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Monte Carlo studies of spin-stiffness fluctuations in the two-dimensional classical Heisenberg model
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A recent one-loop calculation has shown that, in the d-dimensional classical Heisenberg model at low
temperatures, the absolute thermal Auctuations of the spin-stifFness constant are scale independent for
d (4. We report the confirmation of this unexpected theoretical prediction by extensive Monte Carlo
simulations in d =2. In addition, we find that the strength of the logarithmic correction for the relative
fluctuations depends on the details of the boundary conditions.

I. INTRODUCTION

In a recent letter, ' it was argued that the analog of the
universal conductance fluctuations in a mesoscopic sys-
tem ' can be identified with the thermal Auctuations of
the spin-stiffness constant in the classical Heisenberg
model. In a mesoscopic sample, the length scale L is
larger than the mean free path and smaller than the
phase-coherence length of the conducting electrons. Us-
ing a one-loop calculation, ' the absolute magnitude of the
thermal fluctuations of the spin-stiffness constant was
shown to be similar to that of the conductance Auctua-
tions, i.e., independent of scale L for dimensions d (4
and relative fluctuations proportional to L "with loga-
rithmic corrections in d =2. The calculation assumes
mixed boundary conditions (fixed in the x direction and
periodic for the remaining d-l directions), low tempera-
tures, and L is taken to be larger than the lattice spacing
and smaller than the correlation length. These theoreti-
cal results are of fundamental interests and can, in princi-
ple, be tested by experiments on granular magnetic ma-
terials. Before such comparison can be unambiguously
considered, one may need to resolve two important
theoretical issues. First, one must ascertain that a calcu-
lation to one-loop order is adequate and second, the re-
sults may be sensitive to the specifics of the boundary
condition and thus should be extended to isotropic
boundary conditions, encountered in physical measure-
ments.

In this paper, we address both of these issues by exten-
sive Monte Carlo studies of the spin-stiffness fluctuations
in the finite two-dimensional classical Heisenberg model
on a square lattice of L XI. sites with three different sets
of boundary conditions. A wide range of lattice sizes is
used to probe the predictions of scale independence, with
L up to 250 sites or 62500 spins. Very long simulation
with over-relaxation moves is employed to ensure
good statistics. We confirm the one-loop predictions for
mixed boundary condition. We further find that the
strength of the predicted logarithmic corrections depends
on the details of the boundary condition. In contrast to
the one-loop calculation with mixed boundary conditions,
our results for a finite lattice with full periodic boundary

condition is consistent with very small or no logarithmic
term. The data for fixed boundary conditions in both the
x and y directions are consistent with logarithmic correc-
tions, but with a different amplitude.

II. MONTE CARLO METHOD

We consider a classical Heisenberg model on a finite
L XL square lattice of spins IS; I. S; is a spin vector at
site i with unit length and parametrized by the three com-
ponents in the x, y, and z directions. The spins interact
with

H = —Jg S; S = —Jg S;S cos(Q;1 ),(J)' '

where the summation is over nearest-neighbor sites and
0, . is the planar angle between the two spin vectors. The
model is ferromagnetic and J is positive. To implement
fixed boundary conditions, the surface spins are coupled
to a "wall" spin fixed at a constant unit vector taken to
be S,~&=z. The periodic boundary conditions are im-
posed by the standard torus topology. The spin stiffness
or the helicity modulus in the p direction can be sam-
pled

Y- = (JIN( x cos((l,, )(e,, s)')
(ij)

—((/N)(J Ik&T) ps n( (((1p(El),
.(ij)

where X =L and Is are the bond directions (x,y). e,z
is

the unit vector connecting nearest-neighboring sites i and
j. Y is obtained as an average over the two directions for
cases where the boundary conditions are the same. We
have used standard Monte Carlo sampling with over-
relaxation moves to reduce the correlation times. One
over-relaxation move is implemented for every ten Monte
Carlo steps (MCS) for each spin and about (400000
MCS per spin after equilibrium are used for averaging.
Statistical errors are estimated by considering different
runs (typically four independent runs) and block averag-
ing. Using the temperature dependence of the correlation
length (g) estimated by previous Monte Carlo studies, '

we consider a temperature of k~T/J=0. 4 to obtain an
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estimated correlation length of g-211 in units of the lat-
tice spacing. This temperature will allow us to probe the
scale dependence for L/g « 1 to —1 by using L from 4
to 250. We also vary k~T/J for some runs and check
that our general conclusions do not depend on the partic-
ular temperature used.

