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Localization of surface acoustic waves in a one-dimensional quasicrystal
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We present and interpret experimental results on the propagation of surface acoustic waves on a
quasiperiodically corrugated solid. The surface is made of a thousand grooves engraved according to a
Fibonacci sequence. This type of one-dimensional system has been much studied theoretically in the
literature in the context of electronic or phonon propagation. It exhibits many interesting transport
features that recall some properties of strongly disordered systems related to Anderson localization. We
report precise results on the reQection and transmission frequency dependence as well as on the temporal
impulse response of the system. The experimental results recover nicely the features that have been pre-
dicted. In particular, this type of system has been conjectured to correspond to a critical regime of the
localization transition. By comparing two systems of di6'erent lengths, we indeed observe a characteris-
tic signature of the criticality, related to the asymptotic approximation of the quasicrystal by periodic
subsystems of increasing periods. This case is intermediate between a regime of extended proper modes
associated with a continuous spectrum and a regime of localized modes corresponding to a pure-point
spectrum.

I. INTRODUCTION

Wave propagation in one-dimensional (d =1) systems
has been the focus of intense research' and is still the
subject of interesting developments especially when one
considers this problem in unfamiliar contexts, ' which
can raise additional experimental and theoretical ques-
tions. It is well known that wave propagation in disor-
dered structures leads to the phenomenon of Anderson
localization at any nonvanishing disorder for d =1. In
d =2, the general belief gives a conclusion similar to the
(d = 1) case, whereas a localization transition is predicted
in d = 3 (Refs. 1 and 9) and separates an extended regime
at "small" disorder from a "localized" regime at "large"
disorder. The localization regime is a subtle nonpertur-
bative effect involving coherent interference between all
the wavelets partially reflected by the quenched disor-
dered set of scatterers. The existence of a localization
transition, for d =3 and above, is particularly interesting
and its study remains an important challenge of theoreti-
cal and experimental physics. Many questions are still
partly or completely unresolved such as the discovery of
a clear physical scenario for it, the nature of the transi-
tion, its upper critical dimension above which mean-field
behavior appears, etc.). The existence of a transition be-
tween two regimes is very exciting because one can al-
ways hope that understanding the crucial features that
trigger the transition will allow one to unravel the phys-
ics of the different regimes.

In this respect, (d =1) systems appear to be, at first
sight, not as interesting as (d =3) systems due to the ab-
sence of a transition (the extended regime does not ap-
pear except at zero disorder). Also, for d =1, no "topo-
logical" disorder exists, a fact that allows one to number
the scatterers sequentially and leads to very efBcient

transfer matrix approaches, ' which have no real coun-
terpart in d =3. Problems of (d =1) propagation are
thus poor models for their (d =3) counterparts. Howev-
er, they constitute the best known systems both at the
theoretical' and experimental" ' level due to the rela-
tive ease of their study and the strength of the experimen-
tal effects compared to the two- or three-dimensional
cas 16—22

Following the experimental discovery by Shechtman
et al. of a metallic solid phase of Al-Mn alloy with
icosahedral symmetry (i.e., a point symmetry which is in-
consistent with conventional lattice translations and
characterizes what are now called quasicrystals), the
above classification has evolved. This is due to the fact
that additional propagation behaviors have been de-
scribed in one-dimensional quasiperiodic systems.
Indeed, it has been discovered that wave propagation in
(d = 1) quasiperiodic systems could also present a transi-
tion from an extended to a localized regime as it is pre-
dicted in (d =3) disordered systems. ' From our point of
view, this property revives considerably the interest in
wave propagation in one-dimensional systems.

In this paper we present experimental results and their
interpretation on the propagation of surface acoustic
waves on a quasiperiodically corrugated solid. A short
account of this work has already been published in Ref.
2. In the systems that are considered here, the surface of
a piezoelectric substrate is corrugated by a thousand
grooves engraved according to a Fibonacci sequence.
Each groove acts as a single scatterer. This type of one-
dimensional Fibonacci sequence has also been much stud-
ied theoretically in the literature in the context of elec-
tronic or phonon propagation. It exhibits many interest-
ing transport features which recall some properties of
strongly disordered systems related to Anderson localiza-
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tion. We report precise results on the reAection and
transmission frequency dependence and on the temporal
impulse response of the system. The experimental results
which have been obtained address theoretical results pre-
dicted in other systems. In particular, this type of sys-
tems has been conjectured to correspond to a critical re-
gime of the localization transition, characterized by a
specific critical scaling of the spectrum and by critical
proper modes which are neither extended nor localized.
We observe a characteristic signature of this criticality
related to the asymptotic approximation of the quasicrys-
tal by periodic subsystems of increasing periods. This
case is intermediate between a regime of extended proper
modes associated with a continuous spectrum and a re-
gime of localized modes corresponding to a pure-point
spectrum. We have also studied the Fourier transform of
the corrugated surface by optical diffraction in absence of
acoustics in order to test the spatial structure as would be
done in a real quasicrystal probed by scattering tech-
niques.

From a general point of view, the problem of wave
propagation in quasiperiodic systems is interesting for
several reasons:

(a) It is a natural intermediate case between periodicity
and randomness. In a quasiperiodic system, two or more
incommensurate periods are superimposed, so it is nei-
ther a periodic nor a random system and can indeed be
considered as intermediate between them.

(b) This statement is reinforced, as already mentioned,
by the discovery that wave propagation in (d =1)
quasiperiodic systems could also present a transition
from an extended to a localized regime as it is predicted
in (d = 3) disordered systems. '

(c) Following the recent experimental discovery of the
quasicrystal phase in metallic alloys, ' there has been a
renewal of interest in the studies of the physical proper-
ties of quasiperiodic systems in one dimension referring
back to earlier works.

(d) This problem is also related to electron properties
of incommensurate linear structures ' [such as those of
K2Pt(CN )~.3HzO, of tetrathiafulvalene-tetracyano-
quinodimethane, of mercury chains in Hg3 &AsF6, (Ref.
30)] and to the fine structure of the de Haas —van Al-
phen and other quantum oscillations in high magnetic
fields.

(e) From a diFerent point of view, studying the interac-
tion of elastic surface acoustic waves with complex sur-
face topography ' is of major importance to underwa-
ter acoustics, seismology, surface acoustic wave devices,
nondestructive testing, and ultrasonic applications in
medicine. Quasiperiodic structures could also provide
useful systems for analogical coding, multiband filters,
discretization, and integrated analogical frequency
analyzer.

A lot of theoretical works have been concerned
with the localization properties of quasiperiodic (d =1)
lattices essentially focusing on the tight-binding discrete
Schrodinger equation

t„+i Y„+,+ t„,Y„,+ ( V„—E)Y„=0,
where the coefficients t„+& represent the "hopping" term

at sites n+1 and E is the eigenenergy. V„ is the local
value of the potential at site n. The most important mod-
els which have been studied theoretically in the literature
are the following.

(i) In the Aubry model, the scatterers are equidistant
but have scattering cross sections quasiperiodically modu-
lated: t„ i=t„+i=T is constant and V„=Vcos(2mncr),
where o. is an irrational number. For V&2T, all eigen-
functions are localized and the spectrum is pure point
whereas for V(2T, all eigenfunctions are extended and
the spectrum is continuous. The case V =2T corre-
sponds to the critical localization transition.

(ii) An alternative model consists of identical scatterers
whose positions are quasiperiodically modulated. A much
studied case is given by x„=3 cos(2vrno. ) and V„=Vis a
constant. Note that for o. irrational, x„covers densely
and uniformly the interval (i.e., is ergodic). In contrast to
the previous case, there is no energy-independent transi-
tion from all extended to all localized eigenfunctions as
the strength of the modulation is increased since the ratio
of E/T is no longer constant but depends continuously
on the wave frequency.

(iii) As in (ii), the scatterers are identical ( V„=V) but
with separations which takes only two values "s"and "c"
which occur according to formula (1) (see below) building
a self-similar so-called Fibonacci structure with remark-
able properties. This model is believed to be quite similar
to the Aubry model for the particular value V =2T cor-
responding to the critical localization transition.

(iv) Other systems with various approaches and some
experiments have been recently tackled which we just
mention for completeness.

On the experimental side, a few works have been
reported on semiconductor superlattices, which have
mainly focused on the study of their structural, dynami-
cal, electronic, and optical properties in relation to the
quasiperiodicity. The analogous problem of acoustical or
optical wave propagation in quasiperiodic lattices has
been much less studied theoretically ' and there are rel-
atively few experimental results in this field. Actually,
experimental results exist in (d =1) for classical waves,
such as acoustic, electromagnetic, mechanical, or hydro-
dynamical waves, but only for periodic and random sys-
tems. Indeed, localization has already been observed for
surface waves in hydrodynamics, " in acoustics for the
transverse vibration of a rope, ' ' or for the propagation
in tubes notched with random holes, ' for third or fourth
sounds in helium Auid. ' Related works on other physi-
cal systems can also be found in Refs. 2S and 59—61.

