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Localized lo~-frequency vibrational modes in glasses
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Using a larger data set and more detailed analysis, we continue our examination of the zero-
temperature vibrational spectrum of a glass of soft spheres by computer simulation. As in our
previous study [Phys. Rev. Lett. 66, 636 (1991)], a normal-mode analysis shows clearly the
existence of (quasi-)localized modes at the low-frequency end of the vibrational spectrum. The
modes are found to be localized around atoms whose neighborhood structure differs significantly
from the average glass environment and is reminiscent of that associated with interstitial defects in
crystals. The effective masses of these modes range upward from 10 atomic masses.

I. INTRODUCTION

Although both are elastic solids, glasses and crystals
of the same material exhibit strikingly different low-
temperature properties. At temperatures below 1K,
the heat capacity of an amorphous solid is significantly
greater than that of the corresponding crystal and ex-
hibits a nearly linear variation with temperature rather
than the T dependence predicted by the Debye model
which describes the low-temperature properties of the
crystalline phase. This anomalous behavior of the glassy
phase can be explained by assuming that the dominant
low-frequency contribution to the density of states of the
glass is due to two-level tunneling states.

This now-standard tunneling model is unable, how-
ever, to account for the anomalous behavior of the same
glassy materials at intermediate temperatures between
1 and 10 K, where the heat capacity is no longer lin-
ear in T. In this region, the heat capacity, C„ is still
considerably larger than the crystal value and a plot of
C„/Ts versus T shows a large peak that is either absent
or much less pronounced in the crystal. This peak seems
to be a universal phenomenon of glasses and is due to the
presence at intermediate frequency of a significant frac-
tion of low-energy states that are neither t, unneling states
nor sound waves. Recent neutron scattering experiments
have shown these additional states to be soft harmonic
vibrations that are localized to about 10 or more atoms.

It is plausible to assume that both the two-level states
and these soft harmonic vibrations have a similar struc-
tural origin. A theory exploit, ing this idea was developed
by Karpov et al. They describe both the two-level sys-
tems and the harmonic vibration states by soft anhar-
monic potentials for some effective reaction coordinate.
Fitting this model to the experimental data for various
glasses gives between 20 and 70 for the number of atoms
participating in the vibration. Even though such mod-
els are successful in providing a consistent interpretation
of the experimental data over the entire low-temperature
range, they, like the experiments they attempt to de-
scribe, have not answered the fundamental questions as

to the physical nature and precise structural origin of
either the tunneling or soft vibrational modes. A micro-
scopic understanding of these soft modes could give some
important insight into the physics of the glassy phase
and, perhaps, into the glass transition itself.

In a recent letter we presented results of computer
simulations that clearly showed the existence of localized
low-frequency vibrational modes in a simple soft-sphere
glass. Our results also showed that the neighbor shell
around atoms that participate strongly in these soft local-
ized vibrations is more compressed and contains slightly
fewer atoms than the corresponding environment of an
average particle. Thus, these modes can be viewed as be-
ing associated with "defects" in the glass. In this follow-

up paper we repeat these calculations using a larger data
base to give improved statistics and perform a much more
detailed analysis of the microscopic origin of these modes.

The approach we follow is similar to the study by Nagel
et al. of vibrational localization in a modified I ennard-
3ones glass, except that they concerned themselves only
with the high-frequency modes. I ow-frequency localized
vibrations were found in a computer generated model for
amorphous silicon by Biswas et al. , but interpretation
of the results is complicated by their use of a different
potential to calculate the vibrational properties than was
used to create the glass structure.

II. LOCALIZATION IN GLASSES

The idea of disorder-induced localization of excitations
is most familiar from studies on electronic systems.
Here, as the disorder is increased, the states at both the
high- and low-energy ends of the density of states become
localized erst, while those in the center remain extended.
For the case of phonons, however, true localization in
a disordered system occurs only for those states at, the
high-frequency end of the normal-mode distribution,
because in any elastic medium there are always acoustic
modes at low frequency, which are by nature extended.
Any low-frequency localized mode would then hybridize

6746 1991 The American Physical Society



LOCALIZED LOW-FREQUENCY VIBRATIONAL MODES IN GLASSES 6747

with these, destroying the strict local nature of the vibra-
tion. However, these hybrid modes retain their localized
character, e.g. , with regard to scattering properties. Such
states are termed as resonant or quasilocalized. These
low-frequency quasilocalized vibrational modes are very
important for the low-temperature properties.

