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Paramagnons in heavy-electron systems are theoretically examined. First, local spin fluctuations are
fully included in the best single-site approximation. A local Kondo temperature is uniquely defined to
show a characteristic energy scale of local spin fluctuations. Secondly, paramagnons are included per-
turbatively. Such a theory is applied to analyze the specific-heat data of heavy-electron compounds such
as UA12, UPt3, and CeSi, „, where anomalous T'ln T terms are observed at low temperatures
T( 10 K. It is argued that not only paramagnons but also local spin fluctuations are responsible for the
low-temperature specific heat and that paramagnons are responsible for the anomalous T'lnT terms.

I. INTRODUCTION

A certain class of lanthanide- and actinide-based corn-
pounds are called heavy-electron compounds, because
their properties at low temperatures can be explained in
terms of a Fermi liquid of extremely heavy quasiparti-
cles. ' Besides the large mass enhancement, they can
also be characterized by the competition between the
Kondo effect and the Ruderman-Kittel-Kasuya-Yosida
(RKKY) exchange interaction or by the competition be-
tween local and inter site spin fluctuations. Recent
neutron-scattering experiments have clearly demonstrat-
ed the coexistence of both spin Auctuations. ' A variety
of low-temperature phases, such as normal Fermi liquids,
superconducting states, and magnetic states, is easily un-
derstood if the competition is in a critical situation.
When the RKKY exchange interaction is stronger than
the Kondo effect, a compound should be paramagnetic,
that is, a normal Fermi liquid or superconducting. Oth-
erwise, it should be magnetic at low enough tempera-
tures.

Because the number off electrons per ion is very close
to integer in any heavy-electron compound, they are also
characterized by near localization of f electrons. It is
reasonable that spin fluctuations are almost local as
demonstrated by neutron scattering. ' The large
effective mass should be mainly due to local spin Auctua-
tions, because their amplitude is large in the whole Bril-
louin zone, while the amplitude of intersite spin Auctua-
tions is large only in a small part of the Brillouin zone.
Therefore, it is expected that the single-site Kondo effect
is a good starting point to include local spin Auctuations
in certain heavy-electron compounds. Such compounds
are generally called Kondo lattices. Various treatments
have already been proposed such as various extensions of
results of the single-site Kondo effect, the Gutzwiller
method, ' and auxiliary-particle (or slave-boson)
method. "

By taking into account near localization, our strategy
is similar to previous theories based on a single-site pic-
ture. First, a heavy-electron liquid is constructed in
the best single-site approximation (SSA) of the periodic
Anderson model. The best SSA turns out to be the same

problem as solving the corresponding Anderson model in
both the real- and auxiliary-particle methods. However,
this auxiliary-particle theory is distinct from the previous
auxiliary-particle theories, " ' because auxiliary parti-
cles themselves are confined and localized as discussed in
Secs. II and V. Local spin Auctuations are fully included
in the best SSA, and a local Kondo temperature Tz is
uniquely defined to show an energy scale of local spin
fluctuations or the bandwidth of heavy electrons.
Second, exchange interactions are included perturbative-
ly. If the exchange interactions are sufficiently small
compared with Tz, the perturbative treatment should be
valid. The essentially same formulation, or its simpler
version, has already been applied to magnetoresistance'
and metamagnetic transitions' of heavy-electron sys-
tems, and to anomalous normal-state properties' and su-
perconducting properties' of high-temperature (high-T, )

Cu02 superconductors. In this paper another application
is made to paramagnons in heavy-electron systems.

In several heavy-electron compounds such as
UA12, ' ' CeSi2, and Upt3, ' their specific heat at
low temperatures such as T (10 K can be fitted in the
well-known form predicted by the paramagnon
theory 22& 23

C PT =yT —5—T ln +.3= SF

T

where the term PT assigned to the phonon contribution
should be subtracted from the observed specific heat C.
Experimental y, 5, and TsF are listed in Table I. An en-
ergy scale Ts„ is called the spin-fluctuation temperature
of paramagnons. Because it is difficult to avoid small er-
rors in subtracting the phonon contribution in Eq. (1.1),
there must exist a small ambiguity in numbers of TsF list-
ed in Table I.

It is certain that a part of the specific heat below TsF,
not only the anomalous logarithmic term, but also the
large specific-heat coefficient y, should be due to
paramagnons, as argued by many groups. ' '
However, there are no microscopic arguments on the
competition between paramagnons and local spin Auctua-
tions.
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TABLE I. Observed y, 5, and TsF, of UA1&, CeSi] 85, and
UPt3.

UA12
(Ref. 19)
CeSi) 85

(Ref. 20)
UPt3

(Ref. 21)

y
(expt. )

[mJ/(mal K )]

150

240

420

5
(expt. )

[mJ/(mal K )]

1.6

0.7

1.4

TsF
(expt. )

(K)

15

In typical Kondo lattices such as CeB6, CeCu6,
CeSi2Cu2, and so on, the electrical resistivity shows the
well-known logarithmic increase in decreasing tempera-
tures above local Kondo temperatures. However, no log-
arithmic increase has been observed in UA12, CeSi, 85,
and UPt3, which are tentatively called spin fluctuators in
this paper. Then it may be argued that Kondo lattices
and spin Auctuators are qualitatively different in the na-
ture of their electron correlation, as suggested by the log-
arithmic term of the resistivity. However, it may also be
argued that they are qualitatively the same and that the
difference is only quantitative. For example, it can be ar-
gued that Tz is lower than TsF in K.ondo lattices, while

Ts„ is lower than Tz in spin Auctuators. In any event, f
electrons are almost localized in both classes of heavy-
electron compounds, and f electrons are a little more

itinerant in spin Auctuators than in Kondo lattices. To
make a definite conclusion on this problem, both local
spin fluctuations and paramagnons should be examined in
a unified theoretical framework.