In Ref. 62, Smith et al. have reported interesting ex-
perimental results on the propagation of third sound in
superAuid helium propagating above a corrugated quasi-
periodic system of abraded strips. Their system con-
tained about 100 scatterers, with each possessing a rela-
tively high reAecting efficiency. This third-sound experi-
ment was found to be quite convenient for several
reasons: (1) at sufficiently low temperatures, the intrinsic
attenuation length for waves propagating on uniform
substrates can be made extremely large. (2) The interac-
tion between excitations (i.e., the existence of nonlinear
coupling) can be made arbitrarily small by controlling
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their amplitude. (3) The scatterers are macroscopic and
can be built essentially identical to each other. (4) The
scattering eKciency of each scatterer is relatively high so
that clear signatures of Anderson localization can be ob-
served.

Our systems share the advantages of presenting a small
intrinsic dissipation, a controllable nonlinearity, and an
extremely well-controlled scatterer geometrical structure.
Each scatterer used in our systems possesses a rather
small reffecting efficiency (of order 1% in amplitude per
scatterer). However, we have used much longer systems
(containing 1000 and 2000 grooves). The main interest of
using long systems stems from the possibility of exploring
the rich scaling structure of the "spectrum" (i.e., the
dependence of the transmission and reAection coeKcients
on frequency) and the internal spatial structure of the
surface-acoustic-wave proper modes. Note, furthermore,
that our systems can be analyzed with a very high pre-
cision (better than 10 in relative frequency position),
thus enabling the detection of very fine details in the sys-
tem spectrum.

Zhu et al. have studied experimentally and numeri-
cally the band structure of mechanoelectric transducers
made of a Fibonacci system of elementary surface acous-
tic sources. The band structure of these transducers is
simply obtained by spatial Fourier transform of the spa-
tial Fibonacci sequence describing the position of the
acoustic sources. Their results are thus very similar to
those presented in Sec. III B concerning the Fourier
transform by optical diffraction of the quasicrystal.

The structure of the paper is the following. In Sec. II
we present the experimental acoustic set-up. In Sec. III
we discuss the experimental results and their interpreta-
tion for the system of grooves engraved according to a Fi-
bonacci sequence. We first introduce the system which is
studied (Sec. IIIA), describe its Fourier transform ob-
tained by an optical diffraction experiment (Sec. IIIB),
study the acoustic spectrum both experimentally and nu-
merically (Sec. III C), and finally present the acoustic
time impulse response of the system (Sec. III D). In the
discussion of our experimental results, we adapt known
theoretical approaches to the specificity of our problem
in conjunction with numerical calculation. Section IV
contains our conclusions and we discuss some open prob-
lems. Appendix A presents the analogy between the
SAW propagation on a corrugated surface and the tight-
binding discrete Schrodinger model for electronic trans-
port in a random or quasiperiodic potential. Appendix 8
summarizes and adapts the approach of Kohmoto
et al. ' ' ' to our system; it amounts to relating the
transfer matrix formalism presented in Appendix A to
dynamical mapping theory.

II. DESCRIPTION OF THE EXPERIMENTAL
SET-UP AND OF ITS CHARACTERISTICS

We have studied a lattice of identical grooves engraved
at the surface of a piezoelectric lithium niobate LiNb03
substrate, using well-known micr olithographic tech-
niques. ' A schematic representation of the experimental
system is represented on Fig. 1(a). Figure 1(b) presents

FIG. 1. (a) Schematic representation of the experimental sys-
tem. Each pair of "dumbbells" on both sides of the lattice of
grooves depicts a SAW transducer working either in reAection
or in transmission. The propagating path is perpendicular to
the array of grooves, along the large axis of the system. (b) De-
tail of a groove. I8'stands for incident wave, R8'for reAected
wave, TS' for transmitted wave, and I BW for a leaky bulk
wave.

the geometry of a single groove of width m = 5 pm, depth
h =0.3 pm, and identical-well-characterized profile
resembling an inverse plateau. The lateral scale of each
groove (the so-called opening) is E =2150 pm. We have
verified, by probing the SAW intensity profile in the
direction transverse to the system of grooves axis using
the optical diFraction technique described below, that the
SAW propagation was correctly directed along the lattice
axis, thus preventing the existence of any "beam walk-
off."

The array of grooves is surrounded by electromechani-
cal transducers, laid down onto the surface of the
LiNb03 crystal, performing transmission and reception
of the surface acoustic waves. A transducer is generally a
periodic structure of alternate electrodes (so-called inter-
digital structure) connected to two buses, themselves con-
nected to the terminals of either an electric generator or
an analyzer. The spectral response of the quadrupole
constituted by the two transducers is centered around a
frequency corresponding to the periodicity of the fingers
of the transducers, with a 3-dB bandwidth depending
upon the number of pairs of interdigital electrodes (typi-
cally, the frequency f is in the range 10 MHz to 2 GHz
and the relative bandwidth is b,f/f -20% for an interdi-
gital electrode structure of three periods). These charac-
teristics can be somewhat adjusted by an appropriate
electrical surrounding.

In practice we must allow for a number of secondary
e6'ects, among which predominate mutual reAections be-
tween transducers and between the later and the array,
reAections from the edges of the crystal, transmission of
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bulk waves by the transducers and the grooves which can
be reinjected at the surface after reAection from the bot-
tom of the crystal, electromagnetic radiated noise from
the excited transducers. These difFerent perturbative
efFects have been recognized ' for a long time and can be
either minimized by a suitable optimization of the struc-
ture or separated from the interesting information in the
signal treatment. We will address these points, when
necessary, during the exposition of the corresponding ex-
perimental results.

The surface acoustic wave (SAW) which has been stud-
ied is the Rayleigh wave whose characteristics for a per-
fect solid surface in contact with void are well known.
Rayleigh SAW constitutes a particular type of elastic
wave in solids and can be seen as a mixture of longitudi-
nal and transverse waves such that the condition of van-
ishing stress at the free solid boundary is fulfilled. They
are characterized by a real wave vector in the directions
parallel to the surface and a pure imaginary wave-vector
component in the direction perpendicular to the surface.
The SAW thus propagates along the plane and is evanes-
cent away from the solid boundary with a typical excur-
sion of the order of the wavelength. Rayleigh SAW prop-
agate with a phase velocity c~ slightly less than the phase
velocity c, of the transverse (or shear) bulk wave. The
dispersion relation of the Rayleigh SAW is linear
(co =cd k ) in absence of corrugation. In the presence of a
perturbation to the planar shape (take, for example, the
case of the existence of a single groove of depth h and
width w), the SAW is partially re(lected with a re(lection
amplitude coe%cient given by p=0. 6(h/A, )sin(2irtUIA, )

(Refs. 55 —61) ( =4 X 10 for our frequency range
f= 160 MHz). Furthermore, a fraction p -20p of the
SAW energy is detrapped and converted into longitudinal
and shear bulk acoustic waves. " Note also that the
consequence of the presence of air instead of void has
been well documented and is known to lead to a small
well-controlled additional loss. '

In the general context of wave propagation in inhomo-
geneous systems, SAW are particularly interesting for
several reasons which we have exploited in our experi-
ments.

Rayleigh waves are well defined in frequency (for in-
stance, with a precision of 1 kHz around a main frequen-
cy of 100 MHz corresponding to a relative precision of
10 ). The intensity of the wave can also be precisely
monitored and kept far away from nonlinear thresholds.
The wave fronts can be made planar to a good accuracy
and controlled by difterent techniques. '

All the characteristics of the propagation phenomena
(spectra, time response, modal structures) can be extract-
ed experimentally. This feature is particularly interesting
for testing predictions of theoretical models.

SAW propagation sufFers from a relatively weak intrin-
sic dissipation (without speaking of the attenuation due
to the leakage of the guided SAW from the corrugated
surface into the bulk which is discussed below).

The solid which we have used is a piezoelectric lithium
niobate substrate (PLNS). Rayleigh SAW propagating at
the surface of PLNS are often used to develop devices
with many industrial applications. For example, real-

time signal processing in radar or in television sets use
Rayleigh acoustic waves propagating at the surface of a
piezoelectric solid. ' In particular, surface acoustic
waves, propagating on rejective arrays constituted of
parallel grooves, have numerous applications (re(lective
array compressors, bandpass filters, filters banks, high
performance SAW resonators, oscillators). ' We have
therefore benefited from the mell-developed and e%cient
available technology for preparing well-controlled corru-
gated surfaces.

