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Structural origin of magnetic birefringence in rutile-type antiferromagnets
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The microscopic origin of magnetic birefringence in the rutile-type antiferromagnets XF2 (X=Mn,
Fe, Co, or Ni) is analyzed on the basis of the theory of structural birefringence developed by Ewald and

Born. The general principles of the Ewald-Born theory are reviewed. The magnetic birefringence can be
explained by a small exchange-induced internal displacement of the fluorine atoms. Predictions from

theory are compared with accurate crystal-structure analyses based on y-ray-diffraction data. The
agreement found between theory and experiment is excellent.

I. INTRODUCTION

The temperature dependence of the optical linear
birefringence (b,n) from magnetically ordered, transpar-
ent crystals has been the subject of a large number of
studies during the past 20 years (see review'). In spite of
the absence of a net magnetization in antiferromagnets,
An varies strongly near the Neel temperature and a mag-
netic contribution occurs which is superimposed onto the
temperature-dependent natural birefringence of an opti-
cally anisotropic crystal.

There has been some controversy about the microscop-
ic origin of the magnetic birefringence (e.g. , Ref. 1),
whether the dominant contribution is (i) of purely elec-
tronic origin (modification of the electron transitions
caused by the exchange field) or due to (ii) magnetostric-
tive distortions of the crystal structure [any change of the
unit cell (bulk magnetostriction) as well as relative shifts
of the atomic positions (internal displacements) within
the unit cell].

The antiferromagnetic rutile-type transition-metal
difiuorides XF2 (X=Mn, Fe, Co, or Ni) were among the
first compounds to be investigated in detail, and a pro-
portionality between the magnetic birefringence and the
magnetic internal energy has been established. Rutile-
type structures are determined by the two lattice con-
stants a and c and a parameter x, which specifies the posi-
tion of the fluorine atoms along the diagonal [110]. In-
formation about the microscopic origins of this
birefringence was tried to obtain from (i) the variation of
hn with the observed macroscopic strain and (ii) under
applied uniaxial stress. From a comparison of the tem-
perature derivative of An with the temperature depen-
dence of the anisotropy in the lattice expansion, Jahn
found that the observed An could not be explained by lat-
tice parameter changes alone and concluded An to be
strongly dependent on an internal distortion. For the
case of NiF2 this distortion has been attributed to a
small change of the positional parameter x. Borovik-
Romanov, Kreines, and Paces have studied the
birefringence of MnF2 under applied stress. They found
that a stress along [110]resulted only in a small change in
An and concluded that "there is no support that the

Auorine parameter has a significant inAuence on the
birefring ence. "

In the present work the microscopic origin of the mag-
netic birefringence of the diAuorides is reexamined from
both a theoretical and an experimental point of view.
The paper is organized as follows. In Sec. II and in the
Appendix, the Ewald-Born theory of birefringence is

brieAy outlined. Despite the fact that this theory is quite
old, it is not very well known and no concise description
has been found in the recent literature. The wave propa-
gation in the crystal is treated in a consistently micro-
scopic manner. Although the final equations remain un-

changed, this approach differs from the elementary
theory of polarization where the crystal is subjected to an
external field and retardation is neglected. In Sec. III the
Ewald-Born theory is used to examine the magnetic
birefringence in terms of crystal-structure deformations.
In Sec. IV predicted values of distortions are tested by
comparison with results obtained from accurate y-ray-
diffraction experiments.

II. THEORY OF BIREFRINGENCE

The microscopic theory of crystal optics as developed
by Ewald and Born' is based on the model of harmoni-
cally oscillating dipoles arranged in an infinitely large
crystal lattice. According to the Ewald-Born theory, a
plane electromagnetic wave should exist self-consistently
in the crystal. This means that the spherical waves emit-
ted with velocity c from the dipoles should add up to a
plane wave traveling with velocity v. The vibration of
each dipole is just maintained by the field produced by all
the other dipoles (no incident beam). The refractive in-
dex n =c /v follows from the condition of self-
consistency. In a noncubic arrangement the force acting
on a dipole is different for different directions of the field,
thus giving rise to birefringence.