The concepts of "localized" and "(quasi-)localized" vi-
brations are well known in the phonon theory of defects
in crystals. The former denotes a vibration with a fre-
quency outside the continuum of lattice frequencies. Such
a vibration cannot couple to the lattice modes and its
eigenvector decays exponentially with distance. These
modes occur commonly either for very light impurities
or for defects that cause large lattice strains such as self-
interstitial atoms. In a glass, this type of vibration will be
found in the high-frequency tail of the normal-mode spec-
trum. For low frequencies within the lattice continuum,
where the host density of states is very low, resonant
defect vibrations are possible. Such resonant modes are
similar to localized modes in the usual definition and are
often referred to as quasilocalized low-frequency modes.
Like true localized vibrations, the eigenvector of such a
mode is also localized to the defect and a few neigh-
bors, but generally not as strongly, and does not decay
exponentially. Evidence for the existence of such reso-
nant modes at low frequencies in addition to the usual
high-frequency localized modes was found by computer
simulation for self-interstitials in fcc metals by Dederichs
ef al. The existence of these low-frequency modes was
verified experimentally by neutron scattering. They are
a common feature of interstitials in random alloys. ~

The amount of localization can be quantified in terms
of the normalized eigenvectors, e&, of the vibrational
states, where the index j runs over all atoms in the sam-
ple and o, labels the Cartesian coordinate. The motion
of the mode is described by

f(t) e~

M.
2

where M~ is the mass of atom j and u (t) is its displace-
ment in the n direction. Without loss of generality we
assume atom 1 to have the largest displacement. Within
the harmonic approximation the kinetic energy of the
mode is then

where the effective mass, M,~ is defined as

Mi 1 2Mn. = —,—=Mi/i e

tion the efFective mass measures the fraction of the total
vibrational spectrum of the atom which is contained in
the resonant mode.

For localized and quasilocalized modes, M,~ is small
and system-size independent, whereas for extended
modes, it scales with the number of particles.

An alternative definition of localization often used is
the participation ratio

N) (4)

For extended modes, p is of order unity. For localized
or quasilocalized modes, it will scale inversely with the
system size.

The participation ratio can be used to define a partic-
ipation mass by

Mp@pt, :p¹

In this simple case we get

Mp~, t M,~/(N, m) .

The participation mass is always larger than the efFective
mass, the more the larger the fraction of the amplitude
in the long-range tails. In the limits of the most localized
and delocalized modes we have M,rr ——Mi ~ p = 1/N
and M,~ ——NMi —+ p = 1. For self-interstitials in fcc
metals one finds for the low-frequency localized modes
that M,~ 4 or 5 times Mi and for the high-frequency
ones about half that value. The effective mass is sen-
sitive to the defect-defect interaction two interstitials
clustered together will raise M,~ about a factor of 2. The
effective mass for tunneling transitions of these defects
was found to be similar to the one for the low-frequency
modes. ~

In a glass with its large distortions we expect to find
both types of localized vibrational modes. One cannot
expect to find isolated defectlike structures, but there will
always be strong interaction between such centers. Cor-
respondingly, we expect the single-defect effective masses
to be something like a lower limit of the ones in glasses.

The two masses M ~ and M&,t are only equal in a few
limiting cases. For example, if we assume the vibrational
amplitudes of the first N, atoms (N, (& N) are equal
while the amplitudes on the other atoms are of order
1/N we get

/Mn, 'f j&N, ;

(1 —N, m/M, rr)/(N —N, ), otherwise.

~ ~

~

M,~ is thus a measure for the number of atoms which ef-
fectively carry the kinetic energy of the vibrational mode.
Note that, this definition of the effective mass is valid for
not too large systems. For an infinite system the effective
mass of a resonant mode can be defined exactly in terms
of the vibrational Green's function. Our definition is
the limit for not too large finite systems. By this defini-

III. CREATION OF GLASS
CONFIGURATIONS

We perform a computer simulation for a system of soft
spheres interacting with an inverse sixth-power potential:
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To simplify the computer simulation and normal-mode
analysis, the potential was cut off' at r/cr = 3.0, and then
shifted by a polynomial, Ar +B, where A = 2.54x 10
and B = 3.43 x 10 e were chosen so that the potential
and the force are zero at the cutoA'. This form of the
shifting function was chosen so that its efFect is negligible
near r/o=1. .0. Quantities such as the pressure and
average potential energy will be changed by a few percent
as a result of this truncation, but any changes in the
equilibrium structure will be small. At any rate, our
interest is in the existence and characterization of low-
frequency localized vibrational modes in general, and not
in a quantitative description for any specific potential.