Our experimental results are obtained as follows. We
sample the frequency range of interest with a typical fre-
quency step of 3 kHz. The temperature of the sample is
regulated at +1%C and the spectral response of the
quadrupole is measured with a precision better than 10
dB. Because of the limited 3-dB bandwidth of the trans-
ducers, which is in the range of 30 MHz around 160
MHz, the time impulse width is not vanishing but around
0.03 ps. This allows us to distinguish SAW paths with
length difFerence of the order or larger than 100 pm.

III. STUDY QF THE (d = 1) QUASICRYSTAI.

Structural eharaeteristies

The system, which has been studied is constituted of a
lattice of X =1000 grooves of identical width w =5 pm,
depth h =0.3 pm, and an identical well-characterized
profile resembling an inverse plateau [Fig. 1(b)]. The to-
tal length of the 1000 grooves system is I. =15984 pm
giving an average groove spacing a = 15 984/999 = 16
pm. The first groove is placed at a position which is tak-
en as the origin. Then, a specific deterministic method is
used to generate the successive spacings between neigh-
boring grooves. A simple representation of the projec-
tion method used to construct these spacings between
grooves is presented on Fig. 2. It illustrates in the one-
dimensional case an elegant and general way of generat-
ing a wide class of almost periodic tiling of Euclidean d-
dimensional space by projection from higher-dimensional
regular lattices, in direct (position) space.

Consider in the Euclidean plane R, the strip swept by
shifting the unit square ( —1(x ~0; 0(y ~ 1) along the
straight line D of the equation y =o.x where o. =tant9 and
8 is the angle between D and the x axis. By projecting or-
thogonally onto D all points of the strip having integer
coordinates, we get a sequence of points on D (see Fig. 2)
which build the announced quasicrystal. Let us note x„
the abscissa along D of the point number n, assuming
that the label n =0 is attached to the origin. The dis-
tance I„=x„+,—x„ofthe bond joining point n and n + 1

(and thus the distance between neighboring grooves in
our system) can only take two values s =sinO and
c =cos8, corresponding, respectively, to the projections
of vertical or horizontal segments of the original lattice
Z2.

In the following we shall treat in detail the case where
the irrational number o. is the inverse golden mean
t =(r +1) '=(5' —1)/2=0. 6180 keeping in mind that
the specific results obtained for this particular value are
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where multiplication is to be understood as word con-
catenation. This construction is depicted in Fig. 2(b).
The initial values of the recursion are So=s and S]=c,
where s and c are two chosen distances which constitute
the two elementary tiles used for creating the quasicrys-
tal. Since a finite number of elementary tiles (here two)
are used to build the system quasiperiodically, the struc-
ture can be termed a quasicrystal. ' ' With the recursion
(1), one has S2 = [sc ], S3 = [sec j, S4 = [scscc ], and so
forth. It is easy to verify that the nth letter W(n) (which
is either "s"or "c")of the word S~ is given by the formu-
la

C S

a

L
SCr

I

eec :-,.:-':spec: k~,'-'--, . sccscascsccsc
l::':::::-'-:::::::::::::::::'::::—:::: - lk

Ill~!

generalizable to values of o. which have the most typical
diophantine properties, i.e., are not too well approximat-
ed by rationals. The inverse golden mean is special in the
sense that it contains only the number 1 in its continued
fraction expansion

FIG. 2. (a) Simple representation of the projection method
used to construct the Fibonacci spacings between grooves. (b)
Geometrical illustration of the concatenation procedure given
in Eq. ( l), which constitutes another alternative method to con-
struct the Fibonacci sequence.

W(n) =s —(c —s)lnt [Frac[(n —1)(1—t) ] t ]—
for n &2 (2)

which is another way of reconstructing explicitly the se-
quence (1) with W(1)=s. In Eq. (2), the function Int(x)
[Frac(x)] means the integer (fractional) part of x. They
verify Int( —x)= —[1+Int(x)] for (x &0 and x nonin-
teger) and Int( —x)= —Int(x) for (x &0 and x integer).
Also, Frac(x) = 1+Int(x) —x for (x & 0 and x noninteger)
and Frac( —x)=0 for (x &0 and x integer). This implies
that the usual definition Int(x)+Frac(x)=x is verified
for all x positive or negative. From Eq. (2) one verifies
that W(2)=c, W(3)=s, W(4)=c, W(5)=c, and so on.
Variants of the concatenation described by Eqs. (1) and
(2) can be used which do not change the properties de-
scribed below.

In a system S built from the above recurrence up to j,
there are F. grooves where F is a Fibonacci number
given recursively as F +] Fj +Fj ~

with FO=F~ =1.
In our experimental system we have chosen s=22sinO
pm =11.6+0. 1 pm and c =22cosO pm =18.7+0. 1 pm,
where tanO= t, as the values of the two distances between
the groove centers found in the Fibonacci sequence,
yielding s/c =0.620+0.005 near the inverse golden mean
t =(v'5 —1)/2=0. 6180. The +0.05 pm precision of the
position of the grooves corresponds to the limitation of
the electronic etching method used for preparing the sys-
tem. The average distance between the grooves [see Eq.
(10) below for a definition] is a I./999 = 16 pm.

1
rn+

X

i.e., r& =r2=r3 =r„= =1. Hence, it is the irra-
tional number that is the worst approximated by ration-
als, and thus the number for which the lack of periodicity
of our quasicrystal is expected to have quantitatively the
most spectacular consequences.

Complementary to the geometric construction present-
ed in Fig. 2, the sequence of spacing can be obtained from
a simple recursion relation on the sequence of "letters" s
(=sinO) and c (=cose) corresponding to the succession
of groove distances along the system. Denoting S. the se-
quence of s and c at the jth iteration, one has

SJ+,=[S. ,SJ j for j odd

= [S,SJ i] for j even,

B. Fourier transform by optical diffraction
of the (d = I ) quasicrystal

Before studying the acoustical transport properties of
these systems, we report on an experiment giving the
direct spatial Fourier transform of the whole set of
grooves. This is useful in order to probe the quality of
the preparation of the quasicrystalline structure with an
independent method. Secondly, the spatial Fourier spec-
trum is interesting in its own right since it is the one-
dimensional counterpart of the experimental spectrum
obtained from scattering techniques on real metallic al-
loys d =3 quasicrystals. '

The diffraction pattern of a quasicrystal is one of its
more distinctive features. Quasiperiodic systems possess
the remarkable property that their diffraction patterns
are made of a dense series of Bragg peaks, although being
absolutely not periodic. Bragg diffraction peaks have
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been long thought to be the only associated to scattering
of waves by purely periodic systems. The surprising
discovery of quasiperiodic crystals have shown that this
is indeed not true and that a larger class of systems,
without periodicity, do exhibit Bragg peaks. The experi-
ment which is reported below illustrates this fact.

In Fig. 3 we present the optical diffraction pattern of a
quasicrystalline system of 2280 grooves partitioned fol-
lowing the Fibonacci sequence (1). Care has been taken
to illuminate the whole sample as uniform1y as possible.
Note that due to the finite size of the system, the Bragg
peaks are broadened.

The optical difFraction is the Fourier transform @(k)of
the lattice and exhibits self-similar properties reminiscent
of those of the lattice (on the quasicrystal lattice, one can
eliminate a subset of the lattice grooves and obtain anoth-
er quasiperiodic lattice with nearest-neighbor distances
increased by a constant factor). C&(k) is the product of
the Fourier transform F(k) of the lattice of points cen-
tered on each grooves by the Fourier transform f (k) of
the single-groove form function, with

E(k)=Fourier transform of+ 6(x —x„),

F(k)=g I sin(X/2)/(X/2)je'~5(k —k )

with

k„=(2m./a)(pt '+q ),
X=(2vrl&5)(qt ' —p), y=X/2, (6)

where a is again the average distance between the
grooves. p and q are two integers. Expression (4) and (5)
shows that the Fourier transform of the lattice consists in
a dense set (of zero measure since this is the set of ration-
als) of Bragg peaks indexed by (p, q). Experimentally,
only the brightest peaks will be seen. They correspond to
the maxima of F (k) as given by Eq. (4) which occur when
X=O. The smallest values of X are reached for special
values of p and q which are the best approximates of the
golden mean. These best approximates are, by definition,
the Fibonacci numbers p =F„and q=F„& such that
p/q gives the best approximation to t ' as n increases.
As a consequence the brightest peaks will be given by the
following expression:

k„=(2~/a)(F„,t '+F„2)
where the points x„belong to the Fibonacci sequence.
Several methods exist for computing F(k) based on pro-
jection from a higher dimensional periodic lattice, on a
density wave description of icosahedral quasicrystals, on
the generalized dual method, or on multigrid methods.
From Ref. 71 one has

obtained from (5) by replacing p and q by two successive
Fibonacci numbers. Since t verifies the identity
t "=F„,t '+F„2 (since t +t= 1), this leads to

k„=(2~/ a)t

Expression (7) predicts that the peaks occur in geometri-
cal progression with t ' as the common ratio. In fact,
this geometrical progression is valid for each order of
diffraction and the general form of the expression of the
wave vector corresponding to the strongest peaks is

