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We calculate the ground-state energies of the quantum antiferromagnetic Heisenberg model for lat-
tices such as the chain, honeycomb, square, simple cubic, and body-centered cubic via the projection
technique using cumulants. The method has been introduced by Becker, Won, and Fulde and applied to
the same model for a square lattice. According to our calculations, we conclude that the first-order ap-
proximation may be compared with the linear spin-wave theory of Anderson through the dynamical
analogy, and the convergence of the projection method becomes better as the coordination number in-

creases.

L. INTRODUCTION

The discovery of the high-T, superconducting materi-
als and Anderson’s suggestion! for the ground state of the
materials renewed interest in the quantum antiferromag-
netic (QAFM) Heisenberg model on a plane. Anderson’s
suggestion implies that there is a possible connection be-
tween the ground state of the Cu-O plane of the high-T,
superconducting materials and the two-dimensional (2D)
spin-1 antiferromagnet. In fact, the half-filled Hubbard
Hamiltonian, which is studied as a model describing the
high-T, material, is transformed into the antiferromag-
netic Heisenberg model® in the strong-coupling limit.
Therefore, for the time being, the study of the ground
state of the latter model is an attractive problem in
condensed-matter physics.

Even before this remarkable discovery, the study of the
ground state for the QAFM has been considered one of
the typical problems of spin systems. The exact solution
for a chain has been obtained by using Bethe ansatz,® and
it has been provided as a standard in testing the results
given by various approximate theories.

Calculating the ground-state energy of the QAFM
Heisenberg model for various lattices may be an interest-
ing subject in connection with studying the ground state
of the model. There have been many analytical
works,* ™ and recently several numerical works!%!! have
been done. A pioneering analytical work known as the
linear spin-wave (LSW) theory was given by Anderson®
for a chain, square, and simple cubic lattice. The LSW
theory takes only the linear part under the Holstein-
Primakoff transformation,’? and then a diagonalized
Hamiltonian is obtained.

The ordinary process to improve the result of LSW
theory is to perform a perturbative calculation. For the
spin systems, however, Wick’s theorem of quantum field
theory is not directly applicable. To avoid this difficulty,
Arai and Goodman’ have developed a cumulant expan-
sion method using Kubo’s theorem on cumulants'® and
applied the method to the QAFM. Some years ago, Par-
inello and Arai® rearranged the perturbative expansion
and extended it up to an infinite order. We use some of
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their results in comparing ours with others. Recently, a
new analytic method which we use here has been given
by Becker, Won, and Fulde.” They developed a new pro-
jection technique using cumulants in calculating the
ground-state energy and applied to the 2D QAFM
Heisenberg model on a square lattice. We briefly summa-
rize the formalism here.

The system under consideration is composed of the un-
perturbed Hamiltonian H,, whose eigenstates and eigen-
values are known, and the perturbed part H,. Becker,
Won, and Fulde expressed the ground-state energy E as

Eo=¢gyt+{(¢o|H,|¢y) +(0) , (1)

where £, and |¢,) are the ground-state energy and wave
function of H), respectively, and

- [ S
(2) <¢o ol gy

¢o>c . @)

The superscript ¢ in Eq. (2) means cumulant,”'3 and L, is
the Liouville operator defined as LoA=Hy,A — AH,,
where A4 is an operator.

Introducing a Liouville space in which a cumulant is
defined as an inner product and applying the projection
technique'* to Eq. (2), we can get the following expression
for @(z):

(H,|H,)
z—(H,|LH,)/(H,|H,)—M (z)/(H,|H,) ’

@(z)= (3)
where L =L,+H, and the inner product ( 4|B) means
the cumulant { ¢o| 4 B¢, )e.