The inverse sixth-power potential was selected because
it is a well-studied theoretical model that qualitatively
mimics many of the structural and thermodynamic prop-
erties of bcc forming metals including the existence, in its
bcc crystal form, of very soft shear modes, and it was
hoped that this property would be reflected in a high con-
centration of low-frequency resonant modes in the glass.
As evidence of the universality of the phenomena dis-
cussed here, we also found low-frequency resonant modes
in one- and two-component I ennard-Jones systems, but
at such a low concentration that the collection of any
reasonable statistics would have been very diKcult.

We produce our glass configurations by quenching a
well-equilibrated liquid configuration of 500 soft spheres
(1024 for the larger system) produced via constant-
energy molecular-dynamics (MD) simulation jith cubic
periodic boundary conditions at a density po. = 1.0, and
temperature kT/e 0.54 (about 2.5 times the melting
temperature at this density ). For the simulation we
used the velocity-Verlet algorithm with a time step of
0.02—in units of (mo 2jc) ~ . The liquid is first quenched
within the MD simulation by velocity rescaling to a re-
duced temperature of about 0.04. The quench rate was
about 0.25k/(mo- e)'~ .

An estimation of the glass-transition temperature was
obtained by calculating the diAusion constant D of the
system at this density as a function of the reduced tem-
perature using the relation
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FIG. 1. Self-diffusion constant of the (1/r )-soft-sphere
system as a function of the reduced temperature (X = 500,
po = 1.0). The dashed line is a, power-law fit (see text).

time for such a nucleation to occur is an order of magni-
tude greater than the times considered here. Each sys-
tem is then quenched to zero temperature using a combi-
nation steepest-descent/conjugate-gradient algorithm. ~4

The resulting potential energy equals roughly the one
of the fcc crystal of the same density with about 1.5%
Frenkel defects. In all, 60 difkrent 500-atom configu-
rations and thirty 1024-atom glass configurations were
created in this way and analyzed, thus the total number
of normal modes was approximately the same in both
sample sizes. These numbers of configurations represent

D = lim —(I R,(0) —R(f) I'),
taboo 6g

where R.(t) is the time-dependent position vector of a
particle and & . . . & denotes a configurational average.
The diff'usion constant so calculated (shown in Fig. 1) is
very well fit by a fractional power law

D = A(T —To) (10)

with A = 0.191, o, = 1.21, and Tp ——0.085. That such a
fitting function so well describes the diAusion data is con-
sistent with the predictions of mode-coupling theory. ~

The temperature To can be taken as a lower limit for
the glass transition temperature, since below Tp diAusive
motion is eAectively frozen out. The above after-quench
temperature corresponds then to roughly half this Tp.

After the MD quench, each sample was aged for 1200
further MD time steps to stabilize the potential energy. It
should be noted that at this temperature the glass is not
stable indefinitely against crystallization, but the average
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FIG. 2. The configurationally averaged structure factor
for our inverse sixth-power glass at zero temperature.
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a factor of 2 (10) increase for the smaller (larger) system
over those used in our previously reported calculation.

To illustrate the glassy nature of our zero-temperature
sample and to aid comparison of this model glass to real
materials, we have also plotted (Fig. 2) the configura-
tionally averaged structure factor S(k) for our system.
This function was obtained by Fourier transforming the
configurationally averaged pair correlation function g(r),
using an integral equation method due to Verlet to cor-
rect for errors due to the truncation of g(r).

IV. SPECTRA AND LOCALIZATION
OF VIBRATIONAL MODES
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For each glass configuration the force-constant matrix
(using periodic boundary conditions) was calculated and
diagonalized using standard EISPACK routines on the
GRAY X-MP computer to yield the 3N (N = 500 or
1024) normal-mode frequencies and eigenvectors. The
participation ratio and efI'ective mass for each mode were
then calculated. These quantities were sorted by fre-
quency into bins of width 0.03 and averaged over all con-
figurations to yield a frequency profile. For the partici-
pation ratio, this frequency profile is plotted in Fig. 3 for
both the 500- and 1024-atom configuration sets.

The most obvious feature of this plot is the dramatic
drop of the participation ratio at both the high- and low-
frequency ends of the spectrum. The drop at the high end
of the spectrum is due to the usual high-frequency local-
ized modes. We argue that the low-participation ratios
at the low-frequency end of the plot are due to the pres-
ence of resonant or quasilocalized modes. One indicator
of the localized nature of these modes is that, for the very
lowest frequencies, the participation ratios for the 1024-
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FIG. 4. Participation ratios (p) of the individual modes
in one configuration plotted against the mode frequencies.

atom system are about a factor of 1.4 to 2 smaller than
those for the 500-atom system. The factor of about 2
expected from (4) is an upper bound which is reduced by
two efI'ects. First in a larger system the extended modes
reach down to lower frequencies, the minimal possible q
value scales with N ~3. Second, more important, in a
larger system there is more likelihood of interaction of
soft modes. Such an interaction causes an increase of p.
Further down we will show that such an interaction is
indeed observed.
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FIG. 3. The configurationally averaged participation ra-
tio plotted as a function of frequency for both the 500-atom
(stars) and 1024-atom (circles) systems. The error bars are
an upper estimate of the statistical error, obtained by coarse
graining.