The purpose of this paper is to examine the specific
heat of heavy-electron systems by including explicitly
both local spin Auctuations and paramagnons. The plan
of this paper is as follows: A new formulation in treating
near-localized magnetism is presented in Sec. II. The
theory is applied to paramagnons in heavy-electron sys-
tems in Sec. III. The observed specific heat of heavy-
electron compounds is analyzed in Sec. IV. The
difference between the other auxiliary-particle theories
and the present theory is discussed in Sec. V. The paper
is summarized in Sec. VI.

II. FORMULATION

A. Single-site approximation

Because heavy-electron systems have already been in-
vestigated in auxiliary-particle models, " ' we will also
take an auxiliary-particle model to see the relation with
other theories. Because auxiliary particles are just auxili-
ary, various auxiliary-particle models are possible. If the
mapping between a real- and auxiliary-particle models is
rigorously treated, however, they give the same results.
Here we follow Barnes, but we take a model with a
slight modification to treat the mapping rigorously. The
periodic Anderson model with a single f band is mapped
to

( op~H5—,J+t„;J.)c„.; c„j + g(ef po+H)a; a; + +pe, e,
n, ij, o. io l

+ g(2Ef —p+U)d;d;+ g V„; (c„; f +ft c„, ) QAQ;+ —,'U„—g(Q; —1) (2.1)

with

(2.2)

and

Q; =a;ta;&+a;"&a;&+e; e, +d, d, , (2.3)

where a;, e;, and d; are creation operators of auxiliary
particles, with site i and spin o', c„; a creation operator
of a conduction electron with band n, site i, and spin o',

ef the depth of f levels; p&H infinitesimally small Zee-
man energy; U the on-site repulsion; and p the chemical
potential of electrons. Two or more than two conduction
bands are assumed to make the system metallic without
fail.

In this paper auxiliary particles are called a particles e
particles and d particles. Sites occupied by f electrons
are mapped to sites occupied by a particles, empty f sites
to sites occupied by e particles, and doubly occupied f
sites to sites occupied by d particles. Two types of statis-
tics are possible in (2.1). In one method a particles are

for any site i. Therefore, different subspaces [Q; } are dis-
joint to each other, unless the local gauge symmetry is
broken. The mapping is rigorous only if the Hilbert
space is restricted to

I Q,. = 1 for any sites I, (2.5)

in (2.1). Therefore, the local gauge symmetry should nev-
er be broken. If the restriction (2.5) is rigorously taken
into account, any auxiliary particles are confined in the
sense that no single particle excitations of-auxiliary parti
cles are possible. In order to argue their single-particle

fermions, while e and d particles are bosons. In the other
method, a particles are bosons, while e and d particles are
fermions. The former method is used in this paper. Be-
cause f electrons themselves are mapped to fermionic
pair excitations created by f;, they are called fermionic
excitons or simply f electrons.

It is obvious that there exists a local argued symmetry

(2.4)
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excitations, the Hilbert space should be extended to

[Q;Wl for some sites] .

Then the chemical potential X of auxiliary particles can
be introduced in (2.1) to satisfy

(2.7)

with

E„(k)=—g t„;~e xp[ik (R; —RJ )] op—sH .
1

lJ

Other Green functions are given by

Gf (ie, k)=G„f (iE,k)

(2.16)

(2.8)

for a particles,

E(o)(i ) = 1

Leo+A p
(2.9)

with (Q; ) the thermal average of Q; and N the number
of lattice sites. However, the Hamiltonian should be
defined properly in the extended space (2.6) in order to
exclude unphysical states and Auctuations. The last term
with U /U —++ ~ has been introduced in Eq. (2.1) to
exclude unphysical states and fluctuations. Therefore, for
example, either ( a; a ) with i Aj, ( e; ej ) with i Wj, or
(d; d ) with i' can never be finite because of the local
gauge symmetry (2.4). It means that auxiliary particles
themselves are localized in the sense that single-particle
Green functions of auxiliary particles are site diagonal.

Bare single-particle Green functions of auxiliary parti-
cles for V„; =0 and U =0 are given by

and

=C„(ie,k) V„(k)Gff (ic,, k) (2.17)

G„(iE, k) =5„C„(i8, k)

+C„(iE,k) V„(k)Gff (iE, k)

X V (k)C (iE,k), (2.18)

Let us examine K (ie, k) in the perturbative treatment
of V„; - and U . All the skeleton diagrams are included,
but the summation is restricted to the single-site diagrams
in the SSA. In any skeleton single-site diagram, lines of
auxiliary particles have the same site index in a diagram.
Therefore, K (is, k) is independent of k as
K (is, k)=K (ie) in the SSA. By following the usual di-
agrammatic method, every internal line is replaced by its
renormalized line.

To sum up all the diagrams of K (ie) in the SSA is the
same problem as solving a certain single-site Anderson
model:

for e particles, and

D"'(iso) = .
1

i&+A —2cf+P —U
(2.10)

&= g ( opiiH5;J+t;, —)c, c~
lJ, O'

+ g (Ef op&H)a & +—pe e+(2Ef —p+ U)d d

for d particles, respectively. Because they are localized,
any single-particle Green functions of auxiliary particles
are independent of sites or momenta.