1 l34 k„(=(2~/a )It (8)

1'
2

C5

Cl

V

212 1 5354 63 7

DIFFRACTED WAYE VECTOR (arb. units)

FIG. 3. Optical diffraction pattern of the quasicrystalline sys-
tem of 2280 grooves partitioned following the Fibonacci se-
quence. Several families of peaks are indicated which occur in
geometrical progression {for each order of diffraction). The ex-
pression of the wave vector corresponding to the strongest
peaks is given by Eq. {8). This striking prediction is very clearly
verified on the figure. It is possible to identify the families of
peaks (l = 1,n = 1 —7), {l =2, n = 1 —6), etc.

with n =0, 1,2, . . . and I =1,2, . . . In Fig. 3 this striking
prediction is very clearly verified. %'e are able to identi-
fy, for example, the following families of peaks (l =1,
n =1—7), (l =2, n =1—6), etc. In Fig. 4 we have plot-
ted the measured ratios k„+ & &/k„ I for these two families
/ =1 and 1=2. %'e thus measure an "experimentally"
determined golden mean k„+»&k = l.62+0.01 (com-

n, l

pared to the exact value r '=1.6180. . . ). From these
data we can further determine the average lattice spac-
ing. Since the whole angle interval which has been mea-
sured corresponds to 60', we obtain a measured average
spacing a = 17+1 pm in good agreement with the
theoretical value of 16 pm. This +1 pm uncertainty is
not caused by the errors in the position of the grooves
(which are built with a much better precision of order
+0.05 pm) but only reilects the limited precision of the
present optical diffraction measurements.

It is interesting to note that the spatial Fourier trans-
form provides useful information on the spectrum. In the
limit of very small scattering power, each scatterer
scatters the wave only once, and the reAected wave can
be obtained as the sum of the contribution of each
scatterer. Due to the e' ' dephasing of the wave during
its propagation, the reQected wave is thus simply propor-
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FIG. 4. Plot of the measured ratios k„+»/k„ I for the two
main families I = 1 (crosses) and I =2 (black diamonds) shown
in Fig. 3. This ratio gives an experimental determination of the
inverse golden mean whose exact value is given by the horizon-
tal line (t ' = 1.61803. . . ).

bonacci sequence is equivalent to the propagation of elec-
trons on a Fibonacci sequence of step potentials in a par-
ticular tight-binding model.

In particular, we learn from Refs. 26 and 33—47 that
this system should be in the so-called "critical" regime
intermediate between the extended and the localized re-
gimes. For the spectrum, this means that gaps (or stop
bands) are present at all frequency scales. Indeed, a gen-
eric feature of wave propagation in quasiperiodic sys-
tems, built recursively according to expression (l) or to
some variants, is that their spectrum is a Cantor set of
zero measure. The complementary set to the spectrum is
the set of stop bands which thus covers densely the fre-
quency range with the measure one. A Cantor set is spe-
cial since it has zero measure but is undenumerable. This
property puts these types of systems in between "extend-
ed" systems for which the spectrum is continuous and
has a finite measure and "localized" systems for which
the spectrum is "pure point, " i.e., denumerable with zero
measure. In an experiment, the observation of the Can-
tor structure of the spectrum is of course limited by the
finite size of the system.

tional to the Fourier transform of the density of scatter-
ers. This is the usual so-called Born regime. In this lim-
it, the spatial Fourier transform and the spectrum de-
scribed below should be indistinguishable. However, as
soon as multiple scattering effects are present, the spatial
Fourier transform and the spectrum become different.
The spectrum then contains important contributions
from paths having suffered multiple scattering. In this
sense, the difference between the spectrum and the spatial
Fourier transform of the system embodies the influence of
multiple scattering. In a previous work we have studied
the spectrum of a special quasiperiodic system of grooves,
obtained by the superposition of two periodic systems of
periods P and Q, with P/Q = t, the golden mean. In this
case one can show, that due to its special structure, the
spectrum is indeed equivalent to the spatial Fourier
transform of the positions of the grooves along the sys-
tern, even in the presence of multiple scattering. In the
case of the quasiperiodic system studied here, this proper-
ty is no longer true in a strict sense. However, there still
exists an analogy. Both the spatial Fourier transform of
the system and the spectrum can be understood on the
basis of the decomposition of the whole system as a su-
perposition of periodic systems of increasing periods, as
will be explained in detail below.

2. Description of the experimental results

Figures 5 and 7 represent different magnifications of
the dependence of the transmission coefficient T as a
function of frequency f obtained in our experiments.
Figure 6 gives the experimental reAection coefficient on

%500
lh

Z 75
I-

C. The spectrum

1. Summary of some expected theoretical results

I

410 160
FREQUENCY (MHz)

210

Let us first recall the expected properties of the spec-
trum. In order to understand the experimental results re-
ported below, we use the transfer matrix theory presented
in Appendix A describing the equation of propagation of
SAW in presence of grooves which act as one-
dimensional scatterers. Appendix A shows that the prop-
agation of surface acoustic waves propagating on such a
corrugated surface with grooves placed according to a Fi-

FIG. 5. General view of the SA%' energy-transmission
coefticient of a system containing 1000 grooves as a function of
frequency over a large frequency interval. The large scale be11-
like shape and secondary lobes correspond to the passing band
and response of the transducers. The information relevant to
the study of the quasiperiodic system is contained in the posi-
tion and amplitude of the peaks which decorate the large-scale
structure.
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the same system as a function of frequency. The large-
scale structure of the spectrum measured in reAection in
Fig. 5 is characterized by three main lobes corresponding
to the transfer function of the measuring transducers.
The information relevant to the study of the (d =1)

FIG. 6. Dependence of the SAW reQection modulus as a
function of frequency. Each peak probes the existence of a stop
band. The numbers under the arrows correspond to different
values of the controlling parameter at/A, which is discussed in
the text.

quasicrystal are the peaks which decorate this large-scale
structure. The quality of the measurements is such that
the signal-over-noise ratio is better than 80 dB.

We observe the existence of particular frequencies f for
which the transmission coeKcient is significantly de-
creased. This can be interpreted as the largest stop bands
of the system. It is easy to verify in Fig. 5 that successive
spacings in frequency between the main observed invert-
ed peaks are in the ratio of the golden mean. In fact, the
quasiperiodic structure of the lattice of grooves is
rejected on the spectrum by a quasiperiodic system of in-
verted peaks. This observation can be extended at in-
creasingly finer scales at which one verifies that the ratio
of successive peak frequency spacings is a power of the
golden mean. We thus recover on the spectrum the self
similar quasiperiodic structure of the system of grooves.

In Figs. 5 and 7 all peaks are inverted which corre-
sponds to a decrease of the transmission. In Fig. 6 a de-
crease of transmission is associated with an increase of
the reAection which explains the existence of positive
peaks. However, note that, in general, peaks appear as
negative-positive doublets in Fig. 6. This stems from the
fact that the transducer which measures the rejected sig-
nals is different from the launching transducer and placed
in between it and the system of grooves. For sufficiently
large stop bands, there exists an interference between the
reAected SAW and the direct wave propagation from the
launching to the measuring transducer which produces a
differential phase rotation leading to a sign change in a
portion of the signal.

We note that the peaks in Figs. 5 —7 in the neighbor-
hood of the central frequency f=175 Mhz can be in-
dexed by a single integer n such that the variable at/1, is
of the form

0-
t

at/A=n/(2, n+1) n =1,2, . . . ca . (9)

These series converge rapidly to —,
' as n~+ ~. For in-

stance, the central peak occurs for 0.4990 ~ at /A ~
0.5010 [n =1 of the series (9) with at/A, =n/(2n —1)]
corresponding to a frequency f= 175 Mhz and a wave-
length A, =19.7 pm. In Figs. 5 and 6 one can identify the
different frequencies giving the smallest n for the rational
expression (9) of at/k:

n =6; at/A =—' f=, 191.35 Mhz; A, = 18. 12 pm ,

n =7; at/A, ,=—
,', ; f= 189.35 Mhz; A, = 18.35 IMm, etc .

