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Electron hopping in three-dimensional Snx states
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We point out that the eigenvalue problem of an electron hopping on a lattice with arbitrarily oriented
three-dimensional Aux states can be reduced to a one-dimensional hopping in a suitably chosen gauge.
The energy spectra and the density of states are calculated for various Aux states. In general, overlap-

ping energy bands are found. In special configurations the bands touch each other (zero gap). Where
the bands touch the density of states vanishes. The energy spectrum is calculated for Aux states of orien-
tation (2' /q, 2mp/q, 2mp/q) and (m, m, 2~p/q) for all rational values with q & 38 and & 30, respectively.
The spectra have some traces of the properties of the two-dimensional model. When the center of the
energy band is plotted as a function of p/q a "butterfly" pattern reminiscent of Hofstadter's butterfly
emerges. In many cases, the total energy of electrons can be lowered by applying an appropriate uni-

form magnetic field.

I. INTRODUCTION

Fifteen years ago, Hofstadter, ' expanding upon earlier
work by Azbel, astonished the physics community by
showing that the problem of an electron hopping on a lat-
tice in a uniform magnetic field has a rich and intricate
structure. The relevant Hamiltonian is simply

&=- g (U;„c;+„c;+U; c;+ c;+H.c. ), (1.1)

where c; and c; are the annihilation and creation opera-
tors on the site i =(i„,i ), respectively. The magnetic
Aux N through the plaquette is defined by

square

plaquette

U, (1.2)

where the right-hand side represents the product of the
U's around a plaquette. By a gauge choice, we can set
Uiy 1 The choice

(1.3)

corresponds to @=2m.(p/q). Henceforth we will measure
4& in units of 2~ and write C&=2m.g. The problem is
solved by going to momentum space,

ik„ y k

X ck+wcke +ckcke '+H. c. ) (1.4)
k

where w =(0,2vrp/q). Thus we obtain a one-dimensional
hopping problem in which a particle hops from k to
k +w, to k +2m, and so on. For p and q incommensu-
rate integers, the problem closes: After q hops in a given
direction, the particle returns to its original site in
momentum space. The energy eigenvalues of & are thus
determined by diagonalizing a q Xq matrix. There are
thus q bands. We can easily see why the problem has a

rich structure such that a physicist used to thinking in
continuum terms would find amazing. For instance, the
fluxes (t) = —,

' and 43, while numerically close to each other,
produce a drastically different energy spectrum.

All of this is, of course, exceedingly well known by now
and has been extensively studied. For instance, index
theorems may be proved showing that there exist '

q
Dirac zeros for P=p/q. In recent years the Hofstadter
problem has assumed great importance in connection
with the quantum Hall effect. More recently, it has
formed the basis for a number of speculative ideas re-
garding the ground state of strongly correlated electron
system and a possible theory of high-temperature super-
conductivity. Thus the Aux state, the chiral spin state,
and the commensurate Aux state, ' among others, have
all been studied as possible ground states. Within the last
year or so, various authors" ' have ventured forward
and studied the Hofstadter problem suitably generalized
to three dimensions. We will follow in particular the
work of Hasegawa. ' The motivations for moving to
three dimensions are given as follows: (1) There may be a
quantized Hall effect in three dimensions. (2) Interlayer
effects may be important in high-temperature supercon-
ductors. (3) The appearance of the Dirac zero may be
relevant for particle physics. Let us admit, however, that
at this point, the main motivation may still be simply ex-
ploratory.

