table II but as a function of com-

positionn.

Ncu=2y NNi=6 Ncu=3) NNi= 5 NCu=NNi=4

0
2

M

Qa

—2 —1

Energy (eV)

0.19
0.16

—0.32 —0
0.00
0.06
Ag = 0.52

—0.39 —0
0.06
0.12
Ag =0.53

Cu 1 0.26 0.26 0.19
2

3
Ni 1 .09 .11

2
3

0.19
0.03

0.11

Aq = 044

—0.35 —0.11
0.13

I I I I

f

I I I I

f

I I I I

f

I I I

(c)
Ni

Nc„=5, NN;=3 Nc„=6, NNi=2

1
2
3
1
2
3

0.21
0.07

—0.13
—0.26
0.09

0.08

—0.14

0.21
0.1

—0.08
—0.24

0.08

—0.24

—4 —2 —1

Energy (eV)

I I I

f

I I I I

f

I I I I

f

I I I I

f

I I I I I

f

!

Ay=0. 43 Ay=0. 48

TABLE IV. Layer rnagnetizations as a function of modu-
lation wavelength for Cu/Ni superlattices. m; indicates mag-
netization of the ith layer in units of p~. mN; is the average
magnetization per Ni atom.

I

N

2

Nc„——NN; =3
Ag, m;

Nc =NN =4
Dg; m;

Nc =NN =5
Ag; m;

I I f I I I I I I I I I f I I:,I I f I

0.16 0.05
0.17 —0.02

0.86
0.49

mN; = 0.76

CU 1
2
3

Ni 1 —0.34
2 0.19
3

—0.36
0.13

0.98
0.51

mN; = 074

0.19 0.06
0.04 —0.07

0.21
0.06

—0.10
—0.33
0.06
0.09

mNi

0.05
—0.05
—0.10
0.98
0.55
0.48

0.69

Energy (eV)

0 1

FIG. 1. Local densities of states on (a) bulk Cu, (b) bulk
Ni, "+" indicates majority states and "—"minority ones, (c)
Cu and Ni interfaces for a Cu/Ni superlattice with Nc„
NN; = 3, (d) intermediate Ni layer for the same superlattice.
Broken line gives the position of the Fermi level.



CALCULATION OF ELECTRONIC AND MAGNETIC. . . 6875

TABLE V. Same as Tablele IV but as a function of the number of Cu layers for a fixed number of Ni layers NN. —3.

Nc =1
Dg;

Nc =2
Dg; mj

Ncu=3 Nc„=4 Nc =5
mt

Ni

1
2
3
1
2

0.28 0.04

—0.11 0.79
—0.06 0.67

mN; =0.76

0.26 0.05

—0.32
0.11

mN; ——0.80

0.88
0.53

0.16
0.17

0.05
—0.02

—0.34 0.86
0.19 0.49

mN; =0.76

0.19
0.03

0.05
—0.00

—0.3 0.86
0.16 0.49

mg; =0.77

0.20 0.04
0.07 —0.02

-0.11 -0.04
—0.28 0.87
0.13 0.49

mN; =0.75

ent values of Nc„. The results obtained are practically
independent of the number of Cu layers.

To understand the origin of the increased magnetiza-
tion at the interfaces we show in Fig. 1 the partial densi-
ties of states for pure Cu and Ni and those corresponding
to a superlattice with NN; ——3 and Nc„——3. We see that
in the superlattice the partial densities of states on Ni
are higher at the Fermi level than in the bulk, and this
explains the increased magnetization that we obtain at
the interface. However, this result could be due either to
the diA'erent bandwidths of the two materials or to sym-
metry. To separate these two eAects we calculated this
same last example taking tc„c„——tc„~; ——t~;~;. From
the results obtained, shown in Table VI, it is seen that
the increase in the magnetization is nearly independent
of the differences in the d-band widths and is due, essen-
tially, to the form of the local densities of states and to
the position of the Fermi level. These are intrinsic prop-
erties of the structure and symmetry of the superlattice
within the model we are using.

The local densities of states on the second Ni layer
present a deep valley. Although the Fermi level falls on
a peak of the majority spin bands both for the interface
and second Ni layer, in this last case it falls in the valley
of the minority spin band. This gives rise to a decrease
of the second layer magnetization with respect to the
interface and bulk values.

To study the magnetization on Ni layers when they are
in contact with a transition metal having less d electrons
we have studied a superlattice system of the V/Ni-type,
assuming for V, for the ease of calculation, also the fcc
structure. For the V-type atoms we set g = 3.6,~v .

