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Spontaneous alignment of frustrated bonds in an anisotropic, three-dimensional Ising model

Rodolfo A. Jalabert and Subir Sachdev
Center for Theoretical Physics, P.O. Box 6666, Yale University, Veto Haven, Connecticut 0651I

(Received 7 January 1991)

The Ising model on a three-dimensional cubic lattice with all plaquettes in the x-y frustrated plane is
studied by use of a Monte Carlo technique; the exchange constants are of equal magnitude, but have
varying signs. At zero temperature, the model has a finite entropy and no long-range order. The low-

temperature phase is characterized by an order parameter measuring the Z4 symmetry of lattice rotations
which is invariant under Mattis gauge transformation; fluctuations lead to the alignment of frustrated
bonds into columns and a fourfold degeneracy. An additional factor-of-2 degeneracy is obtained from a
global spin flip. The order vanishes at a critical temperature by a transition that appears to be in the
universality class of the D =3, XY'model. These results are consistent with the theoretical predictions of
Blankschtein et al. This Ising model is related by duality to phenomenological models of two-
dimensional frustrated quantum antiferromagnets.

I. INTRODUCTION

Since the original suggestion by Villain and collabora-
tors' much attention has been focused on the
phenomenon of "order from disorder" —the ability of
thermal or quantum fIuctuations to produce long-range
order in systems which have disordered classical ground
states. Such ordering has been observed in many frus-
trated classical Heisenberg spin models and in frustrated
two-dimensional quantum antiferromagnets. In this pa-
per we shall study a three-dimensional frustrated Ising
model, introduced by Blankschtein, Ma, and Berker
(BMB), which displays the phenomenon of order arising
from disorder. We shall characterize the low-
temperature phase by symmetry breaking in an order pa-
rameter 4 which measures the Z4 symmetry of lattice ro-
tations. An important property of 4' is that it is invariant
under the Mattis gauge transformation —the order pa-
rameter is thus independent of the particular realization
of bonds producing the frustration. Our viewpoint is
therefore difI'erent from that of BMB, who chose a partic-
ular realization of the signs and focused on the spatial or-
dering of the spins. Our final results on the universality
class of the finite-temperature phase transition are in
complete accord with their predictions.

Our interest in this Ising model arose from studies in
frustrated quantum Heisenberg antiferromagnets. Al-
though we shall not pursue this connection further here,
a synopsis of the mapping runs as follows. The quantum
disordered phases of unfrustrated antiferromagnets in
two dimensions are known to be described by a (2+1)-
dimensional compact U(1) gauge theory. ' It has re-
cently been shown that frustration introduces a charge-2
Higgs scalar which reduces the underlying gauge symme-
try down to Z2. The resulting Z2 gauge theory is dual [in
(2+1) dimensions] to the Ising model. The frustration in
the Ising model is a consequence of the Berry phase of in-
stantons and vortices in the Heisenberg antiferromagnets.
The order in II that we find in the low-temperature phase

of the Ising model corresponds to spin-Peierls ordering in
the quantum antiferromagnet. .

II. THE MODEL

We shall examine an Ising model partition function

Z= g exp —g J; s;s.
(.)

"''. '

=sgn(J; JkJktJt;), i j,k, 1 Ep, (3)

where p denotes an elementary plaquette of the cubic lat-
tice with vertices i,j,k, I. We are now ready to specify the
model of BMB. We have

and
~ J, , +s ~

=J' (our Monte Carlo simulations used J=J'
for convenience, although the nature of the results is in-
dependent of this choice). We also choose ri = —1 for
every plaquette in the x-y plane and g = + 1 for all other
plaquettes. (See Fig. 1.) The x-y planes are copies of the
"odd" model of Villain' or a degenerate limit of the
"domino" models of Andre et a/. With this definition of
the partition function, a crucial Z4 symmetry is apparent:
Z and all correlation functions of gauge-invariant quanti-
ties must be invariant under 90 rotations about the
centers of plaquettes in the x-y plane. Note, however,
that any definite choice of the signs of J, satisfying (3)
will not be invariant under such rotations —it will instead

where the sites i,j extend over the vertices of a cubic lat-
tice and J;. is a nearest-neighbor interaction specified
below. A crucial property of Z is its invariance under the
Mattis gauge transformation

Jig ~~i~g~sj. ~

where c;=+1. Thus, after specification of the magni-
tudes of J;, Z depends only upon the signs of gauge in-
variant products of J; . We will choose these to be
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III. MONTE CARLO RESULTS

transform into a gauge-equivalent configuration.
At zero temperature (J—+ ~ ) the model has an infinite

number of degenerate ground states. These are discussed
most simply in terms of the link field,