It is interesting to note that Eq. (3) is just the form of
the Laplace transformed relaxation function in a dynami-
cal theory developed by Mori.!> For this reason the
second and third terms of the denominator in Eq. (3) may
be called the frequency and memory parts, respectively.
These terminologies are meaningful only in explaining
something related to dynamical concepts. Thus we will
discuss some of our results on the analogy of dynamics in
what follows. Furthermore, the memory function M (z)
can also be expressed in a form similar to Eq. (3) with a
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new frequency and a new memory part. Thus the func-
tion @(z) is expressed in an infinite continued fraction'>
eventually.

In this work we apply this projection technique to vari-
ous lattice such as chain, honeycomb, square,9 simple cu-
bic, and body-centered-cubic lattice, and calculate their
ground-state energies. One of the objects of this paper is
to express the ground-state energies in terms of the coor-
dination number g and to appreciate the results. In our
lowest-order (first-order) approximation, we can express
our results in terms of ¢ and give them a meaning in con-
nection to LSW theory. In fact, our first-order results are
pretty close to those of LSW theory. We will discuss the
dynamical similarity between the two approximations in
what follows. The other object is to see when the projec-
tion technique becomes more effective. According to our
ground-state energy calculations for various lattices, we
can insist that faster convergence of the approximation
be obtained as the coordination number increases.

This paper is composed as follows. In Sec. II we
present a brief formalism for the ground-state energy in
terms of the cumulant for the QAFM Heisenberg model.
In Sec. III we calculate the ground-state energies and
give an appreciation for the results in comparison with
LSW theory. We also perform second- and third-order
approximations for the memory function M (z) in this
section. Finally, we present our ground-state energies for
various lattices and some discussion in Sec. IV.

II. FORMALISM

Antiferromagnets may be described by the Heisenberg
model with positive strength of exchange interaction. We
restrict our interest to the isotropic system. Then the
Hamiltonian is written as

H=J 35S, 4
ij)

where the angular bracket means the nearest neighbor, S J
is the quantum spin operator at lattice site j, and J is a
positive quantity representing the exchange interaction
strength. The Hamiltonian (4) can be rewritten in terms
of spin-raising and -lowering operators defined by
S;L =S;+iS}. Then we rewrite this again by performing
a unitary transformation such that up spins in the Néel
state are rotated 7 about S* axis.!® The unitarity under
this transformation remains for lattices such as chain,
honeycomb, square, simple cubic, and body-centered cu-
bic. The eventual changes after the transformation are
S;—“-»Sj* and S7— — S, where j is a lattice site in a sub-
lattice composed of up spins. Therefore, (4) is written as

H=—J 3 SiSi+
G

=H,+(H,+H])

=H,+H, . (5)

J J e
By > s,.+sj++3 S S7S;
(i j) (i,j)

In Eq. (5), H, is the Hamiltonian of the ferromagnetic Is-
ing model whose ground state |¢,) is well known, i.e., all
spins down. Thus it is chosen as an unperturbed Hamil-
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tonian. The perturbed part H, is the sum of all operators
which raise or lower a pair of nearest-neighbor spins.

For a system whose total number of lattice sites is N
and the coordination number ¢, the total number of
nearest-neighbor bonds is 1Ng. Then the ground-state
energy of the Hamiltonian H, is easily given by
€o=—J(—1)*(1Ng), and the total ground-state energy

E, of Eq (1) is given by E;=—1JNg
+{¢olH,|py) +@(0). It is simple to show that
(¢olH,|py)=0, (H,|H,)=(H;|H;), and (H,|LH,)
=(H;|LH)).

Since < ¢OIHI '¢0> =0)

(H, |Hp) = ¢o|H; H;|¢o) — (bl H] |$0) { 80| H;|80)
2

J o

=< S7S; St ,
2 <¢O %’) ! (I,Zm) : ’(ﬁo)
'k 71’1

=< =1L ing . (6)
2 {23] 2 | 2™

On the other hand, since (H,|HJH,)=(H,|HH;)=0,
(H;|LH;)=(H;|LoH;)=(H;|(Hy—¢o)H;)
=J(g—1)(H,|H,) . D

The quantity J(g —1) represents the difference of eigen-
values of the operator Hj, for the states H;|¢,) and |¢,).
Therefore, the ground-state energy E|, is given by