The position vector of an atom k with respect to an ar-
bitrary origin will be denoted by x(lk)=x(l)+x(k),
where x(1)=1,a, +12az+ 13a3 is the lattice vector,
a&, az, a3 being the basic vectors of the unit cell, and x(k)
is the base vector within the cell. The cell contains s
atoms, and so k = 1, . . . , s. An interatomic vector is
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denoted by x(lk, k') =x(lk) —x(k').
It will be assumed that for each atom k the electric di-

pole moment p(k) induced under the influence of an elec-
tromagnetic field is proportional to the field E(k) acting
at its center,

which has the same form as the phenomenological rela-
tion

D = ge„pEg .
p

p(k) =~(k)E(k), Thus the dielectric tensor is given by
1

E(k)=E+ QQ(kk')p(k'),
k'

where the coefficients Q(kk') form tensors of second rank
(local-field tensors), which only depend on the crystal
structure (see Appendix). Substitution of (2) into (1) leads
to a linear system of equations for the components p (k):

5 /k', —Q p(kk') pf3(k')=E1

a k
(3)

Introducing the symmetric matrix 8 inverse to the
3s X 3s matrix,

R p'(kk')= 5 gkk, —Q ii(kk'),

the system (3) has the solution

p (k) = g g R g(kk')Ep,
P k'

and the polarization per unit volume is given by

P =—g p (k) =—g g R p(kk')Ep,1 1

k P kk'

(4)

where V is the unit-cell volume. The components of the
dielectric displacement vector, which is defined by
D=E+4~P, can therefore be written as

D =E + g g R p(kk')Ep,
P k, k

where a(k) is the (isotropic) electronic polarizability of
atom k. In a dipole lattice, E(k) is the electric field due
to all dipoles except p(k) (exciting field). In computing
E(k) one has to take into account that the field of each
dipole p(l'k') will arrive at x(k) at a different time
(1/c)x (l'k', k), i.e., the effect of retardation.

The exciting field can be separated into the macroscop-
ic field E and an inner field:

4m
e p=5 p+ g R p(kk') .

Equation (8) connects the dielectric tensor with the polar-
izabilities and the crystal structure. With Maxwell s rela-
tion a= n, the optical birefringence is expressed as

The dispersion of the refractive indices is implicitly con-
tained in the polarizability, which is a function of fre-
quency.

III. APPLICATION
TO RUTILE-TYPE DIFLUORIDES

The transition-metal diffuorides XF2 (X=Mn, Fe, Co,
Ni, or Zn) have the tetragonal rutile-type structure (space
group P4z/mnm). The cations are located at the posi-
tions 0,0,0; —,', —,', —,

' and the anions are at

The local-field tensors Q(kk') for room temperature
were evaluated using the structural data given in Table I.
It should be noted that the structure data are fairly accu-
rate except for the fluorine positional parameter x of
CoFz and ZnF2.

Convergence of the lattice sums has always been
checked using the relation for the invariance of the trace
(V/4m) g Q ~(kk')=1. Independent calculation of the
xx and zz components resulted in deviations from 1 of the
order of 10 ' with the summation over a few hundred
unit cells. Accuracy of the calculations is of crucial im-
portance since small di6'erences in the calculated values
of Q &(kk') may result in rather large differences in the
calculated birefringence. An iterative improvement of
the solution to the linear equation system (4) has been ap-
plied. The crystal symmetry leads to a twofold
simplification of the computations: (i) relations are im-

0
TABLE I. Crystal data and refractive indices (A, =6328 A) at room temperature.

a (A)'
c (A)'
X

f
ne

fn,

'Reference 11.
Reference 12.

'Reference 13.
Reference 14.

'Reference 15.
'Reference 3.

MnFz

4.8736
3.3101
0.3049'
1.4992
1.4706

FeF,

4.6974
3.3082
0.3013
1.5213
1.5113

CoF2

4.6950
3.1785
0.303'
1.5331
1.5069

NiF2

4.6501
3.0835
0.3037'
1.5562
1.5212

ZnF2

4.7037
3.1334
0.305'
1.5229
1.4937

MgF2

4.6213"
3 0519"
0.3029
1.3779
1.3664
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TABLE II. Anion and cation polarizabilities (in units of A ') at room temperature (A, =6328 A).

a(cation)
o.(F)

Mn

1.1138
0.7268

Fe

1.3327
0.5821

Co

1.1883
0.6095

1.1418
0.6041

Zn

0.8453
0.7601

Mg

0.4638
0.6358

posed on the various components of Q(kk'), and (ii) only
linear combinations of dipole moments which transform
according to a particular irreducible representation of the
space group have to be considered. Detailed descriptions
of these aspects are to be found in Refs. 16—18 which
deal with the rutile structure.

Table II shows the set of polarizabilities that reproduce
the refractive indices at room temperature for A, =6328
A. It was deduced from (8) by a trial-and-error variation
of a(F) within physically reasonable limits. For each
value of a(E), the corresponding value of a(cation) was
determined from the equation for n, . This procedure was
repeated until agreement was obtained between the ob-
served and calculated values of n, .