FIG. 5. Spectrum of the participation ratios p averaged
over 60 configurations (E = 500) for all modes (solid line),
modes with v & 0.06 (dashed line), modes with 0.06 & v &
0.09 (dash-dotted line), and modes with 0.9 & v & 0.12 (dot-
ted line), respectively.
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The error bars were calculated by dividing the config-
urations into six sets of ten (five for the larger system)
and calculating & p(v) ) for each and the standard devi-
ation in the remaining six averages. Despite this coarse
graining, this error estimate is still influenced by the in-
herent scatter in p(v) and represents only a conservative
upper bound of the actual statistical error. An idea of
this inherent spread in the participation ratios for a given
frequency can be seen in Fig. 4 where the participation
ratios for aH modes in a specific 500-atom configuration
are plotted. Averaged over all configurations one can
in the usual way define a spectrum f(p) of the p values
for a given frequency. Figure 5 shows such spectra for
three frequency ranges where soft modes are found and
also averaged over all frequencies. The total distribution
of p is strongly peaked around 0.58 with a long tail to
small p values. This tail is mainly given by the localized
high-frequency modes. For the strongly localized modes
(p & 0.2) f(p) is nearly constant except for a cutofF at the
low end. The spectrum of p for the low-frequency modes
is substantially broader, but clearly shifted to lower p
values.

In terms of the efFective mass, defined in Eq. (3), we get
the same general picture. In Fig. 6 we plot the average
eA'ective mass as a function of frequency for both the
small and large systems. The details of averaging process
and error analysis are the same as for the calculation of
p(v). Except for a size-dependent change in scale, the
plot for the eA'ective mass is nearly identical in shape
to the corresponding participation ratio curve; therefore
the results of our study will be nearly independent of
the choice of localization criterion. Comparing Figs. 3
and 6 one sees that for N = 500 a participation ratio
of p = 0.25 corresponds on average to an eA'ective mass
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FIG. 6. The configurational?y averaged effective mass

plotted as a function of frequency for both the 500-atom
(stars) and 1Q24-atom (circles) systems. The error bars are
an upper estimate of the statistical error, obtained by coarse
graining.
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FIG. 7. The configurationally averaged vibrational den-

sity of states as a function of frequency for (a,) all modes (solid
line) and (b) all modes (N = 500) with p ) 0.25 (dashed line):
The inset is an enlargement of the lour-frequency tail of these
curves.

V. STRUCTURAL ORIG IN OF
SOFT LOCALIZED MODES

Some insight into the structural nature of these res-
onant, modes can be obtained by examining the two-
particle radial distribution function, g(r). In Fig. 8 we

plot this funct, ion calculated by averaging over all avail-
able zero-temperature glass configurations. Also, for each
low-frequency resonant mode (for both p, & 0.25 and

p, & 0.35), the particle with the largest clisplacement was
determined, and g(i ) calculated, using this particle as the

of M~g 25. Please note that there is no linear scaling
between M,~ and p or M&,q.

Figure 7 shows the configurationally averaged den-
sity of states for this system along with the same quan-
tity with all modes (97 in all) subtracted out for which

p, & 0.25—out of the 60 configurations only 7 contained
no such modes. This cutoK was arbitrarily chosen to
yield a clear distinction between localized and nonlocal-
ized modes; however, we have checked that the qualita-
tive features of our result do not change for cutouts in
the range 0.15 & p, & 0.35. The total spectrum has
the shape typical for a simple glass. 27 On both the high-
and low-frequency sides one sees localization. The weak
tail [Z(v) oc v ] of the extended modes for v —+ 0 is
suppressed due to the limited system size. The localized
modes at high frequencies comprise a fraction of about
10 of the total spectrum. The fraction of low-frequency
localized modes is an order of magnitude smaller. Nev-
ertheless the resonant modes make a significant contri-
bution to the density of states at, very low frequencies,
and, thus, would be expected to profoundly aA'ect the
low-temperature behavior of the glass.
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FIG. 8. The configurationally averaged two-particle radial
distribution function, g(r) measured (a) for the full system
(solid line), (b) using as the central atom only those particles
with the largest displacement for some mode (X = 500) with

p & 0.25 (dashed line), and (c) same as (b) but p & 0.35
(dash-dotted line). The inset shows the integrated form of
this quantity —the total radial particle number, E(r). The
error bars are estimates of the statistical error (see text) for
I ( 0.25.