Itinerant excitations are pair excitations such as fer-
mionic excitons: with

+ g P'; (c; f +f tc; ) AQ+ —,'U„(Q ——1)

(2.19)

1/T
Gff (ic,k)= g dre p[xi Erik (R; —R )]G; (r),

0

(2 11) and

f t =ea t+oa (2.20)

with

(2.12)

Once the irreducible functions K (ie, k) have been ob-
tained, Green functions of fermionic excitons or f elec-
trons are given by

Gff (iE,k)= K '(ie, k) —g V„(k)C„(ie,k)

(2.13)

with (2.22)

Q =& t&a t+ a ta &
+e e+d td, (2.21)

where c;,&, e, and d are creation operators of con-
duction electrons, with site i and spin 0., and auxiliary
particles, respectively. The parameters p, A, , cf U H,
and U in Eq. (2.19) are the same as in the periodic mod-
el (2.1). The statistics of auxiliary particles is also the
same between (2.1) and (2.19). Then we can write down
each diagram of the irreducible function k (ic, ) of local-
ized fermionic excitons or f electrons defined by

G (iE)= —J dre'"(T f (r)f ) .
0

V„(k)=—g V„, exp[ik. (R; —R )]
1

1J

C„(is,k)= .
1

is+a —e„k

(2.14)

(2.15)

(2.23)

with

Once all the diagrams of E ( i E ) have been summed up,
(ic.) is obtained as

P' (k)
G (ie)= k '(ie) ——g iE+p —s, (k)



PARAMAGNONS IN HEAVY-ELECTRON SYSTEMS 6815

s, (k)= ——g t," exp[ik (R, —R )] o—pgH
LJ

and

P' (k) = g P; exp[ik (R; —Ro)],

(2.24)

(2.25)

with Ro the impurity site.
Bare Green functions of auxiliary particles are the

same between the two models. Therefore, it is easy to see
that K (iE)=If (i E) if each line of renormalized conduc-
tion electrons in the impurity model is the same as a line
of renormalized conduction electrons in the periodic
model. The self-consistent condition of the SSA is

with

L (iE) =R (iE),
1 IC —(ie)L (ie)

(2.26)

~'(k)
L (iE)=—gN k iE+p —f, (k)

in the impurity model, and

(2.27)

I

=Im —gG (e+;0 k)
k

'(s+iO)

(2.29)
should be determined self-consistently in the Anderson
model (2.19). It is easy to see that the results do not de-
pend on statistics of auxiliary particles.

Equation (2.26) or (2.29) is also equivalent with

G (ic)=—QGff , (ie, k) .~ =1 (2.30)
N

This is nothing but the SSA in the perturbative treatment
in terms of U of real-particle models. Let us consider the
self-energy X (iE), which is related to K (iE) as

X (ie) = —K '(is)+i E+p e/+ o p—~H . (2.31)

All the skeleton diagrams of X (is} are included in the
SSA. In the SSA, however, the site indexes of the in-
teraction lines U are restricted to the same site in a dia-
gram. As a consequence, internal lines of electrons turn
out to be site-diagonal lines. By following the usual di-
agrammatic method, each internal line is replaced by its
renormalized line. Equation (2.30) requires that renor-
malized site-diagonal lines of the periodic Anderson mod-
el should be exactly the same as renormalized lines of the
Anderson model. Therefore, to calculate X (ic, ) in the

1
R (iE) —=g g V„(k)G„(iE,k)V (k), (2.28)

k nm

in the periodic model. Equation (2.26) shows what An-
derson model should be solved self-consistently in the
SSA. Therefore, not only K (iE)=E (ic) should be
solved, but also the hybridization matrix defined by

b, (E):~ +5(E—+p——f, (k))V (k)
k

R (E+iO)= —Im I+K (E+iO)R (e+iO)

SSA is the same problem as to calculate not only X (iE),
but also b, (is) self-consistently in the Anderson model.
It is quite trivial that the self-consistent condition of the
SSA does not depend on U, because U appears only
in the auxiliary-particle model. It is straightforward to
see that even if any auxiliary-particle model is taken, the
same self-consistent condition of the SSA as Eq. (2.30) is
obtained.

Because the ground state of any impurity Anderson
model is a normal Fermi liquid, the ground state in
the SSA is also a normal Fermi liquid. By using the re-
sults of the Anderson model, ' X (i s) can be expanded
as

2 (i E) 2=0+(1—P )is+( I —P, )crp~H

—(1 —P, )b,e/+ (2.32)

ko.

+ g G„„(+iO,k)

(2.34}

with b, s/ infinitesimal variation of E/ for ~ic,
~

&& Tx, and

~p&H ~
&& Tx, where Tx is the local Kondo temperature

which shows a characteristic energy scale of local spin
Auctuations or the bandwidth of heavy electrons. Ac-
cording to Refs. 28 and 29,

vrh. (0)
TK (2.33)

m

with P = —,'exp[ U/mb, (0)] for the symmetric Anderson

model with U/orb, (0)~+ ~ and n/=1, n/ being the
number of f electrons per site. In an asymmetric Ander-
son model with U/mb, (0)~+ oo and n/ & 1,

=(m /8)/(1 n/). —As long as P »1, a heavy-
electron band is formed at the chemical potential.

Equation (2.30) shows that the density of states of f
electrons in the SSA is the same as that of the impurity
model. Therefore, it is obvious that the density of states
of f electrons has three peaks in the SSA. One is a
broadband around c& below the chemical potential, and
another is a broadband around c&+ U above the chemical
potential. The other is the heavy-electron band at the
chemical potential.

It is also straightforward to apply the best SSA to the
Hubbard model, the real-particle Hubbard model, or any
auxiliary-particle Hubbard model. ' ' To calculate
X (is) of the Hubbard model in the best SSA is the same
problem as to calculate not only X (is), but also b(iE. )

self-consistently in the Anderson model. The self-
consistent condition of the SSA is that, in the expression
of the real-particle model, renormalized site-diagonal
lines of the Hubbard model should be exactly the same as
renormalized lines of the Anderson model. Therefore,
the existence of conduction electrons is not necessarily
relevant for the formation of heavy electrons.