172.5 177.5
FREQUENCY (MHz)

FKJ. 7. Detail of the spectrum obtained in transmission
showing the main gap corresponding to at/A, = 1/2. The five
different symbols decorating the right side of the gap corre-
sponds to five frequencies at which the spatial structure of the
SAW has been probed (see Ref. 2 and J. P. Desideri and D. Sor-
nette, in preparation).

We observe also a series of peaks in the frequency range
for which a/A, , is in the neighborhood of —,

' and so on.

3. Heuristic explanation of the experimental results

First, let us give a heuristic rationalization of these re-
sults. In this goal we use the following essential property
of the Fibonacci quasicrystal: it is the asymptotic limit of
a series of periodic systems of larger and larger periods
a, each corresponding to the successive "words" of the
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ao=st j(t+I)+cj(t+I) . (10)

Thus ap:—a, the average period of the system. We expect
and observe a stop band at the Bragg condition 2ap =A, ,
i.e., at a value of the reduced parameter a/A, =

—,'.
The next smaller period a, is given by Eq. (10) with "s"

replaced by "c" and "c" replaced by "sc," which gives
a& =t ap. It is obtained from the self-similar structure
of the quasicrystal which is invariant under the following
transformation:

C ~S~ SC ~C

which is illustrated in Fig. 2(b). One expects therefore a
stop band indexed by the reduced parameter
a, /A, =at /A, =

—,'. The discussion is easily generalized
to the larger periods a - = t jap, obtained by replacing the
word 5 by "c"and S i by "s" in the infinite quasicrys-
tal. This leads to gaps at frequencies such that

iterative concatenation process (1). Let us now make ex-
plicit this point in some details. Consider the first small-
est period ap corresponding to the complete pattern of
letters "s" and "c." Since "s" ("c") occur with relative
frequency t /( t + 1) [I /( t + 1)], ao is given by

transmission. This is well illustrated on our experimental
and numerical results.

We are now able to understand the existence of the full
series (9) observed experimentally. Until now we have
considered only a combination of the fundamental re-
ciprocal wave vector 2m/b . Of course, if 2vrjb is a re-
ciprocal lattice vector, 2vr /( 2n+ I)b reciprocal lattice
vector since it corresponds to a period (2n 1)b which is
a multiple of the fundamental period b. Let us take b =a
and consider the following combination 2vr/
(2n+1)at '+2m/(2n+1)a =2~t2n /(2n+1) ) /at T.he
Bragg condition for this reciprocal lattice vector yields
exactly the series (9). Such combinations of reciprocal
vectors allows one to understand the peculiar role played
by the frequencies such that at/k is rational which have
been observed experimentaHy.

This reasoning is confirmed by a direct numerical com-
putation of the spectrum using the transfer matrix theory
presented in Appendix A with the mapping approach of
Kohmoto et a/. ' ' recalled and adapted to our
system in Appendix B to the case of SAW propagation.
In the computation we have used the following expres-
sion for P„:

at J jA, = —,
' with j ~0 . (12)

P„=(2~/A, ) W„, (13)

Expression (12) gives only a part of the whole spec-
trum. Indeed, it must be generalized to take account of
the interactions between the different periods in the sys-
tem. It is well known that, for any periodic system, there
should be a gap at half of any reciprocal lattice vector
2' jb of the crystal, and all sums and differences of the
reciprocal lattice vectors of the periodic structures are re-
ciprocal lattice vectors. As the system becomes higher
and higher order periodic (i.e., the integers become
larger), the smallest reciprocal lattice vector of the sys-
tem gets smaller and smaller. Thus, in the almost period-
ic limit, there should be a gap in the vicinity of every
wave vector. This implies a highly fragmented Cantor-
like band structure already discussed.

Now, consider the two reciprocal lattice vectors 2~/ap
and 2m/a, . Their sum is (2~/ao)(1+t) =2~/aot which
is again a reciprocal lattice vector with b =apt. The
Bragg condition applied to it yields a gap for apt/A, =

—,'.
This is the main gap observed experimentally in Figs.
5 —7. Repeating the argument for the two reciprocal lat-
tice vectors 2m. /tap and 2~/ap yields a reciprocal vector
equal to 2~/apt, and so on. One thus generates gaps at
all wavelengths for which Eq. (12) holds but with j (0.
These gaps are of course a few among the infinite set of
the singular continuous spectrum. However, they are
those which are the strongest, i.e., the largest since they
correspond to successive periodic approximation of the
quasicrystal with the smallest periods. The smallest
periods will give the largest reAection and smallest
transmission since this will correspond to the largest
number of periods per unit length in the effective period
lattice. Note that the series (14) with the smallest j's cor-
responds to the most favorable case and gives the strong-
est reAection coefficient and conversely the smallest

where W„ is obtained from expression (2). In an infinite
system, our results are comparable to previous ones ob-
tained for quasiperiodic Schrodinger equations with a
step potential, since the transfer matrix formalism is the
same in both cases. In our numerical computation we
have taken an explicit account of the finite size X of the
system and of the small value of the amplitude reAection
coeScient p. Figure 8 shows the effective finite-size spec-
trum as determined numerically from the mapping de-
scribed in Appendix 8, for p, =0.01. Stop bands (i.e., fre-
quency intervals for which the transmission is
significantly decreased) lie within vertical spaces sur-
rounded by unconnected horizontal spaces: in other
words, they are depicted as "gaps" in Fig. 8. Thick bars
are due to close packing of such gaps. The apparent
"finite-size" spectrum shown on Fig. 8 is obtained with
the criterion that only those frequencies, yielding a value
strictly larger than 2 for the trace of the transfer matrix
for the whole system, are selected as "effective" stop
bands. This criterion is a natural generalization of the
simple periodic lattice case for which a passing band
(stop band) is characterized by a value of the trace of the
global transfer matrix less or equal to 2 (larger than 2).
Note that we recover the main stop bands observed ex-
perimentally in the vicinity of the central band. These
stop bands are indicated by the arrows with their corre-
sponding values of the number at/k.

This theory predicts not only a rich self-similar struc-
ture of the positions of the stop bands in the spectrum,
but also that the depths of the stop bands are largely dis-
tributed. This is indeed observed in Figs. 5(a) and 5(b).
A first qualitative rule of thumb is that a stop band is
deeper when its frequency f is such that its correspond-
ing value at /k can be expressed as a rational number p/q
with a small q. This property stems from the above
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description of the quasicrystal as a superposition of
periodic systems of increasing periods: the larger the
number of periods in the relevant periodic system, the
larger the attenuation when the corresponding Bragg
condition is fulfilled (which occurs for a specific frequen-
cy). This is well observed for the special case at/A, =

—,',
which corresponds to the smallest possible value of q&1,
for which an attenuation of 75 dB is measured on the sys-
tem of 1000 grooves. The other stop bands seem to fol-
low this rule in general, but important deviations are ob-
served. For instance, the wide band around 147 mHz
corresponds to a value at/A, =

—,'„which gives a small q
(and therefore a relatively large attenuation as expected).
But, the attenuation measured at its center is significantly
larger than those measured for stop bands around
at/X= —'„which is in disagreement with the preceding
rule of thumb (since 9(12). Such deviations reveal that
important interactions between the propagation wave and
several equivalent periodic lattices are present, thus im-
plying that the above rule of thumb is too simplistic to
account for these eft'ects. A quantitative understanding
of this phenomenon requires the experimental study of
systems of largely difFerent sizes and a careful comparison
with the numerical study of the dynamical system de-
scribed above. We intend to come back to this problem
in a future work.

4. Finite si-ze sects on the spectrum

Looking at Figs. 5 —8, it is clear that we do not observe
the full Cantor structure predicted for the spectrum in an
infinite system. Of course, this comes from the finite
length of the system which contains (only) N =1000
grooves. Also, due to the fact that each groove is shallow
(h =0.3 pm) compared to the typical value of the wave-
length A, =20 pm, and thus possesses a relatively small
reAecting efficiency (p= 10 ), the largest stop bands are
rather narrow. If we note AA, ; the width of the ith gap,
then we have hA, /a ~ 2p where p is the amplitude
reAection coefficient per groove.