—

E, 8Nq +¢(0) , (8)
where
(J?/8)Ngq
0)= )
AR ey s Vi y TR A N

The memory function M (z) is represented by’

1
M(z)= |H} |———H}
(2) 1\ =oro™ | (10)
where Q@ is a projection operator defined by

Q=1—|H;)(H,|/(H;|H,). Since J and N are not impor-
tant variables, it is interesting to note that the ground-
state energy is expressed only in terms of the coordina-
tion number g, except M (0). Even though we are not
able to express M (0) in terms of g in this work, it may be
possible, in principle, for the exact M (0) to be expressed
in terms of g, because q is the only variable to distinguish
the lattices whose Néel states are bipartite. What we
have to do to calculate the ground-state energy is to ob-
tain the memory function M (0) approximately.

III. APPROXIMATIONS

A. First-order approximation

As mentioned in Sec. I, the function ¢(z) is written in
the form of an infinite continued fraction. It is a familiar
method, truncating the infinite continued fraction at a
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certain level to calculate it approximately. Our first-
order approximation is setting M (z)=0, which is
equivalent to truncating the continued fraction at a first
level. Then we simply get the ground-state energy of
first-order in terms of the coordination number g, i.e.,

1 1
By =—gIN |77,
1 1 1 2
=—=JNg|1+=—+ ||+ |, 11
gV s (11

where the second line is the expansion in powers of 1/q.

As also indicated earlier, the function @(z) has the
same form as the Laplace-transformed relaxation func-
tion of dynamical theory.!> Therefore, setting M (z)=0
corresponds to a single-mode approximation if we look
@(z) from the dynamical point of view. Since the LSW
Hamiltonian is written as HSV=, e(k)a/a, +const,
the Laplace-transformed relaxation function of the mag-
non operator @, has a single pole. Therefore, we have a
valid reason to compare our first-order results with those
of LSW theory.

According to Anderson,* a rough estimation of the
ground-state energy is given by

E{,‘SWz—%JNq 1+§ . (12)

Thus comparing (12) with (11) confirms that the two ap-
proximations may have a common physical ground, at
least for large q. What we can suggest for the common
ground right now is the dynamical similarity between the
two theories. More precise values of LSW theory are
given in the following form, ie., E gsw =—+JNgq(1
+2y /q). The corresponding value to ¥ in our first-order
approximation is ¢ /[2(g —1)]. We show these values for
various g in Table I for a further comparison.

B. Second-order approximation

The second-order approximation is to truncate the
infinite continued fraction at a second level, which is
equivalent to approximating L =L,. Since
QL,Q|H?)=Ly|H}), the memory function in the
second-order approximations is given by

1
M(Z) — H2 H2
(2) 1 z _LO 1
2
_ 2 1 2\ 2(J/2)%(Ng /2)
= H .
<¢’° B ¢°> z—2g—1J
(13)
TABLE I. Comparison of our first order with LSW theory.
Lattice (q) 4 q/[2(qg —1)]
Chain (2) 0.726 1.0
Honeycomb (3) 0.75
Square (4) 0.632 0.667
s.c. (6) 0.58 0.6
bee 0.58 0.571
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A similar technique used in obtaining (7) is applied to cal-
culate the first term of Eq. (13). In this case we have to
find the difference of eigenvalues of H, for the states
H}|¢y) and |¢,). The state H?|d,), however, is obtained
by flipping four spins which make two pairs of nearest-
neighbor bonds. Thus there are several classes of spin
configurations depending on ¢, and each class has a
different eigenvalue of L,. The number of spin
configurations in each class affects the first term of Eq.
(13). We summarize each class of spin configuration and
the number of configurations in the class for the state
H}|¢,) in Appendix A. We also show the results of
M@)(z) for various types of lattices in Appendix A.