By following Luttinger, it can be proved that the
Fermi-liquid relations should be satisfied within the SSA.
The specific-heat coeKcient is given by
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with k~ the Boltzmann constant. The Fermi-surface sum
rule at T=O K is given by

BKt '(iE)
I ~(EE, l eo =0)=

d(piiH )
(2.39)

n =—g ——Im ln[ —1/Gff (+iO, k)]
1 1

k

+ g ln[ —1/C„(+iO, k)]

(2.35)

in the limit of small transferred frequencies. By using the
isotropic property in the absence of magnetic fields,
I,=P, can be used even for transverse processes. Simi-
larly, vertex functions to charge-charge couplings are
given by P, . However, P, is much smaller than P„ that
is, P, (( I ((P, in strong correlation regime. The Wilson
ratio is almost as large as 2;

the spin susceptibility at T =0 K by

y',"(i~=0, ~q~ 0)
S

(2.40)

B(n
&

n(—)

B(p H)

1 1
Im Q, Gff (+iO, k)

ko.

as long as charge Auctuations are so suppressed such that
P, « l.

As far as we are concerned with low-energy phenome-
na, Green functions of electrons can be approximately ex-
pressed as

+ g 6„„(+iO,k), (2.36)
(2.41)

and the charge susceptibility at T =0 K by

y',"(iso=0, ~q~~0)
and

Gf„(iE,k)=G„f (iE,k)

= I'„(k)Gff (iE,k), (2.42)

B(nt+ni)
a(~&)

Im p, Gff ( + i0, k )
1 1

ko

+ g 6„„(+iO,k) . (2.37)
and

Y„(k)= V„(k)C„(+iO,k)

Z (k)=P + g Y„(k)=P

6„(iE,k) = I'„(k)I' (k)Gff (iE,k),
with

(2.43)

(2.44)

(2.45)

In the auxiliary-particle model, perturbations are not ap-
plied to f electrons, but to auxiliary particles. Therefore,
vertex functions should be evaluated to argue low-energy
phenomena in terms of f electrons. Vertex functions can
be obtained by taking the derivative of the Green func-
tions off electrons:

E* (k) =Re(z ), (2.46)

where z is the pole defined by

Here E* (k) is the dispersion relation of heavy electrons
defined by the real part of the ath pole of Gff (iE,k):

BGff&(ie, k) dIC t '(iE)

a(i,a) ff' ' a(i.,H )
= —G &(iE, k) (2.38) 1/Gff (z k) 0 (2.47)

Therefore, vertex functions to exchange interactions are
given by

Dynamical spin susceptibilities off electrons are approx-
imately obtained as

pf (&'co, q)= ——g T g $,6ff (iE+ico, k+ ,'q)Gff (iE, k —,'—q)—
ako. i c

= W II(iso, q), (2.48)

with
f(E* (k —q/2)) —f(E* (k+q/2))

II(ice, q) =—g E* (k+q/2) —E' (k —q/2) —ice

the polarization function of heavy electrons with

(2.49)

f(E)= 1

exp( E/T ) + 1
(2.50)

Interband contributions have been ignored in Eq. (2.48),
because we are concerned with low-energy phenomena
such as ~ice~ «Tx. The contribution by conduction elec-
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trons is small enough to be ignored in strongly correlated
systems. In the limit of (o=O and ~q~ ~0, the real part of
Eq. (2.48) is about W times as large as the first term of
Eq. (2.36), which is rigorous within the SSA. The present
method will give the correct magnitude as far as we are
concerned with the co-linear imaginary part, because
Shiba's argument for the impurity Anderson model is
also applied to the periodic model. Therefore,

1y= n—kj) ~K
(2.57)

TK 3 F (2.58)

in the Kondo eff'ect with Kondo temperature f'z the local
Kondo temperatures TK is approximately given by

yf(o)(co+ iO, q) = 8' Re[11(co+iO, q) ]

+iW 1m[II((o+iO, q)] (2.51)

will be used as the susceptibility due to f electrons.
The specific-heat coefficient y„, given by Eq. (2.34) is

simply expressed by

The susceptibility due to f electrons is expanded as

gf '(co+iO, q)
2

=28'p*(0) . 1+r 1

3 2kF

+i+8 +
AVFq

(2.59)

r )..= ~'kap'(o»2
(2.52) with

with

p'(E)= —+5(e—e' (k)),1

ak
(2.53)

the density of states of heavy electrons. When we assume
a single band of heavy electrons with the dispersion rela-
tion given by

m* (2.60)

the renormalized Fermi velocity. Because the Fermi-
liquid relation [Eq. (2.36)] tells nothing about the expan-
sion coeScients of the real part for Qnite ~ and finite q, a
numerical factor r of the order of unity is assumed in Eq.
(2.59). The imaginary part of Eq. (2.59) vanishes outside
the regime of

fi ke'(k) = +const,
2@i

(2.54)

the density of states at the chemical potential is given by

q q
2fikFvF 2kF 2kF

(2.61)

p'(0) =—3 1

4 kBTF
(2.55} B. c-f and RKKY exchange interactions

Therefore, the specific-heat coefBcient due to local spin
fluctuations is given by

=—w2k
1

k
1

Floe 2
~ B (2.56)

in this simple model. Because the specific-heat coeScient
is given by

Local spin fluctuations are fully included in the best
SSA. However, any intersite couplings between local
spin fluctuations are ignored in the SSA. Therefore, the
SSA is nothing but the random-phase approximation
(RFA} in real space. Intersite couplings are examined in
this subsection. The c fexchange in-teraction can be de-
rived by the virtual exchange process of a single e or d
particle. ' ' The matrix element is given by

y y y y (J(i;nj, mj')+ J(i;nj, mj')}( ) ap)( i rS)(( t t ))
nm ijj' g ap

y5

(2.62)

with

0
0 x 0

0
0 i 0

1 0
and 0' 0 —1

g(i nj mj') 4V V D(0)( g)d nJ, I mj, / J

1
nj, i mj ', i P Ff

(2.65)

and

'= —4V V ' E' '(E —
A, )e nj, i mj ', i f

1=—4vnj, VmJ-
P cf

(2.63)

(2.64)

Operators in the double brackets, have been shown in Eq.
(2.62) to show outgoing and incoming particles. Any
charge-charge couplings have been ignored in Eq. (2.62).
The c-f exchange interaction (2.62) due to virtual ex-
change of a confined and localized e or d particle is dis-
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tinct from quasiparticle interactions due to virtual ex-
change of itinerant auxiliary particles, that is, effective
hybridization fluctuations" or density fluctuations.