III. MONTE CARLO RESULTS

We consider three sets of boundary conditions. First,
we use the mixed boundary conditions (fixed in the x
direction and periodic in the y direction) and calculate
the spin stiffness and its fluctuations in the x and y direc-
tions separately. In Fig. 1, we present the finite-size (L)
dependence of the ensemble average for the spin stiffness
in the x direction ((Y„)), absolute fluctuations ((hY„)),
and the square root of the reciprocal of the relative Auc-
tuations (I (b,Y„)/(Y„) ] ). For 1«L «g, the
one-loop calculation predictions' are scale independence
for the absolute fluctuations and a logarithmic term for
the square root of the reciprocal of the relative Auctua-
tions. This is indeed consistent with our numerical re-
sults and even the one-loop prediction of the amplitude
for the logarithmic term ( I/v'2m. ) in the relative fluctua-
tions is confirmed. INote the dashed line in Fig. 1(c) for
L /g & 1.] The data for the y direction is shown in Fig. 2.
The one-loop calculation' does not give an explicit pre-
diction for these quantities. The Monte Carlo results in-
dicated smaller (if any) logarithmic corrections. For the
relative fiuctuations, the amplitude of the correction is
(0.1 and has a different sign. It also occurs over a nar-
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FIG. 1. Scale dependence of the Monte Carlo data for the
spin stiffness (helicity modulus) Y in the x direction. The mixed
boundary conditions of fixed in the x direction and periodic in
the y direction are used. This is the boundary condition used in
the one-loop calculation (Ref. 1). The stiffness is in units of J
and k& T/J =0.4. A is the thermal average of the spin stiffness,
B is the absolute fluctuation, and C is related to the relative fluc-
tuations. The solid and dash-dotted lines are guides to the eye
only. The dashed line has the logarithmic amplitude predicted
by the one-loop calculation of Ref. 1. The estimated errors are
about or smaller than the size of the symbols. See text.
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FIG. 2. Scale dependence of the Monte Carlo data for the
spin stiffness (helicity modulus) Y in the y direction. The mixed
boundary conditions of fixed in the x direction and periodic in
the y direction are used. This is the boundary condition used in
the one-loop calculation (Ref. 1). The stiffness is in units of J
and kz T/J =0.4. A is the thermal average of the spin stiffness,
B is the absolute fluctuation, and C is related to the relative fluc-
tuations. The solid and dash-dotted lines are guides to the eye
only. The estimated errors are about or smaller than the size of
the symbols. See Text.

rower range of I.. Observe that all three sets of data ap-
proach weak or no scale dependence rapidly. (See Fig. 2.)

We also study two sets of isotropic boundary condi-
tions. Here, we can average our data over the x and y
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FIG. 3. Scale dependence of the Monte Carlo data for the
spin stiffness (helicity modulus) Y averaged over the x and y
directions. The full periodic boundary condition for both the x
and y directions is used. The stiffness is in units of J and
k& T/J =0.4. A is the thermal average of the spin stiffness, B is
the absolute fluctuation, and C is related to the relative fluctua-
tions. The solid line is a guide to the eye only. The estimated
errors are about or smaller than the size of the symbols. See
text.
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dence. Finally, we present the data for the fixed bound-
ary condition in both x and y directions. (See Fig. 4.)
The data for the relative fluctuations is now again con-
sistent with logarithmic behaviors but with an amplitude
of 0.16+0.026, very different from (1/&2m-0. 4) for the
mixed boundary conditions. '

IV. REMARKS
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directions. Initially, we eliminate surface effects by using
full periodic boundary conditions in the x and y direc-
tions. The data given in Fig. 3 indicates small or no loga-
rithmic correction and consistent with scale indepen-

FIG. 4. Scale dependence of the Monte Carlo data for the
spin stiffness (helicity modulus) Y averaged over the x and y
directions. The full fixed boundary conditions for both the x
and y directions are used. The stiffness is in units of J and

k~ T/J =0.4. A is the thermal average of the spin stiffness, B is
the absolute fjuctuation, and C is related to the relative fluctua-
tions. The solid and dash-dotted lines are guides to the eye
only. The estimated errors are about or smaller than the size of
the symbols. See text.

We have presented extensive Monte Carlo simulation
results for the spin-stiffness fluctuations in the finite two-
dimensional classical Heisenberg model over a wide range
of lattice sizes and with three sets of boundary condi-
tions. Theoretical one-loop calculations are available
only for the mixed boundary conditions and indeed our
results are consistent with the predictions. We confirm
the predictions of the logarithmic term in the relative
Quctuations and scale independence for the absolute Auc-
tuations of the spin stiffness in the directions with fixed
boundary conditions. For the directions with periodic
boundary conditions, our data indicate smaller or no log-
arithmic correction. This is also found in systems with
full periodic boundary condition, in contrast to the re-
sults of full fixed boundary condition where the data is
again consistent with logarithmic term. These data ap-
pear to indicate that the logarithmic term may be sensi-
tive to the details of the boundary condition. We have no
rigorous theoretical explanation for these possibilities and
refrain from speculations. These numerical results
should stimulate further theoretical investigations and
encourage experimental measurements.
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