C. Third-order approximation

In an ordinary way of approximating an infinite contin-
ued fraction, the third order is to truncate the continued
fraction at a third level as we did just before. But in ob-
taining the second order we found that H?|¢,) is com-
posed of multiple eigenstates of the operator L,. There-
fore, the formalism for projecting onto a single vector in
the Liouville space may not be appropriate in this case.
Therefore, a more generalized projection technique' !’
which projects onto multiple states must be adopted in
the third-order calculation. Since Becker, Won, and
Fulde®’ have already used this technique for the square
lattice, we do not explain the method here in detail.

We let |4;)=L{|H?), i=0,1,...,n—1, where n is
the number of projected states. Then we write a memory
function in a matrix form

Mz)=——a P, (14)
z—[Q+M'(z)]P !
where the tilde means matrix representation,
P;=(4,4)), 0 ;=(A4,|QLQA;), and M };(z) is written
as follows:

A} LoD

1

1 A

—_— LA |, (15)
z—QQLQQ coL4,

where 0=1—73, ;| 4,)(4;|/(4;| 4;). Thus M(z) of Eq.
(10) is obtained by finding M.

The matrices P and ) are easily obtained. But M '(z)
cannot be obtained exactly. We use the same approxima-
tion technique in calculating M '(z) as one used in the
second-order approximation, i.e., setting L =L, in (15).
We show, for example, the honeycomb lattice case in Ap-
pendix B.

M (z)=

IV. RESULTS AND DISCUSSIONS

We performed the calculations up to second order for
all lattices treated in this paper, and for chain and honey-
comb lattices the third order is also performed. For sim-
ple cubic and body-centered cubic, the second order gives
already good results. Therefore, the third-order calcula-
tions for these lattices are not that meaningful. We list
the ground-state energies obtained by the projection tech-
nique and other methods in Table II.

As discussed earlier, the first order is compared with
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TABLE II. Ground-state energies of first, second, and third order, and other results.

Lattice (g) E{VY EY EJ Other results

Chain (2) —0.5 —0.45 —0.4423 —0.443°
Honeycomb (3) —0.5625 —0.5386 —0.5409 —0.5295¢
Square (4)* —0.6666 —0.6574 —0.6674 —0.6692¢
sc (6) —0.9 —0.8995 —0.9009°¢
bce —1.142 —1.148 —1.1496°
2Reference 9.
"Reference 3.
“Reference 6.
dReference 11.
°Reference 8.

LSW theory from the dynamical point of view. As one Therefore,

can see in Table I, those two results become closer as the

coordination number increases. It is also interesting to M2(2)=(J /2)*N _4 10

see in Table II that the second-order results are larger —-J z—=2J

than the first-order results, which means the former is
worse than the latter. The body-centered cubic, however,
looks like an exceptional case. But it may not be under-
stood as an exception according to the following explana-
tion. That is, if we see the differences between the first
and second orders in Table II, they decrease as the coor-
dination number g increases, and eventually the second
becomes smaller at ¢ =8. Therefore, we conclude that
the approximation technique used by Becker, Won, and
Fulde and the present authors is more effective for a lat-
tice having large gq.
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APPENDIX A: SPIN CONFIGURATIONS
OF H}|¢o) AND M ?)(z)

1. Chain

There are two classes of spin configurations of H?|d)
which give different eigenvalues of L,. We show them in
Fig. 1, and call them |w;) and |w,). The eigenvalue
equations are written as Lylo,)=J|w,;) and
Lylw,)=2J|w,). The numbers of configurations are 2N
and N(N —5) for |o,) and |w,) classes, respectively.

®----0—0—0—0---0—8 |, >

®----0—O0---@---0—O0---® |W,>

FIG. 1. Typical spin configurations of the eigenstates of L,
in a chain. Black dots mean spin down and white does two
pairs of flipped nearest-neighbor up spins.