In the calculation of the birefringence at low tempera-
ture, the following two steps were adopted. The polariza-
bilities were always held fixed at the values derived for
room temperature (Table II). In the first step only the
inhuence of the changes in the lattice constants with tem-
perature were taken into consideration. The low-
temperature lattice constants were taken from Haefner"
and are given in Table III. The very small orthorhombic
distortion in NiF2 has been neglected. The values of the
birefringence thus calculated are given in Table IV. As
can be seen clearly, no agreement is obtained with the ob-
served birefringence of the antiferromagnetic compounds.
The calculated effect of spontaneous striction results in
an increase of the birefringence as the temperature is
lowered, which is opposite to the observations.

The birefringence is extremely sensitive to the fluorine
position, and in the second step the positional parameter
x was allowed to vary in such a way that the observed
birefringence was reproduced. The sensitivity of An with
respect to x has already been noted by Hylleraas' in ru-
tile, and he actually proposed to improve the results ob-
tained from x-ray diffraction by optical calculations.

As to be expected, the changes in the lattice constants
alone do not account for the magnetic birefringence;
rather, one has to assume a small shift of the fluorine
atoms (see Table V). This shift has to be considered as a
result of the exchange interaction between the cation
spins which is transmitted through the intervening

Auorine atoms, and indeed a negligible shift is obtained
for the diamagnets ZnF2 and MgF2. Table VI shows the
temperature variation of the atomic shift in MnF2 as cal-
culated from An, &, . Both the short- and long-range mag-
netic order contribute to the birefringence. The onset of
short-range order at (2.5 —3)Tz is clearly rejected by the
calculated shift.

IV. COMPARISQN WITH EXPERIMENT

The suggested temperature variation of the Auorine po-
sitional parameter may be tested by means of x-ray-
diffraction analysis. Since the calculated atomic shifts are
very small, one has to refer to Bragg diffraction data of
very high precision. It has been demonstrated that
single-crystal diffraction of y rays emitted from a ra-
dioactive source such as ' Au or ' Ir leads to structure
factors of higher accuracy as compared to x-ray
diffraction. Some sources of systematic error which lim-

it the accuracy of structure factors derived from x-ray-
diffraction data are absent for y rays. The reason behind
that lies in the much shorter wavelengths of the y rays,
resulting in a much weaker interaction with matter (basic
condition for the validity of the first Born approximation)
and in the intrinsically highly monochromatized beam.
y-ray-diffraction measurements from both MnF2 and

NiF2 have provided the experimental basis against which
the predicted atomic shifts have been tested.

A. MnF2
0

Selected y-ray-diffraction data Q, =0.0301 A) collected
from a single-crystal plate gave b,x =x(295 K) —x(15
K) =48(8.6) X 10, where the number in parentheses
refers to one standard deviation. ' Refinement of com-
plete y-ray data sets (A, =0.0392 A) collected from a
single-crystal sphere resulted in Xx=49(11.3)X10
The weighted mean value of the two independent experi-
ments is hx =48.4(6.8) X 10, which is in excellent
agreement with the calculated value.

Accurate neutron-diffraction studies revealed a
difference of 1.5 X 10 A in the Auorine position at 15 K

TABLE III. Lattice constants at low temperature.

T (K)
a (A)'
c (A)'

MnFz

4
4.8736
3.2998

FeF2

15
4.6933
3.3007

CoF2

15
4.6941
3.1698

NiF2

21
4.6478
3.0745

ZnF2

48
4.6997
3 ~ 1277

MgF2

20
4.6167'
3.0458"'

'Reference 11.
Mean value of the orthorhombic lattice constants.

'Derived from the thermal expansion coefficients (Ref. 19).
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TABLE IV. Observed and calculated birefringence {X 10 ), An =n, —n„at low temperature.

T (K)
hn, b,

'
b

An„), '
Xcaic

MnF2

10
273.73
293.38
273.74

0.304 404

FeF2

13
91.92

102.79
91.91
0.301 071

CoF~

14
263.99
268.90
263.97

0.302 897

NiF2

20
334.19
357.71
334.19

0.303 246

ZnF2

40
294.54
295.35
294.55

0.304 980

MgF2

20
116.42
116.55
116.42

0.302 892

'Reference 3.
"x =x (Table I).
cX =Xcalc.

with respect to the position based on the y-ray data.
Whereas y rays as electromagnetic radiation interact
with the electron charge distribution, the neutrons are
scattered mainly by interaction with the nuclei. The
magnetiostrictive shift of the nuclei amounts to
b,x=28(3)X10 . The noncoincidence of the centroid
of the charge distribution with the nuclear position, how-
ever, is not due to valence-shell scattering. The results of
charge-density analyses show that it rather reAects a
polarization of the fluorine core electrons which is absent
in the paramagnetic state. Since the polarizability is
determined by the outer electrons, it is the position of the
centroid of the charge distribution as determined by y-
ray diffraction which enters in the Ewald-Born theory.