~ ~v
cN; ——2.23 eV, tvv —0.4 eV. In Table VII we show the
results obtained for Nv ——3, NN; ——3 and N = 3 d
N -=5.

an v —,an
Contrary to what happens in the Ni/Cu case,

TABLE VI. Layer magnetizatxons for two systems having
~ ~

NiNi = CuCu = ~cuNi ~

0 1

Energy (eV)

10

8

0

&n

Gi

(b)

0

~n

P
Q)a

magnetism goes down at the interface and increases in
the interna layers. In this case Ni receives electron dns an

e partial density of states at the interfaces show
rg. 2 does not have an abrupt edge at the Fermi level,

there ore, the density of states is lower and this expl
'

is exp ains
e ecrease of the magnetization at the interface. On

the other hand the Fermi level falls on a peak of the
partial density of states of the second Ni layer. When NN;
increases the internal layers become more similar to those
of pure Ni and the previous effect is not so pronounced
as is the case for Xv —3, NN; ——5.

Cu 1
2
1
2

NC„=NN; =3
Ag; m;

0.12 0.06
0.14 —0.00

—0.26 0.82
0.14 0.48

mNi =0 75

Ncu =NN; =4
Dg; m,

0.13 0.07
0.04 —0.03

—0.26 0.94
0.09 0.50

mN; =0.74

—1 0 1

Energy (eV)

FIG. 2. Local densities of states for a V/Ni-type super-
lattice wltll NN =Nv = 3 (a) V and 'Ni interfaces, (b) inter-
mediate Ni layer.
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TABLE VII. Layer magnetizations for a V/Ni-like super-
lattice for two different compositions and modulations.

Nv=3, NN =3
Dg; m;

—0.45
0.19
0.49

—0.27

—0.02
—0.02
0.33
1.47

mN; =0.69

Ãv=3, NN;=5
Qg; m;

—0.52 —0.01
0.25 —0.00
0.55 0.2

—0.11 0.7
—0.1 0.54

mN; ——0.46

VI. DISCUSSION

We have calculated in this work the charge transfer
profiles in Ni/Cu-like superlattices grown along the [111]
direction. As a first approximation, the s-band occupa-
tion is held fixed so that we have taken into account only
the d-band contribution. The d orbitals have been re-
placed by five degenerate s orbitals. We have also calcu-
lated the layer magnetizations as a function of the num-
ber of Ni layers in each unit cell.

We have shown that in the case of a superlattice, when
using a tight-binding approach, it is necessary to take
into account the long-range electrostatic effects due to
charge transfers from one metal to the other. We have
treated these transfers self-consistently by introducing a
Madelung term in the diagonal elements of the Hamilto-
nian. Doing this we obtain an oscillating damped charge
transfer profile, which ensures bulk d occupations in lay-
ers sufficiently apart from the interfaces. This same kind
of behavior has been found by Leuken ei a/. perform-
ing ab initio electronic structure calculations on Nb/Zr
multilayer systems. g Our results do not depend strongly
on the number of layers or compositions of the superlat-
tice, but the average charge transfer diminishes as the
modulation length increases.

By not taking into account the d-orbital symmetry we

overestimate in this work the value of the density of states
of Ni at the Fermi level. As the value of U, within our
model, is of the order of I/[n(E~)]N; this leads, probably,
to an overestimation of charge transfers, but the trends
and relative values should not change when introducing
d-orbital symmetry.

Within our model it is diKcult to imagine a coherent

set of parameters that would give a uniform distribution
of charge transfers in the superlattice as suggested by Hu-
berman and Grimsditch in Ref. 4 in order to explain the
origin of the supermodulus effect. We have also shown
that the variation of the electronic properties with ten-
sions, taken into account by changing the values of the
hopping integrals, seems to be small.

With respect to the magnetization we obtain for the
Ni/Cu superlattices an enhancement of the Ni magneti-
zation at the interfaces. We show that this is due to a
symmetry effect that increases the density of states at
the Fermi level within our model. It is therefore oppo-
site to s-d hybridization, which rounds off the densities of
states, as has been shown by Victora, Falicov, and Ter-
soff for several systems which do not have the superlattice
symmetry.

Comparison with experiment is not simple. The early
results of Thaler, Ketterson, and Hilliard show an in-
crease in magnetization of Ni in modulated Cu/Ni struc-
tures, but later experiments by Zheng et al. give the
opposite results. However, in these samples the inter-
faces were not sharp and therefore the symmetry ar-
gument should not hold. Recent results for Cu/Co
superlattices, with sharper interfaces, give no change
for the magnetic moment of the Co atom with respect
to bulk Co. Also, there is an important decrease in the
Curie temperature for thin layers of a magnetic material
that may have influenced the experimentals results.

We are aware that taking a fixed magnetic split, L,
as suggested in Ref. 11 from molecular calculations with
a full Hamiltonian may not be equivalent to a self-
consistent solution of the model Hamiltonian having

. In future work we plan to check this assump-
tion and also to include in our model s-d hybridization,
the symmetry of the different d orbitals and also interfa-
cial diffusion.
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