The Hamiltonian (1.1) is easily extended to three di-
mensions:

In general, of course, it is possible to have different hop-
ping amplitudes t, ty, t, in the three orientations. Unless
we specify otherwise, we will generally take t

=t =1.
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II. REDUCTION TO ONE-DIMENSIONAL HOPPING

We wish to study the energy spectrum when the lattice
is pierced by flux P„ in the x direction, P in they direc-
tion, and P, in the z direction. We will label a flux ar-
rangement by (P„,P», P, ). By a gauge choice, we can al-
ways set U;, say, to 1. It would thus appear that the
three-dimensional problem would reduce in momentum
space to a two-dimensional hopping -problem. Thus, for
instance, in Ref. 13 the choice

hopping problem in momentum space.
The basis of this paper is the realization that in fact

even in the general case of unequal P„, P», and P, there
exists a gauge choice such that we still have a one-
dimensional hopping problem in momentum space. We
find this result remarkable in that it renders the three-
dimensional Hofstadter problem only slightly more in-
volved that the two-dimensional problem. The idea is
simply to rotate the vector w until it is parallel to u. We
can do thisby replacing U;, in (2.1) by

—ici ibi„
U; =e "e (2.1)

EQE EdE

U;, =e ~e (2.1')

was made. This corresponds to the flux arrangement
(P„,P', P, )=(a,b, c)/(2n). Th. e position dependence of
the U's is such that clearly in momentum space a particle
at k may in one hop get to either k+u or k+w with the
vectors u=(0, —c,b) or w=(O, a, O). The equivalent
hopping problem is two dimensional.

Recently Hasegawa' has studied the flux arrange-
ments (0,$,$) and (P, P, P) for certain selected values of

For (P, P, P), that is, for the special case in which P„,
P», and P, are all equal, he found a clever gauge choice
which again reduces the problem to a one-dimensional d/b =a/c, (2.2)

It is easy to see that this does not afFect the flux at all.
(For instance, consider the product of the U's around a—EdE
plaquette in the y-z plane. ) The factor e ' cancels it-
self "coming and going. " More formally, the U;, in (2.1')
is related to the old U;, in (2.1) by the I'au~e transforma-

tor w now becomes w =(O, a, —d). If we choose the ratio
d to b such that
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FIG. 1. Energy bands plotted vs the band number for four different flux states: (a) ( 2, 4, 4 ), (b) ( 2 3O ), (c) ( z, 2, —,6 ), and (d)
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then w is parallel to u =(0, c—, b). This is now a one-
dimensional hopping problem, although with non-
nearest-neighbor hops. (In fact, with a =c, that is, with
two of the fiuxes P, P', and P, equal, we still have
only nearest-neighbor hops. } Thus, for instance, for
(P,P», P, ) =(—,', —,', —,'), u =2~(0, —

—,', —,'), and w

=2m(O, TI, ——', ) =2u. After 12 hops, the particle is back
to where it was. In contrast to the original Hofstadter
problem, the particle is now allowed to do a "double
hop, "jumping either one site or two sites at a time.

In general, the energy eigenvalues are given by the
equation

g(k+u)e "+g(k u—)e "+f(k)(2cosk» E)—
+g(k+w)e '+P(k —w)e '=0, (2.3)

where u and u are integral multiples of each other. For
(P,P', P, )=(p /q„, p /q„, p, /q, ), the number of sites on
the hopping circle is given by the lowest common denom-
inator of the three fractions.

We are thus able to study the general case of unequal
P„,P', P, not studied by Hasegawa. We would like to see,

for instance, how the many interesting results' obtained
by Hasegawa for (P, P, P) may be modified by moving
away slightly from the equal-Aux arrangement. We
would also like to study what happens when the three
Quxes are not close to each other in numerical value.

III. ENERGY SPECTRUM

In simple cases the energy spectrum of Eq. (2.2) can be
solved analytically. For example, for (a, b, c)=(—,', —,', —,'),
the spectrum is given by the solution of the equation

E —12E +6—3 cos4k„—3 cos4k —3 cos4k,

16sin k sin k, —16cos ky cos kz

+32cosk„sink cos(k, +k ) =0, (3.1)

which gives four energy bands [see Fig. 1(a)j. Each of the
bands touches the one directly above it (i.e., there is no
gap), and they are symmetric around E =0:
E =(—2~3, —~6), ( —~6,0), (0,~6),(~6,2~3), (3.2)

where the notation (E,E+) indicates that the band
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FIG. 2. The same as Fig. 1, but for (a) (2, 3, 4), (b) (P 3 24), (c) ( —,'0, —,'5 30) ( ) (2 4 32).
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runs from E to E+. We reach the edges of the band at
k„=—k~=k, =m/4. If we expand around the zero-
energy state in the long-distance limit, we again get the
Dirac equation. It would be interesting to generalize the
theorem proved for the two-dimensional case, ' which
would relate the number of Dirac zeros to the Aux values.