The second-order perturbation of the c fe-xchange in-
teraction gives the RKKY exchange interaction between

I

a particles:

JRKKY(i', q) =J;„„,(i', q)+J;„„,(i', q) —Jo(i'),
(2.66)

where

f(e* (k —q/2)) —f(e' (k+q/2))
J;„„,(i co, q) = —g M(k, q)

4P & i, E' (k+q/2) —E" (k —q/2) —iso

with

(2.67)

M(k, q)=16 g V„(k+—,'q)Y'„(k+ —,'q)V (k —
—,'q) Y (k —

—,'q), (2.68)

is the intraband contribution, while J;„„,(iso, q) is the in-
terband contribution. The on-site parts of the cfex--
change interaction have already been included in the
SSA, because what realize heavy electrons are nothing
but its on-site parts. Therefore,

Jo(i co)=—g[J;„„,(iso, q)+J;„„,(iso, q) ]
1

N
(2.69)

has been subtracted in Eq. (2.66) in order to exclude the
on-site contribution, and

g JRKKY(i~ q) =o ~

q

(2.70)

If the nesting of the Fermi surface is significant, which
gives a large peak of J„„KY(o,q) at finite q, J„K„Y(0,0)
can be negative. However, it is obvious that

JRKKY(0& 0) (2.71)

in two or three dimensions, if the dispersion relation Eq.
(2.54) is assumed. Therefore, it is likely that the homo-
geneous part of the exchange interaction is positive in
many compounds. Positive JRKKY(0, 0) can cause the
paramagnon effect. It should be noted that

J;„„,~ I/P and J;„„,~ ( I/P ) (2.72)

JRKKY(~+

because excitations with large energies contribute to the
interband term. If the interband contribution can be ig-
nored, the RKKY exchange interaction is approximately
proportional to local Kondo temperature. Therefore,
one-parameter scaling ' in the metamagnetic transition
of CeRu2Si2 can be easily explained, if the RKKY ex-
change interaction comes mainly from intraband contri-
butions.

By assuming the dispersion relation of heavy electrons
given by Eq. (2.54), JRKKY(co+io, q) can also be expand-
ed for small co and q as

with j a numerical constant of the order of unity. Here
the dependences of the interband term J;„„„(co+io,q) on
co or q have been ignored.

III. SPECIFIC HEAT DUE TO PARAMAGNONS

By treating the RKKY exchange interaction in the
conventional RPA in momentum space, the dynamical
susceptibility can be calculated as

gq '(~+io, q)
y, (co+io, q) =

1 —
—,
' JRKKY(co+iO, q)yf '(co+iO, q)

(3.1)

Therefore, the stability condition of normal heavy elec-
trons against magnetism is given by

—,
' JR„KY(o,q) (TK, (3.2)

y, (o, lql o) = 2 ''(0)
1 —o,

(3.3)

with

for any q by using Eqs. (2.55), (2.58), and (2.59). In the
zeroth approximation JRKKY(o, q) is roughly proportion-
al to Tz, as can be seen from Eq. (2.72). Therefore, nor-
mal heavy electrons must be more stable than predicted
by previous theories. ' The stability of normal Kondo
lattices depends on band structure or the nesting of the
Fermi surface. The renormalization of heavy electrons in
the SSA by intersite spin fluctuations is relatively small,
as long as Eq. (3.2) is satisfied. Therefore, the RPA in
momentum space is valid in the regime (3.2). The static
homogeneous susceptibility can be expressed as

qJRKKY(0&0) ' 1 J"
F

CO+imjW +
AvFq

'2

+
AVFq

2

(2.73)

&=—'JRKKY(o 0)IVV'(0) . (3.4)

In the RPA, as in the original paramagnon theory,
the correction to the free energy by the RKKY exchange
interaction is calculated as
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b.Q( T)= f— d co coth
+ oo co 1 1 (0)

OO 2k~ T 2m.lV 4g Im ln 1 ——J„~xY(co+iO,q)yI (co+iO, q) (3.5a)

AVFq

coth
4~3

(ir/2)( W/r)(co/fiuFq )
dqq tan

A + ,'(q/—2kF ) + (co/fiu~q )
(3.5b)

with

1 —aA=
a(1 +j )r

(3.6)

The inverse of A can be regarded as an enhancement factor. The factor —', in Eq. (3.5) comes from the contributions of
the longitudinal spin Auctuations as well as the transverse spin Auctuations. It can be easily seen from the susceptibility
(3.3) that when the system is very close to ferromagnetic instability, the factor A is much smaller than unity.

Because of Eq. (2.70), the real part of JRxKv(co+i 0,q) can never be positive in the whole region of the Brillouin zone.
The integration over q in Eq. (3.5a) can only have significant contributions in the region where Re[Ja~Kv(co+ iO, q)] is
positive and spin Auctuations are well developed. Therefore, the cuto8'of the momentum integration is naturally intro-
duced in Eq. (3.5a). The feature is in clear contrast with the cutoff q, =2k in the original paramagnon theory. Be-
cause expansion forms are used, however, a phenomenological cutoff q, is introduced in Eq. (3.5b). In Eq. (3.5b) the in-
tegration over q should be restricted, at least to the region where Re[JR+~Y(co+ iO, q) ] is positive. For example,

q,
y, =— =0.5,

2kF
(3.7)

if it is assumed that there exists a single Fermi surface and that Re[JRK&v(co+iO, q)] is positive in about a half of the
Brillouin zone around q=0. Because it depends on band structure, the cuto6'q, or y, is left as a parameter to be deter-
mined experimentally in the present paper.