2. Honeycomb

Figure 2 shows two different classes, |o;) and |w, ), for
the honeycomb lattice. For these states eigenvalues of L
are 3J and 4J, and the numbers of spin configurations are
8(3N /2) and [(3N/2)—13](3N /2), respectively. There-
fore,

16 26

(2) — 4 —_—
MO ()= /2CON/D) | -7~ 7007

3. Simple cubic

There are three different classes of H?|¢,). We show
them in Fig. 3. The eigenvalues of L are 8J, 9J, and 10J
for |®,), l®,), and |w3), respectively. Since the numbers
of spin configurations, in order of states, are 4(3N),
2(3N), and (3N —57)3N,

16 84 114

(2) — 4 —
MP@)=( /206N |-+~ -0

4. Body-centered cubic

In the bcc lattice, there are also three eigenstates,
which we do not show explicitly, |®,), |®,), and |w;),

oo, >

FIG. 2. Typical sign configurations of the eigenstates of L, in
a honeycomb. Black and white dots have the same meaning as
in Fig. 1.
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oo, > loy >

ooy >

FIG. 3. Typical spin configurations of the eigenstates of L,
in a simple cubic. Black and white dots have the same meaning
as in Fig. 1.

for which the eigenvalues of L are 12J, 13J, and 14J, re-
spectively. Since the numbers of spin configurations are
12(4N), 74(4N), and (4N —101)(4N),

M(2) — 4 4 _ .

APPENDIX B: M3)(0)
FOR THE HONEYCOMB LATTICE

Since there are two eigenstates of L, for the spin
configuration H?|$,) in a honeycomb lattice, we choose
| 4;) of Bq. (15) such as | Ay)=|H?) and | 4,)=Ly|H?).
By introducing p, as w,=(H?|LIH}) for our conveni-
ence, we can simply write the matrices P and O as fol-
lows:

_ Mo M s [an ) [—10 =567
P=lw m|= |2 | |2 || =560 27202
and
| 71 [N ]| =560 —27202
= T 2| 2 | |~27202 123207

where use of u,=(J/2)%(3N /2)[16(3J)"—26(4J)"] has
been made for the honeycomb lattice.

The approximated memory matrix M © of Eq. (14) is
obtained by setting L =L, in Eq. (15). The matrix ele-
ments M }}0)(2) denote the matrix elements of (15) under
this approximation. In fact, M }}0)(2) is composed of
three nonvanishing parts such that

M "Q(2)=K;(2)+ L;j(2)+ Ny(2)

where
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K= |4, |H——H, 4,
ij i Z“‘LO I4%j | »
Li(2)= |4, |H——H} 4
ij(2)= [ 4; IZ_LOHI il

(A;|H?)H} A4;)
Nyj(z2)=— L HDH; ) 4,

z—J(g—1) (H,|H,)

After some calculations we obtain the following re-
sults:

Kp(z)=(J/2)%3N /2)

48 792 2952 2484
z—3J z—4J z—5J z—6J |’
_ 6 100
Ly(z)=(J/2)°(3N /2) Z—a27 |’
_ 6 100
Nyo(2) (J/2)*(3N /2) Z—27 |’
K10(2)=K01(Z)
=(J/2)(3N /2)
288 5280 21648 |, 19872
z—=3J z—4J z—5J z—6J |’
1120
L =L =(J/2) 2
10(2) 01(2) (J/2) (3N / )Z—"ZJ ’
NlO(z):NOI(Z)Z_LIO(Z) N
K, (2)=(J/2)}3N /2)
1728 35200 158752 | 158976
z—3J z—4J z—5J z—6J |’
L= /286N 2% N (o).

z—2J

Using these results, we obtain
M 5z =0)=—%(J/2)°(3N /2) ,
M @z =0)=5 (z =0)=—2(J /2)5(3N /2)
M Pz =0)=—102%(7 /2)(3N /2) .
Then the matrix M '°X(0) is given by

—9.4J
—49.8J2

—49.8J?

7 1(0)( () — 4
#"°(0)=(J /2)*3N /2) 257 63

Now it is easy to calculate the third-order memory
function, which is the matrix element M 6%)(0). Our re-
sult for M3(0) is

M®(0)=(0.51844)(J /2)3(3N /2) .
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