Let us quantify more precisely the efFect of the finite
size of the system on the detection of stop bands. In the
following argument we first note that a given frequency f
will be detected as belonging to a stop band if and only if
its transmission coeScient is not too close to one. In
practice we fix a threshold stating that if the transmission
is, say, 1 dB below the reference SA%' signal, then the
frequency qualifies as belonging to a stop band. We can
generalize this criterion by choosing a di6'erent threshold,
called t (for threshold in dB), for the decrease of the
transmission measured in dB. The second step of the
reasoning is to relate the transmission coeKcient to the
so-called Lyapunov exponent y, which is nothing else
than the inverse of the length gr of penetration of the
wave inside the system. For the ith gap, the amplitude of
the SAW decreases inside the system exponentially fast as
%(x)=+oexpI —y;x I with a characteristic decay equal
to the Lyapunov exponent y;. Thus, for a system of
length N, the transmission across it reads
T = ToexpI y;N I. Th—is gives a decrease T (expressed
in decibels) = 10(log, oe ) y; N =4.34y; N dB below the in-
put signal. Remember that in our case, p~10 and
N=IO . The last step of the reasoning is to relate the
value of the Lyapunov exponent y; to the observed width
AA, ; of the ith stop band:

179.00 =

1 75.00

171.00-

1 5/29
25/45

20/41
15/27

y,. =6k,. /a =e,-p,

where we note hA, ;/a =e;p where 0~ e; ~ 1. Using
y, =E,p, this yields T (dB)= —43.4e', Finally, the stop
bands which can be detected in our experiments must
satisfy the above criterion that T(dB) must be larger than
t, which gives

1 5'7.00

1 55.00

I 1 59.00 =

6/15
5/11

e; )co=0.23 (pN) 't

=2.3X10 t, with p=10 and N=10

(14)

'l 55.00 = 4/ 9

FIG. 8. Numerically determined finite-size spectrum ob-
tained from the transfer matrix formalism described in the text
and in Refs. 33 and 36—40 (see also Appendixes A and 8). Stop
bands lie within vertical spaces between unconnected horizontal
bars. Thick bars are due to close packing of such gaps. Values
of at/A, given by Eq. (9) are listed at the outmost right. The
vertical list of equidistant frequencies in the middle gives the
frequency scale. The comparison between Figs. 6 and 8 is good.

Choosing, for instance, t = 1 dB gives that only those stop
bands possessing a width AA, larger than a few 10 pa
can be detected in our experiments. This condition is
stringent since only the gaps which have a width larger
than the fraction E'p of the maximum possible width p will
be detected. This explains the experimental observation
that most of the spectrum looks like a set of eft'ective
passing bands separated by small gaps. The special fre-
quencies, which correspond to the surviving stop bands
in the finite-size system, are those for which the transmis-
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sion is small enough or conversely the reAection is large
enough in order to be detected.

If the length of the experimental system is increased,
the above estimation predicts that new stop bands will
become visible. Indeed, expression (14) shows, for in-
stance, that by doubling the number N of scatterers in the
system, the smallest stop bands which can be detected
possess a width which is half the width of the smallest
detectable stop bands in the shorter system. As a conse-
quence one expects to observe a much richer structure in
the experimental spectrum when increasing the size of
the system. This effect is clearly observed in Fig. 9 which
compares the spectrum (transmission coefficient as a
function of frequency) for two systems: the two figures on

the left (right) correspond to a system having N =1000
(2000) grooves. The two figures at the bottom (which
cover the frequency interval 140—160 MHz) show a
magnified view of the two figures at the top (which cover
the frequency interval 130—210 MHz). By comparison of
the smaller and larger systems, one observes two interest-
ing facts.

(1) The stop bands which were already present in the
smallest system of X = 1000 grooves are deeper and wider
in the larger system of N =2000 grooves.

(2) Furthermore, a "cloud" of smaller stop bands ap-
pear in the larger system, which were not visible in the
smaller system. This is particularly clear on the right
side of the main stop band which can be observed on the
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FIG. 9. Expenmental spectra in the frequency interval 130-210 MHz measured for two systems of two different sizes constructed

according to the Fibonacci sequence. (a) 1000 grooves; (b) 2000 grooves. (c) Gives a magnified view of the transmission coef6cient

presented in (a), in the interval 140—160 MHz; (d) is a magnified view of (b). The comparison between (a) and (b) [ic) and (d)] shows

that enlarging the system produces two main effects: (1}gaps are deeper in the larger system; {2)new gaps appear in the larger system

compared to the smaller one.
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two figures at the bottom.
This observation is quite interesting because it is in

agreement with our expectation that by increasing the
size of the system, one should eventually tend toward a
true Cantor spectrum, covered everywhere by a hierarchy
of stop bands, each stop band possessing of course its
own depth controlled by the period of the subsystem to
which it corresponds.

In addition to suppressing a large fraction of the total
number of stop bands in the spectrum, the finite size of
our experimental system has another important conse-
quence. The finiteness of the experimental system will
also entail a smoothing of the stop bands corresponding
to the finite number of digits used to represent the vari-
able at/A, . This can be best seen within the approxima-
tion introduced in Ref. 2 which amounts to replacing the
exact expression (10) for P„by the approximation

$„=2'fracInat/A, I .

With this approximation, the structure of the spectrum
can be understood qualitatively from successive principal
convergents of the irrational number at/). . This formu-
lation is particularly suitable to analyze precisely the
finite-system size efFect. Indeed, in a system of % =1000
grooves, the denominator q of the rational approximation
to at /i, cannot be greater than -X/2 since a finite sys-
tem of length n corresponds approximately to a periodic
system of maximum period -X/2. This means that
at/A, can be experimentally considered as an irrational
only if the following condition is verified: consider the
two successive rational approximations of at/A, , say p/q
and p'/q'. These two successive rational approximations
are experimentally distinguishable if and only if q and q'
are both less than -X/2. Let us therefore consider a
given value of the SAW frequency such that atlk, =p/q
with q ~K/2 corresponding to a given finite continued
fraction expansion of the form

Let us then consider the set of rationals close to p/q of
the form

with x = 1, . . . , ~. Transforming this truncated contin-
ued fraction to a rational p'/q', we determine x such that
q'-X/2. Then p' is easily obtained and the difference
p'/q' —p/q gives the interval in at/A, over which the
problem is equivalent to the propagation of a SAW on a
periodic lattice of period q.

Let us treat in detail the case when at/X=0. 5. The
measured width of this stop band is hf =0.6+0. 1 Mhz
yielding b,f/f =(3.5+0.5) X 10 . The theoretical value
corresponds to the two A, 's such that
(1+p, /2)cos2nat/1=1 which gives bf /f, h„,=3
X10 in reasonable agreement with the experimental
value, considering the imprecision of the measure of the
stop-band width. For this band we can estimate the size
of the frequency interval over which the system is
equivalent to a periodic system of period 2a. In the case
p/q =

—,', we have ro=0, ri =1, and r2=1. Then,
x =249, which yields p'/q'=250/499=0. 5010, roughly
corresponds to the measured width of the stop band
p/q —p'/q'-10 . Note that this last result is just
another way of quantifying the stop-band width. In this
case, the width and rounding due to finite-size efFects are
in fact of the same order. For other stop bands which are
predicted to be smaller, their observed width is thus lim-
ited by the finite-size rounding eQ'ect. Note that for
another rational number with a higher value of q, for ex-
ample, at/X=9/17, we have ro=0, ri =1, rz= 1, and
r3 =8. This allows us to obtain x =29 and
p'/q'=262/495 =0.5293. In this case,
p /q —p '/q ' —10 which is much smaller than for
p/q =1/2 and not measurable since the stop band is
smaller than the experimental spectral resolution.

5. Analysis of the impulse response

The information in the time domain is in principle
equivalent to that obtained from the spectrum discussed
in Sec. IIIC since it is obtained from it by a simple
Fourier transform. We have verified this point in our ex-
periments: the impulse response obtained experimentally
is indistinguishable from the numerical Fourier transform
of the experimentally determined frequency spectrum.
However, it gives a nice complementary picture of the
SAW propagation which may be in some cases more in-
tuitive. Certain features are much clearer in the time
domain. For instance, it can be very useful for locating
the position of the scatterers or at least, if the time reso-
lution is not sufhcient, for obtaining gross features of the
system by focusing on the time patterns.

With a central frequency of (f ) =173 Mhz with a
20% bandwidth, we expect a minimum width of the pulse
of the order of ht = 1.4X 10 ps corresponding to a spa-
tial width Ad =50 JMm for a SAW group velocity c =3470
m/s. Knowing precisely the length I, =15984 pm of the
system and measuring the time delay for the pulse to
reach the last groove and come back to the emitting
transducer, we measure the Rayleigh SAW group veloci-
ty c =21./(t, —to) with r&

—to =9.20+0.02 ps and ob-
tain c =3473+6 m/s which is in good agreement with the
expected value for lithium niobate at room temperature.