As another example, consider the case ( —,', —,', —,', ), which
is rather close to the value ( —,', —,', 0). In the latter case the
spectrum consists of two bands which touch each other
at zero energy: ( —2&5,0) and (0,2V 5). If now we
change slightly the Aux component from zero to 3o in the
z direction, we obtain 30 bands symmetric around E =0.
The bands all overlap except at E =0 when they touch
each other [see Fig. 1(b)]. The bandwidths are smaller
and the maximal energy is smaller then in the ( —,', —,', 0)
case. It is amusing to compare the energy bands obtained
for ( —,', —,', —,', ) and ( —,', —,', —,', ) plotted in Figs. 1(b) and 1(c).
The centers of the band show a rather different distribu-
tion. Further illustrative examples are shown in Figs.
1(d) and 2(a)—2(d).

We can see in Figs. 1(a)—l(d) and 2(a)—2(d) that, con-
trary to the two-dimensional case, the energy bands can
overlap or touch each other. We cannot, however, ex-
clude the existence of gaps in a general fiux state [see
Figs. 2(a)—2(d)].

With numerical diagonalization of the eigenvalue ma-
trix of Eq. (2.2), we can easily find the spectrum for arbi-
trary Aux states. The computer time available limits ulti-
mately the maximal value of q we can consider. In Figs.
3(a) and 3(b) we plot the center of the bands as a function
of p/q for symmetric fiux states of the form
(p/q, p/q, p/q) and for ( —,', —,',p/q) at all values p/q with

q (38 and q (30, respectively. It is remarkable that for
magnetic fields along the main diagonal of the cubic cell
in three dimensions the centers of the bands give the
same butterfly patterns in the energy-Aux plane as the
pattern of the energy bands found by Hofstadter in the
two-dimensional (2D) case. The spectrum of the three-
dimensional model in this case is closely related to the
spectrum of the two-dimensional model. It is interesting
to compare the patterns shown in Figs. 3(a) and 3(b). In
the more asymmetric case ( —,', —,',p/q), a gap appears
around zero energy, but in the remaining part of the plot
the usual pattern appears again. This rejects the fact
that in this case the lowest bands are broader than
2 X 1.142.

A striking feature of the clustering of the energy bands
in the 2D case is its self-similarity. It is visually sugges-
tive from Figs. 3(a) and 3(b) that the same self-similarity
pattern may remain valid also in the 3D case. Although
an exhaustive numerical study of this question would be
interesting, we restrict ourselves here only to a few com-
ments.

For the patterns given in Figs. 3(a) and 3(b) following
Hofstadter' we can define the skeleton of the graph and
we can introduce the concept of R and I. subcells given
by the trapezoidal boxes above and below the gaps be-
tween the "pure" values I/N and I/(%+1), where
N ~2. For the central parts one can again define the C
subcells. For the L+& and R+& subcells following Hof-
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stadter, we introduce the local variables

p'/q'=q/p —X, X ~2, (3.3)

0.0

which maps the subcell into a unit cell. If q and p are rel-
ative primes, then also p' and q' are relative primes.
Therefore, p'=q —Np and q'=p. The local variables of a
C subcell are given by the equation

r

—0.5
O

p~q=
q 2p

(3.4)

and therefore,

q =q —2q' . (3.5)
( I I I I I I I I I I I I I I I I I I I I I ) I

0 0 0 10 0 20 0 30 0.40 0 50

The division into subcells naturally given by the large
four gaps appearing in the butterfly pattern splits the
bands into three groups, and we have found from our nu-
merical analysis that it is an inherent property of the
spectrum given in Figs. 3(a) and 3(b) that the number of
the bands in these three groups at a given value of p/q
precisely matches the values required by the local coordi-
nates:

0.0

—0.5
O

q' —q
—q' . (3.6)

We conclude that the clustering property of the energy
bands found by Hofstadter in two dimensions remains
valid also in three dimensions at least for cubic cell diago-
nal [Fig. 3(a)] flux states. This leads to a recursive break-
down of the graphs of Fig. 3(a). A similar recursive
breakdown can also be established for the plain diagonal
case [Fig. 3(b)].

In the 20 case Hofstadter found a "nearly" isomorphic
map of the subcells into the unit cell with a linear stretch-
ing (rectangularization) at each local height, making the
effective width of the subcells the same as the width at
the same height of the initial unit cell. The result of such

—1.0

I & I I I I I I I I I I I I I I I I I I I I I I

0 0 0 10 0 20 0.30 0.40 0 50

FIG. 5. Total energy of the electrons as function of the elec-
tron filling v (a) for Aux states (0,0,0), (2, 2, 2), (3 3 3), and

io»S~ 30 '
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a simple linear map of the subcell L 2 [it is given by the
centers of the energy bands of Fig. 3(a) with E, (—2 at
heights —,

' ~p/q ~
—,
' ] are plotted as a function of the local

variables p'/q'. We can see that in three dimensions
such a simple map is not able to reproduce precisely the
starting pattern [see Fig. 3(c)]. The symmetry for posi-
tive and negative energies and the mirror symmetry
through the axis p/q =

—,
' are not yet restored. Since the

number of the points at a given height in all the subcells
are the same as the corresponding number in the initial
unit cell, the existence of such a simple linear map is not
crucial for the recursive breakdown of the graph.

We also investigated the density of states in various
Aux states. We reproduced the distributions found by
Hasegawa and calculated the densities in the more gen-
eral case of nonequal values of a, b, and c [see Figs.
4(a)-4(g)].

Investigating only configurations of the form (0,0,$),
(0,$,$), and (P, P, P), Hasegawa found that the total en-
ergy of the electrons can be lowered with respect to the
vacuum configuration. With our study of the general
configurations, we confirm Hasegawa's result that the
minimum value of the total energy, at the commensurate
filling v =P, is obtained for a magnetic field directed
along the main diagonal of the cubic cell (P,P, P) provid-
ed P~ —,'. The minimal energy is obtained for ( —,', —,', —,')
with half-filling. In Figs. 5(a) and 5(b) we have plotted
the total energy of the electrons as a function of the filling
factor for various Aux states in order to illustrate the
emergence of Hasegawa's result.

IV. SUMMARY

We have made an exploratory study of an electron
hopping on a three-dimensional lattice in an arbitrarily
oriented external magnetic Aux. We have pointed out
that the problem can be reduced to a one-dimensional
hopping problem in momentum space with a suitable
gauge choice. Contrary to the two-dimensional case,
there is no gap in the spectrum in the three-dimensional
case. If a field (p/q, p/q, p/q) is applied in the [111]
direction, the energy spectrum has a remarkable trace of
the two-dimensional case: The distribution of the centers
of the energy bands in the energy-Aux plane shows a pat-
tern similar to the butterfly pattern of the energy bands
of the two-dimensional case [Fig. 3(a)]. If the field is tilt-
ed between the main and plain diagonal directions keep-
ing the magnetic fiux P, P fixed ( —,', —,

' ), for the centers of
the bands there is a forbidden region around zero energy.
The trace of the two-dimensional structure can also be
seen in the density of states'" as zeros at some energy
values. Investigating numerous examples of general field
orientations, we confirm the result of Hasegawa that the
lowest-energy state is obtained for fiux state ( —,', —,', —,

'
) with

half-filling.
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