Q;g J&gs. , sj (4)

The most important property of Q, is its invariance un-
der the transformations in Eq. (2). Links with Q," (0
(Q;J &0) will be referred to as unfrustrated (frustrated).
The ground state is obtained by minimizing the number
of frustrated links. However, the values of g dictate
that there must be an even (odd) number of frustrated
links around every plaquette in the y-z and x-z planes
(x -y plane). Thus, every configuration of Q; with (i) one
frustrated link around every plaquette in the x-y plane
and (ii) the identical configuration on every x-y plane,
will be a ground state. Two such configurations are
shown in Figs. 2(a) and 2(b). Each configuration of the
Q;i can be associated with a dimer covering on the dual
square lattice: the ground-state degeneracy therefore
equals the number of such coverings. Correlation func-
tions in the ground-state manifold can be calculated ex-
actly and are found to decay by a power law to 0 in the
x-y plane '" and are constant in the z direction. Thus,
there is no long-range order at T =0.

FIG. 1. Schematic of the Ising model. All the shaded
(unshaded) plaquettes are frustrated (unfrustrated). All
nearest-neighbor exchanges in the x-y plane have magnitude J
while those in the z direction have magnitude J'. We choose
J=J' for convenience.

We now turn to finite temperatures. The model con-
sisting of a single x-y plane (a fully frustrated two-
dimensional Ising model) has been solved exactly and
has no long-range order or phase transition at any finite,
nonzero temperature. In contrast, the present three-
dimensional model does have a finite-temperature phase
transition. ' We introduce an order parameter (which is
the analog of the spin-Peierls order parameter of Ref. 9)
associated with this transition:

1
PIJ Q!J

(Ij)

where the sum extends over all the links of the cubic lat-
tice and X, is the number of sites in the lattice. The fixed
field P, takes the values l, i, —I, i on t—he links in the
x-y plane as shown in Fig. 3; on all z-directed bonds we
have P; =0. These values have been chosen such that,
under a rotation about the center of a plaquette in the
x -y plane by an angle n n /2, we have

r

%~%exp +
2

(6)

where the sign depends upon the sublattice of the pla-
quette. This result implies that, in the absence of any
spontaneous symmetry breaking, we must have (iII ) =0.
Below we find a low-temperature phase with (0')%0:
this indicates that the frustrated links have aligned them-
selves into patterns with the syinmetry of Fig. 2(a) [with
arg(%) = —m. /2] or one of the three other states
[arg(%) =O, rr/2, rr] that can be obtained by a Z~ rotation
of Fig. 2(a). The state in Fig. 2(a) is entropically favored
because the largest number of states in the ground-state
manifold can be reached from it by a single spin Aip.

We now present our Monte Carlo results for the phase
transition. The standard Metropolis algorithm was used
with 7.5 X 10 time steps per site, complemented with the
improved Monte Carlo method of Ferrenberg and
Swendsen' near the critical regions. We worked with
lattices with N, =L sites, where L =10, 20, and 30. In
Fig. 4 we show our results for (~%~ )'~ for these three

1 1 1

1 1 1

FICx. 2. Two possible ground-state configurations of the Q;,
field. Thick (thin) lines denote Q;, & 0 ( Q;, (0).
configurations are identical on all the x-y planes. At finite tem-
peratures we find a low-temperature phase in which the system
breaks a Z4 lattice rotation symmetry and has the symmetry of
(a) or the three other states related to 90' rotations.

FIG. 3. Values of the fixed link field P;, . The same pattern is
repeated on all the planes and P, , +,-=0.
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FIG. 4. Magnitude ( ~'P
~ ) ' ' of the gauge order parameter 4

as a function of the coupling strength J. The dashed, dotted,
and solid lines are guides to the eye for L =10, 20, and 30, re-
spectively.

lattice sizes as a function of J. The results are suggestive
of a phase transition around J, =0.35. The existence of a
phase transition can be more definitively settled by exam-
ining the invariant ratio
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In an ordered phase we expect r ~1 as N, —+ ~. In the
disordered phase the fluctuations of %' are expected to be
Gaussian around 4=0. Because 4 is a complex scalar,
we therefore expect r —+2 as X,~~. The results in Fig.
5(a) are in complete accord with these expectations. We
expect, moreover, that, for finite L and near J„r will

obey the scaling form

r =f{(J—J, )L' ) .

The fit to such a scaling form is shown in Fig. 5(b) and we
obtain a value of v=0. 63+0.05 and J =0.347.