B. NiF2

NiFz is a weak ferromagnet, and therefore the syrnme-

try lowers from tetragonal to orthorhombic at the phase
transition. The difference between the lattice constants a
and b is very small, amounting to about 10 A at 20
K. In the absence of a magnetic field, the crystal
divides into domains with the weak ferromagnetic mo-
ment in the +a or +b directions. With a random domain
distribution, a diffraction measurement in zero field
should provide an averaged structure of tetragonal sym-
metry. It turned out, however, that the y-ray-diffraction
measurements were rather sensitive with respect to the
domain formation. Diffraction data at 15 K have there-
fore been recollected from a single-domain crystal in a
sufficiently strong magnetic field. Refinement of the ex-
tensive y-ray data sets resulted in b,x=41(7.9) X 10
which again is in excellent agreement with the calculated
value.

V. MSCUSSION

It should be noted that the magnetic birefringence
could be explained entirely by the arrangement of the
ions, assuming each ion itself to be isotropic. In particu-
lar, no change in the polarizability of the magnetic ions
had to be assumed.

The negative sign of the magnetic birefringence with

respect to the natural birefringence is correlated with the
sign of hx, i.e., with a shortening of the nearest-neighbor
distances (CoFz is an exception).

Markovin and Pisarev investigated the temperature
variation of the principal values of the refractive indices
in MnF2. The slopes dn, , ( T) ldT are found to be posi-
tive well above T& and negative in the magnetically or-
dered region. Changes in lattice geometry fail to describe
these observations; rather, one has to allow for changes in
polarizability. Obviously, the birefringence may arise
from completely different contributions than the refrac-
tive indices. Contributions that affect n, and n, in the
same manner do not inhuence the birefringence. The
average refractive index of MnF2, for example, when
evaluated from the Lorentz-Lorenz relation, i:s 1.459,
which is quite close to the actual value. Hence deviations
from cubic symmetry which govern the birefringence are
relatively unimportant for the refractivity.

dn /dT can be separated into three components as aris-
ing from (i) the change in the number of polarizable parti-
cles per unit volume, (ii) the change in polarizability
caused by lattice contraction, and (iii) the pure tempera-
ture effect on the polarizability. If (i) were the only
mechanism to be operative, it would tend to make dn Id T
negative. It is now recognized that the electrostatic crys-
tal potential decreases the effective size of the anions,
whereas the corresponding expansion of the cation is
much less pronounced. ' Increasing the Madelung po-
tential at an anion site with lattice contraction will result
in a decrease of anion polarizability arising from ion
compression. Component (ii) will therefore tend to make
dn IdT positive. As yet, there is no method of calculating
(iii). Hence the temperature coefficient of the refractive
index results from a delicate balance between at least two
competing factors, and the Ewald-Born theory could ac-
count for it only in combination with a sophisticated
theory describing the inAuence of crystal potential and
temperature on the polarizability.

Even for the relatively simple rutile-type structures, it
was dificult to determine the microscopic origin of the
magnetic birefringence. For compounds with more than

TABLE V. Calculated shifts of the I' positional parameter Ax„l, =x(room temperature) —x„&,(low
temperature).

10 bx„i,

MnF2

49.6

FeF2

22.9

CoF&

10.3

NiF2

45.4

ZnF2

2.0

MgF2

0.8
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TABLE VI. Temperature variation of the calculated shift hx„„in MnF2 (T& =67.7 K).

200 70 60 50 30 10

10 bx„i, 2.4 6.4 13.4 25.0 33.7 44.9 49.6

one structural degree of freedom, it seems to be impossi-
ble to relate changes in the optical anisotropy unambigu-
ously to internal atomic displacements. The rhom-
bohedral antiferromagnets such as MnCO3 might provide
a further opportunity for a quantitative test of the inter-
nal displacement mechanism (infiuence of the oxygen po-
sition).