The upper limit of the co integration and the lower limit of the q integration in Eq. (3.5b) come from the restriction
that the imaginary parts of Eqs. (2.59) and (2.73) are nonzero in the region of Eq. (2.61). Because the main contribution
of Eq. (3.5) comes from the region

«1,
FUF

Eq. (3.8) is assumed to set the lower limit of the q integration.
The specific heat due to paramagnons is given by

b, C 8 EQ(T)
T aT2

(3.8)

RvF g (ir/2)( W/r)(cu/fiu~q )

A +—,'(q/2kF) +(co/fwFq)
(3.9)

with

d 2G (x)=2x g (x)+x g (x),
dx dx

with

g(x) = 1

exp(x) —1

By making use of relations

f dx xG(x)=
0 3

(3.10)

(3.11)

(3.12)

be calculated as

AC TSF=y —5T ln +T ~ T
with

9 8' ~ a yc2k 2

ln 1+y 1 1+

the linear specific-heat coeKcient,

T =HA iT*
SF F

(3.14)

(3.15)

(3.16)

and with 0 a constant of the order of unity, which depends on
y, and A, and

f "dx x'G (x)=
0 5

(3.13)

the asymptotic form of Eq. (3.9) at low temperatures can

3~ 8' 8' 122 ka
160 p. p ~2 T3

(3.17)
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and

y =6.15X10 MJ/(molK )
4 1c 8'

P T r

51c= 1.23 X 10 m J /(mol K ),T (4.2)

y =270 mJ/(molK ), (4.7)

ignoring the contributions of antiferromagnetic Auctua-
tions, which are observed by neutron scattering. Equa-
tion (4.6) gives

3

mJ/(molK )5=1.50X10'
T3 r

6=1.20X10 mJ/(molK"),
T3

(4.3)

TI'; =270 K or T~ =90 K,
and Eq. (4.7) gives

T
; =460K.

&c

(4.8)

(4.9)

where
2 2r 2 «1, and «1

3A
(4.4) T =95K. (4.10)

Qn the other hand, the experimental 6 about 1.4
mJ/(molK ) gives

y&„=150 mJ/(molK ) (4.6)

I

UF't 3

~ 0.4~
O

L 0.3—E

+ 0. 2 —~

are assumed.
What should be first in analyzing the experimental data

is to divide the observed y listed in Table I into y&„and
y . We will do it crudely. For example, Fig. 4 shows the
experimental C/T as a function of T of Upt3. ' As dis-
cussed below, impurities suppress the logarithmic term.
Therefore, the phonon part hC t, /T =13T with

P=0. 8 mJ/(molK ) (4.5)

is assumed from alloyed compounds UPt3 Pd . By
taking into account that b C /T due to paramagnons at
Ts„ is about a half of b, C/T at T =0 K, as shown in Fig.
3, we can draw a dashed line in Fig. 4, which is assumed
to be the sum of y&„and b, C h/T =PT Then we.obtain

From Eqs. (3.18) and (4.8)—(4.10), the parameters in the
paramagnon theory are calculated as

A =0.35 and y, =0.46 . (4.11)

From the values of 3 and T, the spin fluctuation tem-
perature is calculated from Eq. (3.23) as

TsF~ 15 K (4.12)

by assuming 0=0.2. This number is listed in Table II,
and it should be compared with the experimental number
of Ts„=15 K listed in Table I. The same analysis can be
made for UA12 of Ref. 19 and CeSi& 8~ of Ref. 20. Figure
5 shows the experimental C/T as a function of T of
UA12. ' The estimated numbers are also shown in Table
II.

Many features should be included to make analyses of
the specific heat in detail such as band-structure effects,
the specific heat due to antiferromagnetic spin Auctua-
tions, the term of the specific heat proportional to T due
to local spin fluctuations, and so on. However, the analy-
ses give an agreement between the experimental TsF and
theoretical TsF, in particular, for CeSi& 85 and UPt3. The
experimental values of y, are not inconsistent with a
rough value given by Eq. (3.7). Therefore, it is likely that
paramagnons are responsible for the observed T lnT
term of CeSi& 85 and UPt3, and that they are at least re-
sponsible for a part of the upturn of the specific heat at
low temperatures of UA12.

The energy scales are difFerent between local spin Auc-
tuations and paramagnons as

TsF«T„* . (4.13)
I

100
I

200
T (K)

300 400

FICx. 4. Specific heat C/T of UPt3 as a function of T . The
solid line is an experimental result of Ref. 21, and the dashed
line is assumed to be due to local spin Auctuations and phonons,
y&„+pT, where p=0. 79 mJ/(molK ) is taken from alloyed
samples UPt3 Pd of Ref. 39. Then the linear specific-heat
coefficient y is divided into y&„due to local spin Auctuations
and y~ due to paramagnons.

This implies that typical Fermi-liquid behaviors can only
be expected below TsF = 10 K and that spin fluctuations
of paramagnons should behave like localized moments
above TsF, for example, in the nuclear magnetic relaxa-
tion rate. The situation seems to be similar to antiferro-
magnetic fluctuations in the high-T, Cu02 superconduc-
tors, where typical Fermi-liquid behaviors can only be ex-
pected below a characteristic temperatureT, =100 K of
antiferrornagnetic fluctuations. '

In actual spin Auctuators, the logarithmic T lnT term
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TABLE II. Estimated parameters according to the present theory. The theoretical T» in this table
should be compared to the experimental T» in Table I.