The Z4-lattice-symmetry-breaking pattern of the low-
temperature phase suggests that the phase transition is in
the universality class of the D =3 Z& clock model or,
equivalently, the two-color Ashkin-Teller model. The
second-order transition in the latter model is XY like'
and the exponent v&z= —', is consistent with our results;
an XY transition was also predicted by BMB. Further
evidence for the XY nature of the transition can be ob-
tained from the specific heat of the model which has also
been measured by Grest. ' Our measurements are shown
in Fig. 6. There is a weH-defined peak whose height in-
creases logarithmically with L (inset of Fig. 6), consistent
with the results of Grest. ' Scaling suggests that this
height should increase as L —our results are thus con-
sistent with the D =3 XY exponent of a=0. The asym-
metry of the specific-heat peak is also consistent with that
expected for the XY model the specific heat for
J =J, +6J is greater than for J=J, —6J.

L=30

1.0

FICi. 5. (a) Invariant ratio r [Eq. (7)] vs the coupling strength.
The three lines cross at J, =0.35. The peak structure below J,
is due to finite-size effects. {b) Scaling plot of the invariant ratio
r. Notice the data collapsing in the critical region. The fitting
parameters are v=0. 63 and J, =0.347. The dashed line is a
guide to the eye through the points with L = 10.

After a given choice of gauge for the J; satisfying (3)
and the specification of given configuration of Q,. , there
is still a global twofold degeneracy in the possible values
of s, . The possibility exists, therefore, that this symmetry
is also broken in the low-temperature phase. To discuss
this further we have to make a specific choice of gauge.
We make the choice that J; = —J for all the links except
for the thick lines in Fig. 2(a) for which J, =J. Let us as-
sume that, of the four low-temperature phases, the sys-
tem is in the one in which the frustrated bonds are also
lined up as in Fig. 2(a), i.e., Q,")0 on the thick lines and
arg(%)= vr/2. The values —of s; associated with this
state are simply s; =1 for all i or s; = —1 for all i. For
this ordering in this specific choice of gauge, we therefore
introduce the magnetization
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FIG. 7. Invariant ratio rM [Eq. (10)] for the magnetization I

vs the coupling strength.

FIG. 6. Specific heat as a function of the coupling strength
for L =10 (circles), 20 (crosses), and 30 (squares). Inset: height
of the specific heat vs the logarithm of the system size L. The
error bars are smaller than the symbol size. The straight line is
the best fit through the points for L = 10, 14, 20, and 30.

s i=1
s.

We are interested in exploring the question whether the
symmetry M~ —M is broken. As before, we investigate
this question by examining the ratio

IV. CONCLUSIONS

We have examined a frustrated three-dimensional Ising
model shown in Fig. 1, introduced by BMB, by Monte

In the high-temperature phase, it can be shown that
r~ ~3 as X, —+ ~. To calculate rM in the low-
temperature phase we assume (i) ordering of the M and
(ii) the system samples all four phases with diFerent
values of 4' equally and does many global spin Aips. An
additional complication is that the magnetizations associ-
ated with the four possible 4 phases are not orthogonal.
Using all these facts, a simple calculation shows that
rM~1. 75 in the low-temperature phase. Our results are
shown in Fig. 7 for L =20. The high-temperature value
is close to 3 and there is an abrupt jump at J =J, to a
value consistent with 1.75. The extra noise on the low-
temperature side is presumably due to the long relational
times associated with tunneling between the four + states
and global spin Hips.

Carlo simulations. At zero temperature the model has no
long-range order and an infinite ground-state degeneracy.
At finite temperature we find a low-temperature phase
with a fourfold degeneracy and long-range order associat-
ed with the breaking of the Z4 symmetry of lattice rota-
tions about the centers of plaquettes in the x-y plane.
The order parameter associated with this phase is one
that measures the alignment of frustrated bonds: states
of the type shown in Fig. 2(a) (and the three other states
that can be obtained by lattice symmetry) are entropically
favored as one can reach a maximum number of low-
energy states from them by single spin Aips. An impor-
tant property of this order parameter is that it is invari-
ant under Mattis gauge transformation and thus indepen-
dent of the particular signs chosen for the J; to realize
the frustration. At a finite temperature we find a transi-
tion at which the symmetry is restored; the transition ap-
pears to be in the universality class of the D =3 XP mod-
el. If one makes a specific choice of gauge, and allows ex-
amination of gauge-dependent quantities, one finds an ad-
ditional twofold degeneracy in the low-temperature state
associated with global spin Hips. These results on the
universality class of the transition and the degeneracy of
the low-temperature phase are in accord with the theoret-
ical predictions of BMB.
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