Figure 10 presents the SAW intensity emitted by the
launching transducer and received under refIection on the
receiving transducer as a function of time, over the whole
time span for which a useful signal larger than the noise
can be detected. Both transducers are placed on the left
of the system and the launching transducer is the farthest
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0-
! from a regime at times less than =2.4 ps for which the

impulse response is roughly a monotonously decreasing
function of time to the regime at larger times where a
well-ordered pattern of peaks appears corresponding to a
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FIG. 10. Large-scale time-impulse response under reflection
on the quasiperiodic system. The encounter with the first
groove corresponds to the time t, =1.15 p,s counted from the
launching time. This origin corresponds to the highest peak
occurring just before the reference peak at zero dB on the
figures (see text).
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away on the left. The SAW propagates from left to right
before being reflected by the system of grooves. The en-
counter with the first groove corresponds to the time
t, =1.15 ps counted from the launching time. This ori-
gin corresponds to the electromagnetic signal radiated
from the launching transducer and which has propagated
at the velocity of light to the receiving transducer. Com-
pared to sound velocity, the light velocity is as if infinite
and thus marks the origin of time. Just behind this elec-
tromagnetic radiated signal, one observes a peak at zero
dB on the figures which corresponds to the direct
transmission of the SAW from the launching to the re-
ceiving transducer. The length ct, corresponds to the
distance from the launching transducer to the first
reflecting groove and from it back to the reflecting trans-
ducer. We measure a reflected SAW signal around —35
dB below the incident SAW. In order to understand this
measure we propose the following explanation. Let us
consider that at any time the pulse of spatial extension
—50 pm covers roughly three grooves since 3a =48 pm.
Assuming an energy reflection =p per groove, the total
signal for the incoherent reflection over three grooves is
10 log&03p = —36 dB, taking p=9X 10 for the central
frequency. This is in good agreement with the measured
value.

Up to the time = 10 ps we measure essentially the con-
tribution from paths involving simple reflection. Beyond
this time we observe paths involving triple reflections on
three diFerent grooves of the system. The high peaks at
times =11—12 ps correspond to the reflection of the
SAW on the transducer placed on the right of the system
which is used in transmission measurements.

The most distinctive feature of Fig. 11 is the transition
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FIG. 11. Details of the time impulse response under
reflection shown in Fig. 10. The SAW is launched from one
transducer (T1) at the left of the system and is received by a
second transducer ( T2) placed in between the transducer (T1)
and the system. (a) The time impulse response at short times is
shown. Note the transition from a regime at times less than
=2.4 ps (the time t =0 is the origin of time at which the pulse
has been launched) for which the impulse response is roughly
monotonous to the regime at larger times where a well-ordered
pattern of peaks appears, as shown in (b). (b) This figure shows
the last single reflections on an individual groove or small
groups of grooves and the transition to a triple reflection regime
at long times t ~ 10.4.
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quasiperiodic temporal dependence. This transition can
be explained from a competition between the reflection
by different families of subsystems of increasing periods
in the quasiperiodic system. The first regime corresponds
to the reflection over an effective periodic lattice of
minimal period "a." This contribution decreases typical-
ly over a distance of the order a/p. Therefore, beyond a
time ht =a/cp, we will begin to observe the contribution
to the reflection stemming from larger periodic subsys-
terns. We can alternatively associate the duration At of
this first regime with the inverse 1/b,f of the width b,f of
the central peak at at/k=1/, 2. We have estimated it
above from the measured spectrum and also theoretically.
Indeed, the measured width of this stop band is
b,f=0.6+0. 1 Mhz and the theoretical value corresponds
to the two closest A, 's such that (I+p /2)cos2mat/X= 1

which gives Af =(c/mat)@=0. 5 MHz. Thus,
At=1.7—2 ps which is well in agreement with the ob-
served duration of the first regime on Fig. 11(a).

Beyond this regime we can identify several families of
peaks. Each family is characterized by a periodic separa-
tion but a nonconstant intensity. The family pointed out
by the arrows in Fig. 11(b) corresponds to a periodic time
delay of 0.314 ps between each successive peak, i.e., to a
distance 2d =1088+10 pm traveled by the SAW. Each
peak of this family corresponds therefore to a reflection
upon a groove (or a small set of grooves) separated by the
constant distance d=544+5 pm. But, this is precisely
equal to F~a =544 pm with F~ =34 and a =16 pm. This
gives the clue to search for different periodicities of the
form F a with j =4, 5, 6, . . . . Indeed, we can identify the
family F6=13 by a measured separation of 210+5 pm in
good agreement with F6a =208 pm. For F7 =21, the
measured separation is 340+5 pm which compares well
with F7a =336 pm. And so on.

The appearance of the different periods F4 =5, Fz =8,
F6= 13, F7 =21 F7 =21 F~ =34 F9=55 F]O=89,
F» =144, . . . , can be explained as follows. Consider,
for example, the successive words of 5 letters such as
"scssc," "sscsc" which appear in the Fibonacci sequence
(1). One observes that each such word always contains
three "s" and two "c" and even if the ordering is
different, the total length of the 5-word is always equal to
3s +2c. This shows the existence of the period F4 = 5 in
the system. The argument also holds for all successive
Fibonacci numbers and this explains the observed highly
structured pattern. The fact that for a given family, say
F&, we observe four subfamilies having the same period
but with different origins and intensities could be ex-
plained by the fact that each reflection stems from the
contribution of three grooves (due to the finite pulse
duration which overlaps over three grooves) and only
four different ordering of three letters appear in the
quasicrystal which are "scs," "css," "ssc," and "csc." To
each ordering corresponds a given reflection intensity
which controls the amplitude of the corresponding sub-
family.

In the large time domain, the reflected pulses have an
intensity decreasing approximately exponentially with
time (we observe a linear envelop in the logarithm of in-

tensity as a function of time in Fig. 10). This allows us to
extract the value of the SAW attenuation. Since the in-
tensity is decreased by 8.2 dB over a time scale of 4 ps,
we obtain a characteristic attenuation time of
21, /c =1.97+0.09 ps. This is in remarkable agreement
with the value I, /c=0. 98+0.05 ps determined by a
direct measurement of the spatial decay of the SAW
along the system, reported in Ref. 75.

IV. CONCLUSION

We have presented precise experimental results and
their interpretation on the propagation of surface acous-
tic waves propagating at the surface of a quasiperiodical-
ly corrugated solid surface. The surface was made of one
or two thousand grooves engraved according to a Fi-
bonacci sequence. This type of one-dimensional system
has been much studied theoretically in the literature in
the context of electronic or phonon propagation. It ex-
hibits many interesting transport features which recall
some properties of strongly disordered systems related to
Anderson localization. We have reported precise results
about the refiection and/or transmission frequency
dependence and the temporal impulse response of the sys-
tems. The propagation on the "quasicrystal" corre-
sponds to a critical regime of the localization transition
and we have given an experimental characterization of
the critical structure of the spectrum. We have shown
that its structure can be simply interpreted in terms of
successive approximation of the quasicrysta1 by periodic
subsystems of increasing periods.

These experimental results can be considered as pre-
liminary tests before undertaking the analysis of com-
plete1y disordered systems with their pure point spec-
trum, completely localized proper modes, and long tai1
characteristic time response. We will report on this prob-
lem in a future work.
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APPENDIX A

In this appendix we establish the connection between
the SAW propagation on a corrugated surface and the
tight-binding discrete Schrodinger model for electronic
transport in a random or quasiperiodic potential.



LOCALIZATION OF SURFACE ACOUSTIC WAVES IN A ONE-. . . 6769

1. The SA W transfer matrix '&na„=e "(1+i@„) '&np„=i@„e
Since (d =1) systems are always topologically or-

dered, ' the equations for wave propagation in any
(d =1) system at any energy or frequency can be cast
into essentially the same transfer matrix formalism. This
is true as long as reactive effects or long-range interac-
tions between neighboring (and sometimes distant)
scatterers can be neglected. Then, such a formalism is
able to predict the effect of dissipation, coherent losses
(surface to bulk detrapping), and energy storage at the
border of the grooves (due to the existence of evanescent
waves) on the propagation properties of the arrays. Con-
sidering symmetric scatterers and a local energy Aux con-
servation, we obtained in a previous work the general
form of the single symmetric scatterer transfer matrix for
(d =1) guided waves. It depends on four real parame-
ters. Two among the four parameters of the transfer ma-
trix have a simple meaning [similar to that for symplectic
matrices, ' one being related to the reAection coefficient of
the scatterer and the other to the typical longitudinal
scale of the (d = 1) scatterer]. The two other parameters
describe the coupling of the guided SAW with the leaky
bulk waves which corresponds to a kind of "coherent" at-
tenuation.