UA12
CeSi& 8s

UPt3

7 loc

[mJ/(mol K )]
~ 50
= 100
= 150

Vp
[mJ/(mol K )]

= 100
= 140
=270

820
410
270

Tp

(K)

91
120
95

0.11
0.29
0.35

3'c

0.27
0.37
0.46

TSF
(K.)

6
13
15

270
140
90

is suppressed at low temperatures much below Tsp. In
particular, the suppression is almost perfect in alloyed
compounds such as UPt3 „Pd (Ref. 39) and
UA12 „Pr„.' It has already been pointed out that im-

purities suppress the logarithmic term.
The fitted parameters listed in Table I depend on fitted

regions of temperatures. When data are fitted at lower
temperatures and as long as the logarithmic term is ob-
served, the fitted 5 is higher, while the fitted Ts„ is lower
for UAlz. ' This tendency implies that the suppressions
of the logarithmic term by impurities appears before low
enough temperatures are reached for the asymptotic ex-
pression. If the temperature regions are restricted to a
narrow region, even the theoretical results in Figs. 1 and
2 can be approximately fitted by another logarithmic
dependence with slightly different parameters even above
T&0.3TsF. The main origin of a small difference be-
tween fitted and theoretical Ts„ is presumably due to the
fitted region of temperatures, whose lower limit is
presumably restricted by the suppression due to impuri-
ties.

In the present theory, JR~&Y(0,0) is approximately
scaled with Tz. Therefore, it can be expected that one-
parameter scaling ' should be approximately satisfied
even in paramagnon effects. It is interesting to examine
experimentally paramagnons under pressures, which can
make Tz high.

It is likely that JR~&v(0, 0) is positive in many heavy-
electron compounds. Therefore, it is likely that paramag-

~ 200
0
E

E t00-

I I

)00 200 300
( v')

FIG. 5. Specific heat C/T of UA1& as a function of T . The
solid line is an experimental result of Ref. 19, and the dashed
line is assumed to be due to local spin fluctuations and phonons
yh, +PT, with P=0.2 m J/(mol K ) from Ref. 19.

nons also play roles in many heavy-electron compounds.
However, no observations of the logarithmic term have
been reported for typical Kondo lattices with very low lo-
cal Kondo temperatures of the order of T~ =10 K. This
is reasonable, because low local Kondo temperatures im-
ply much lower spin-fluctuation temperatures Ts„of
paramagnons. A simple scaling of energy scales gives
Ts„=0.2 K for Tz =10 K. It is interesting to examine
experimentally the specific heat below 0.1 K of very clean
typical Kondo lattices such as CeCu6.

Actually, CeSi2 shows ferromagnetism for x )Q. 17.
Therefore, it is certain that paramagnons are responsible
for the low-temperature specific heat of CeSi2 „. Be-
cause estimated numbers of the cutoff (q, /2k~) are not
small for UA12, CeSi, 85, and UPt3, ferromagnetic spin
fluctuations of paramagnons should be rather extended in
the Brillouin zone. It is interesting to observe directly
such ferromagnetic spin fluctuations by neutron scatter-
ing, although their characteristic energy is as small as
kz TsF =1 meV.

The resistivity due to local spin fluctuations obeys the
T law much below Tz, it has a peak around Tz, and it
obeys the well-known logarithmic law above Tz. Be-
cause the backward scatterings have the main contribu-
tion to the resistivity, the effects of paramagnons are
small for the resistivity. On the other hand, the effects of
antiferromagnetic fluctuations can be large, even if they
are only developed in a narrow region of the Brillouin
zone. If their energy scale T, is as small as Tz, the resis-
tivity at low temperatures should be mainly due to anti-
ferromagnetic spin fluctuations. In such cases, therefore,
it is presumably di5cult to observe the well-known loga-
rithmic dependence in the raw data of resistivity. It is
likely that the resistivity of UPt3 is mainly due to antifer-
romagnetic spin fluctuations, because such spin fluctua-
tions have actually been observed by neutron scatter-
ing. '

Konno and Moriya have recently argued that the log-
arithmic term due to paramagnons can only be observed
at extremely low temperatures such as T«T' with
T*=A ' T in the notation of this paper. They estimat-
ed as T*=0.20—16.9 K for A =0.01—0. 1 in case of
UA12 and T*=0.07—17.7 K for A =0.01—2.0 in case of
UPt3. From Fig. 2 in Ref. 37, Ts„ is estimated as
Tsp=0. 1T* or 0.02—2 K. Therefore, they concluded
that the observed logarithmic term is unlikely to be due
to paramagnons, because it can be only observed below
Ts„. However, once Ts„ is given, the asymptotic expres-
sion can also be used in T & 0.3TsF even in their analysis,
as can be seen from, for example, Fig. 2 in Ref. 38 and
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Figs. 1 and 2 in this paper. Therefore, if experimental
numbers of TsF = 10 K are used, it seems to be difficult to
conclude that the effects of paramagnons are enough
small to be ignored below 10 K.

They argued in a phenomenological theory that the
specific heat due to "localized paramagnons" can simu-
late approximately Eq. (1.1) including the logarithmic
term in an intermediate temperature region. However,
their localized paramagnons must be different from local
spin Auctuations in the SSA. If Tz is much higher than
10 K, the specific heat should be in proportion to T below
10 K. If Tz is about 10 K, on the other hand, the linear
specific-heat coeKcient should be as large as 1

J/(molK ). In any event, local spin fiuctuations in the
SSA cannot simulate the observed logarithmic tempera-
ture dependence of the specific heat.

V. DISCUSSION

It can be naively argued that results are only applicable
to high-energy phenomena in a crude approximation of
nonvariational methods and the results become applic-
able even to low-energy phenomena in a higher approxi-
mation. The naive argument holds in the present theory.
It is straightforward to see that if the simplest single-site
diagrams of K (iE) are included in the present auxiliary-
particle method, two broad peaks are reproduced far
from the chemical potential around cf and cf + U in the
density of states of f electrons. ' In the best SSA, on the
other hand, not only such broad peaks, but also the
heavy-electron band at the chemical potential is obtained
as examined in Sec. II. Therefore, the present theory can
deal with both high- and low-energy phenomena.