VI. CONCLUSION

The magnetic birefringence in rutile-type antifer-
romagnets is due to internal atomic displacements. Pre-
dicted shifts as small as 3X10 A have been confirmed
by crystal-structure analyses. From the results obtained
above, one can conclude that the classical point-dipole
model, upon which the Ewald-Born theory is based, is
considerably more powerful than is commonly assumed.

APPENDIX: BASIC ELEMENTS
OF THE EWALD-BORN THEORY

Plane-wave representation of the total electric field

4~Z(x) = g p(k) exp[iK x(k)]

~ exp(i[y(h)+K]. [x—x(k)][
I y(h)+ K I' —&0

with the reciprocal lattice points defined as
y(h)=2m(h, b, +h212+h313) and a, b =5;..

Spatial average of the total field

In the visible region of the electromagnetic spectrum,
Eo and K are much smaller than y (h ). Hence the leading
term in Z is the constant term of the Fourier series, h =0.
It is a plane wave with wave vector K corresponding to
the mean field obtained by averaging over a region which
is large compared with characteristic interatomic dis-
tances. It represents the macroscopic field that occurs in
Maxwell s equations. With the polarization defined as di-
pole moment density P=gk p(k')/V and E =2m/k,
Ko =2'/Ao, and n =A,o/A, , the average value of Z is given

by

The field of dipoles all of which are oscillating in the
same direction is most conveniently expressed in terms of
the Hertz vector Z, which for a single dipole of moment

p exp( irot ) is def—ined as

(nA, /2')Z=4mP exp(iK x),
71 1

leading to the average electric field

(A6)

Z(x) = p exp [ iso( t ——x /c ) ] (A l)
4mE= [P—n s(P s)] exp(iK x),

E1 1
(A7)

E=VV Z —bZ=VxVxZ. (A2)

If the phases of the dipoles vary according to a plane
wave of wave vector K, the amplitude of the Hertz vector
at a point x is

exp [iICo. ~
x —x( lk )

~ ]
Z(x) = g p(k)

1, k

x exp [iK x(lk) ], (A3)

where Ko =co/c and g& denotes the sum over all lattice
vectors in crystal space. This equation may be recast as

Z(x) = gp(k) exp[iK.x(k)]
k

exp[iKO ~x —x(lk)~]
x

~x —x(lk)
~

where x is the distance from the field point to the dipole.
The electric field is calculated from the relation

where s =K/ K ~. The macroscopic Maxwell field is
often identified with an external applied field, which is
completely unjustified. The macroscopic field is just that
part of the internal field that depends on the retardation
of the interaction.

Long-wavelength limit

4', exp [ iy(h ) [x—x(k) ] [Z'x = pkl'
k y (h)

(AS)

where gz denotes the sum over all lattice vectors in re-

ciprocal space except y(h ) =0.

The terms with y(h)%0 in (AS) describe the subtle
periodic deviations from the average field. In the limiting
case of long wavelength in which A, is much larger than
the lattice constants, one is led to the electrostatic ap-
proximation and the deviation from the average field,

Z =Z Z, is

Xexp[iK x(l)] . (A4) Exciting field

The lattice sum, which consists of a periodic part and a
phase shifting factor, may be expanded into a Fourier
series, and the Hertz vector is then transformed into a
sum of plane waves:

The series (AS) is only conditionally convergent.
Ewald solved this difficulty by transforming (AS) into two
rapidly converging series: one series over direct and
another over reciprocal space. In order to find the field
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at the position of a dipole, the infinite self-field has to be
subtracted. Performing the differentiation and making
the limiting transition x—+x(k) gives the exciting field

E(k) decomposed into the macroscopic Maxwell field E
and an inner field gi, Q(kk')p(k') as expressed in Eq. (2).

The local field tensors are defined by

Self-consistency condition

In the consistently microscopic theory, no use is made
of the phenomenological material equation (7). Substitu-
tion of (A7) into (5) and neglecting the very small phase
changes in exp(iK x) gives an equation of self-
consistency for P. When s is parallel to one of the princi-
ple dielectric axes, P s vanishes; it simplifies to

1
Q&p( kk )

x=x(lk, k')
(A9) g [R p(kk') —(n —1)5 p)Pp=0,

P kk'
(A 10)

where the prime in the summation denotes that the term
x(lk, k')=0 has to be omitted. The explicit result is
found, e.g., in Refs. 16 and 29.

and the problem of determining the possible electromag-
netic field in the crystal is reduced to an eigenvalue prob-
lem. The condition that the determinant of (A10) must
be zero in general yields three distinct values for (n —1),
to each of which corresponds an eigenvector P.
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