In a first analysis, let us neglect the role of this leakage.
This will simplify the theoretical modeling and allow us
to exhibit the salient features of the systems. We will ver-
ify directly on the experiments the validity of this
simplification, namely, that the leakage does not change
significantly the predictions on the spectrum obtained by
neglecting it. Then, the transfer matrix across a single
space-symmetrical groove is symplectic and depends on
two parameters.

To be concrete, let us consider a wave amplitude at
ik(x —xo)

point x of the general form: Y, (x)= Yi+e—ik(x —xo)+ Y i e ' before the scatterer and
Ik (x xo ) —ik(x —xo )Y~(x)= Yz+e + Yz e after the scatterer

which is located at x =xo. The general expression of the
matrix T is given by

'&np„' = i—p„e '&na„=e "(1—i@„)
(A2)

2. Correspondence with the Anderson tight-binding mode1

It is a very general result that one-dimensional wave or
Schrodinger continuous equations as well as 2 X2 transfer
matrix equations can be transformed exactly onto a
discrete (tight-binding) form. ' This correspondence may
be useful in order to relate our particular system to a
large class of problems already studied in other contexts.

In our case we note Y„=Y„++Y„ the value of the
SAW amplitude just before the nth scatterer (groove).
From the transfer matrix equation (Al) written for
n ~n +1, we obtain Y„+, as a function of Y„+ and Y„.
Since the matrices T„are unimodular, they are easily in-
verted with T„'= T„*. This allows us to write
Y„&=Y„+ i + Y„:ias a function of Y„+ and Y„by us-
ing Eq. (Al) for the transfer from n —1 to n Solvin.g for
Y„+ and Y„as a function of Y„+& and Y„, gives
Y„=Y„++Y„as a function of Y„+, and Y„& and thus
the following off-diagonal tight-binding equation:

To be concrete, consider the case of a Rayleigh SAW of
wavelength A, =2rrlk propagating at the surface of a solid
and impinging upon a groove of width w and depth h [see
Fig. 1(b)]. A perturbative-type theory of the single
scattering event, confirmed by experimental mea-
surements, shows that a portion p of the energy of the
wave is rejected and a portion p is converted to bulk lon-
gitudinal and shear waves. p /@=1/20 with p, =0.6
(hler, ) sin(2m. w/A, ) (Refs. 31 and 64—69) where h /1, plays
the role of the small parameter Lp, = h /A, and

p =20(h/A, ) ]. Typically, h & 1 pm and A. ~ 10 pm lead.
ing to hlk, and p in the range 10 ' —10 . For typical
values h =0.3 pm, w=5 pm, and f=170 Mhz with a
SAW group velocity of the order of 3470 m/s leading to a
wavelength X=20.4 pm, we obtain p=9X 10 pm.

+Y.+i

Y.+i

Y+
n

7l

n

'&n
e 0 a„b„

Y„

(A 1)
with

t„+i Y„+) + t„ i Y„—i
—E„Y„=0 (A3)

In the absence of leakage, symmetry under time reversal
imposes d =a*=(1—b)e' and c=b*. We consider
the case of inefficient or "small" scatterers such that the
typical value of the reAection coefficient for a single
scatterer is small. This is not a restriction since most sit-
uations fall into this class. Since 1/d
=

[ ( 1 b)e '~+ '
j

' i—s the amplitude transmission
coefficient, one expects

I
1/H I

=1 which implies lbl «1
and a « l. p has the meaning of a pure propagation de-
phasing. In a lattice of scatterers whose centers are posi-
tioned on [x„],P„=k(x„+,—x„) is the dephasing over
the distance separating the (n +1)th from the nth groove
and

I
b /d I

=p, is the energy reflection coefficient. The
amplitude reAection coefficient is p. The transfer matrix
T thus reads in this limit

t.+i=«.-i —a.' —i) —(p. -i —p.*-i),
t„,=(a„—a„*)—(p„—p„*),

E„=(a„+p„*)(a„ i
—p„ i )

—(a„*+p„)(a„*,—p„*,) .

(A4)

—[sin(P„, +P„)—2p. sing„, sing„] Y„=O . (A5)

We have used the fact that in our systems p„=p is in-

With the values of a„and P„given by Eq. (A2), this
yields the following equation governing the SAW propa-
gation over the groove array:

( sing„, ) Y„+,+ ( sing„) Y„
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dependent on n and that the inhomogeneous (quasi-
periodic) modulation enters only via the phases
tI)„=k(x„+,—x„). By changing the physical parameter
at our disposal, namely, the SAW frequency, we change k
and therefore the P„and also the "energy"
E= sin(P„, +P„)—2psing„, sing„. This means that
we are not studying a given tight-binding Schrodinger
equation as a function of its eigenenergies but, in con-
trast, look at the evolution of the response of a succession
of different tight-binding Schrodinger equations with a
particular energy, one for each value of the wavelength.

APPENDIX B

Theory for the propagation of SAW
on the quosicrystalline lattice ofgrooves

In the quasicrystal case considered in Sec. III,
P„=k(x„+,—x„) represents the modulation of the
groove position around their mean separation a.
therefore takes two values P, =kc and P, =ks which
occur following the Fibonacci sequence given by Eq. (1),
i.e. , with frequency p(P, )=t and p(P, )=t [we verify
that p (P, )+p(P, ) =1 since t is the inverse golden mean].
Note that P„can be coded by formula (2) given in the
text.

In order to describe the propagation of SAW on the
quasicrystalline lattice of grooves we use the transfer ma-
trix formalism introduced in Appendix A1. We follow
Kohmoto et al. ' and consider the SAW propaga-
tion through the Fibonacci multigrooved system S con-
stituted of I' grooves. The SAW propagation over the

distance s (c) is described by the corresponding transfer
matrix T, ~,~. For the sequence So = {s ], the total transfer
matrix is Mo = T, . For S, = {c], M, = T, . For
S2= {scI,M2=T, T„etc. Due to the simple recurrence
equation for the {SI, the corresponding transfer matrix
M obeys the simple recursion relation

M =M. 2M- (B1)

This equation is the same as the renormalization-group
equation for a quasiperiodic Schrodinger equation with a
step potential which has been extensively studied in Refs.
33 and 36—40. It can be considered as a dynamical map
in a three-dimensional space (u. &, uj. , u. +, ) when ex-
pressed in the reduced variable u. =(—,

'
) trace (M, ):

Qj+ )
—2u uj ( Qj

The map (B2) possesses a constant of motion

I uj + ] + uj +Qj ] 2uj + ]uj Qj ] 12 2 2

(B2)

(B3)

which means that the motion of a representative point
( u &, u ., u + &

) remains on a two-dimensional surface
defined by Eq. (B3). In our case we obtain from expres-
sion (A2) that

uo=(a&+a& )/2=(1+@ )'~ cos[P, +tp(p)],

u, =(a, +a', )/2=(1+@ )'~ cos[P, +p(p)],
u2 =(1+it )'i cos[P, +P, +2g(p)]+@ cos(P, —P, ),
where the phase y(p, ) is defined by tang(p)=p. We thus
obtain

I=p {sin [P, +y(p)]+sin [P, +tp(p, )]—2sin[P, +p(p)]sin[/, +y(p)]cos(P, —P, )[+O(p ) . (B4)

For deriving Eq. (84) we have used the identity
a&+az+a3 —2a&a2a3 —1=0 for a& 2 3=cos(P& 2 3) pro-
vided $3=(t), +$2. The constant of motion I represents
the strength of the effect of quasiperiodicity and it is
therefore reasonable that it should be proportional to p .
It also determines the size of the band gaps. A large I im-
plies a large gap and I =0 implies a vanishing gap. I van-
ishes for certain values of the SAW frequency indicating
that in this case the effect of quasiperiodicity is not im-
portant.

Since u represents half the trace of the matrix M, it
describes the spectrum of the commensurate problem
with a unit cell of length I' a. If

~

u.
~
( 1 for a given fre-

quency, this frequency lies in a band whereas if
~
u

~
) 1, it

is in a gap. As j~+~, for most frequencies, u will es-
cape to infinit and then certainly

~

u.
~

will become

greater than unity. Thus, most energies lie in a gap. We
have used this property to determine the finite-size spec-
trum described in the text. More information can be
found in Refs. 33 and 36—40.

As a final comment on this approach we note that
Kohmoto et al. have considered a similar problem in
which optical layers are constructed following the Fi-
bonacci sequence. However, they consider the case in
which the dephasing P, =P, =P and p, &@2. In this case,
the value P=(m + 1/2)m, corresponding to a A. /4 match-
ing, plays a special role since the map (83) has a six cycle,
namely, M- =M +6 for any j. This implies that the
transmission coefficient T has a rich scaling structure
around P=(m +1/2)m. . These features do not appear to
be present in our case due to the other choice P,WP, and

Pi P2 P.
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