On the other hand, the mean-field or saddle-point ap-
proximation of auxiliary particles, " ' which is one of
the simplest approximations, certainly gives a heavy-
electron band similar to the heavy-electron band obtained
in the Gutzwiller approximation and the best SSA. How-
ever, any mean-field theories or their extensions have
never reproduced the broadbands far from the chemical
potential so far. Because variational methods concern
with the ground state, it is reasonable that the Gutzwiller
approximation can only deal with low-energy phenome-
na. However, it is unusual that a lowest approximation
of the nonvariational method can only deal with low-
energy phenomena. Because charge Auctuations are
relevant for high-energy phenomena in strongly correlat-
ed systems in general, the description of charge Auctua-
tions at high energies is totally incorrect in the mean-field
approximation.

Even if we are concerned with low-lying Auctuations,
the difference is also essential in charge Auctuations.
There are a lot of low-lying charge Auctuations in the
mean-field approximation (MFA), where the accumula-
tion of charge Auctuations at low energies is consistent
with the absence of charge Auctuations at high energies.
However, the suppression of low-lying charge Auctua-
tions is likely in strongly correlated systems. Low-lying
charge Auctuations are actually much suppressed in the
present theory.

The mean-field approximation assumes that the local

gauge symmetry is broken. The physical consequence of
this approximation is that unphysical properties such as
(a, a ), (e; e, ), and (dtd ) with i%j are finite, which
are not in the gauge-invariant form. Therefore, auxiliary
particles are itinerant, and narrow bands of auxiliary par-
ticles are formed at their chemical potentials. Itinerant a
particles are nothing but spinons, and itinerant e particles
are nothing but holons in the MFA of the resonating
valence-bond (RVB) theory. In general, charge fiuctua-
tions are essentially related with itinerancy of particles.
Therefore, the accumulation of low-lying charge Auctua-
tions is due to the itinerancy of auxiliary particles. Be-
cause of itinerancy, spin and charge Auctuations are al-
most equivalent in the mean-field approximation. Al-
thoUgh the expectation value of the unphysical properties
can be made to vanish by including Auctuations of gauge
fields, their low-lying excitations associated with the
gauge fields are still essentially responsible for low-lying
spin and charge Auctuations beyond the mean-field ap-
proximation.

The local gauge symmetry should never be broken in
order to guarantee the mapping between the real- and
auxiliary-particle models. Because either (a; a ) withi', (e e ) with i', or (d, d~ ) with i' does not con-
serve the local number of auxiliary particles either Q; and

Q, it is quite trivial that they should vanish unless the lo-
cal gauge symmetry is broken. Auxiliary particles should
be localized in the sense that their single-particle Green
functions are site diagonal. Because of infinitely large
repulsion U between auxiliary particles, an excitation
energy as large as U is required to add an auxiliary par-
ticle or to remove an auxiliary particle within the restrict-
ed Hilbert space. It means that auxiliary particles are
confined in low-energy phenomena in the sense that no
single-particle excitations are possible. Because of the lo-
calization and confinement, auxiliary fermions have no
Fermi surfaces or auxiliary bosons never show any Bose
condensation. '

It is obvious that as long as the mapping is rigorously
taken into account, the local gauge symmetry should nev-
er be broken in any approximations of auxiliary-particle
methods, and the localization and confinement should
also not be broken. Therefore, the present theory is total-
ly different from the mean-field approximation and any of
its extensions, because the two schemes are developed in
totally different Hilbert spaces. Although low-lying spin
Auctuations are similar, there is no correspondence be-
tween the two schemes.

IV. SUMMARY

A theory of almost localized magnetism is applied to
paramagnons in heavy-electron compounds. There are
three relevant parameters. One is the local Kondo tem-
perature Tz or the renormalized Fermi energy TF*=3Tz.
Another is the enhancement factor of the homogeneous
susceptibility 1/A. The other is the cutoff of paramag-
nons in the momentum space, y, =q, /2k~, with k~ the
Fermi wave vector. The specific-heat coem. cient due to
local spin Auctuations is proportional to 1/TF*. The
linear specific-heat coeKcient due to paramagnons is pro-
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portional to y, /T~, with T =AT~. The logarithmic
T lnT term. of the specific heat is proportional to T
which can be observed below Ts„=03 ' T with 0&1.
The constant 0 depends on both 2 and y, . For example,
0 is much smaller than unity if the enhancement factor
1/2 is large and/or if paramagnons are sharply localized
in the Brillouin zone. However, 0 is about 0.2, unless
1/A is very large and unless the spin Auctuations are
much confined.

The specific heats of UA12, CeSi, 85, and UPt3 are ana-
lyzed. Both local spin fluctuations and paramagnons
must contribute to the specific heat at low temperatures.
It is very likely that the logarithmic terms at low temper-
atures T & 10 K are due to paramagnons.

Note added in proof. Momentum conservation is not
essential in the d=+ ~ dimension as argued in W.
Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324
(1989); E. Miiller-Hartman, Z. Phys. B 74, 507 (1989); H.
Schweitzner and G. Czycholl, Solid State Commun. 69,
171 (1989); and U. Brandt and C. Mielsh, Z. Phys. B 75,
365 (1989). Almost all the leading-order terms with
respect to 1/d are included in the best SSA. The other
leading-order e6'ect is a MFA type of magnetism, as ex-
claimed in the Hubbard model in Ref. 30. The situation
is the same even in the periodic Anderson model. There-
fore the perturbative scheme from the best SSA in this
paper is nothing but the 1/d expansion from the d =+ ~
dimension.
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