where e (i) is the projection of the eigenvector for mode
i on atom m. For an extended mode this quantity should
grow as r2 since the amplitude of a given mode on each
atom should be approximately constant. A resonant
mode should give a slower rise. In Fig. 9 the configu-
rational average of Ek;„(r) contained in one periodicity
volume is plot;ted for p, = 0.25, p, = 0.35, and for the
overall average. As predicted the average Ek;„ increases
as r~ whereas for the localized modes the increase is more
rapid. In a sphere of, e.g. , r = 4u there is for the quasilo-
calized modes twice the fraction of the kinetic energy
than for the average mode.

We have seen that there is a strong indication that the
localized soft modes originate from some local structural
differences. This should reflect itself in the dynamics of
the single atoms. Let us first look at the Einstein modes
of the atoms, i.e. , the vibrations of the single atoms with
their neighbors at rest. Figure 10 shows the spectrum of
these modes averaged over all configurations of 500 atoms
each. As to be expected from the shape of the pair corre-
lation function, the spectrum shows a broad distribution
of Einstein frequencies. However, the Einstein spectrum
shows no tail to either high or low frequencies. No in-
formation on the nature of the localized modes can be
obtained from this spectrum.

More detailed information is contained in the local
spectra of the atoms. We define the local vibrational
spectrum of atom m in the standard way as

central atom. Averaged over all the resonant modes, this
quantity is also plotted in Fig. 8. [The error bars were
calculated as for p(v).] From these plots we can see that
the nearest-neighbor shell is more compt'essed and less
dense for the resonant-mode central atom than that for
the average particle. This first-shell particle deficiency
in the resonant g(r) is made up for by a small peak just
outside the first peak, after which the integrated particle
number (see the inset to Fig. 8) for the two displayed
distribution functions are nearly identical. The plots for
p, = 0.25 and p, = 0.35 are hardly discernible in Fig. 8
and also the plot for p, = 0.15 (not shown) looks identi-
cal within the statistical error. The diff'erence of the g(r)
of the resonating atoms to the average g(r) is, therefore,
insensitive to the chosen value of p, (0.15 & p, & 0.35).
It is also insensitive to the number of configurations used
in the averaging process, and is, therefore, a real effect-
not just a statistical fluctuation. Thus, the existence of
the quasilocalized soft modes cannot be derived from the
average structural properties of the glass, as is done, for
example, in the effective medium approximation.

Another measure of the spatial extent of the resonant
modes is the degree of localization of the kinetic energy.
Defining the central atom (atom 1) as the atom that has
for a given mode the largest amplitude (as we did in the
calculation of g(r), we can calculate the fraction of the
kinetic energy residing within a sphere of radius r about
this central atom as

IB.~ —KI
) gr

(12)

where the sum is over all modes i and e denotes the eigen-
vector. This local spectrum weights each eigenmode with
its squared amplitude on atom m. For an ideal crystal it
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FIG. 9. Fraction of the kinetic energy of the vibrational
modes contained in a sphere of radius r: (a) average over all
modes (solid line), (b) average over soft modes with p & 0.12
(N = 1024) (dashed line), and (c) as (b) but p & 0.17 (dash-
dotted line). rrg2 denotes half the periodicity length.
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FIG. 10. Configurationally averaged spectrum of Einstein
frequencies.
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is identical to the usual spectrum. The second v moment
of the local spectrum gives the Einstein frequency. Fig-
ure 11 shows the local spectra of three atoms averaged
over the three space directions. The local spectrum of an
atom which does not participate in localized vibrations
(a) looks similar to the average spectrum (Fig. 7). In (b)
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FIG. 11. Local spectra (see text for definition) of selected
atoms: (a) atom participating mainly in extended modes, (b)
atom participating in a high-frequency localized mode, and
(c) atom participating in both high- and low-frequency local-
ized modes.

FIG. 12. Contributions, E&;„, of the single atoms to the
total kinetic energy of localized modes as function of the dis-
tance of the atom to the central atom of the mode (N=500):
(a) high-frequency localized made (v = 2.02, M,s = 4.5,
p = 0.01), (b) noninteracting quasilocalized (resonant) mode
(v = 0.06, M, ir = 12, p = 0.06), and (c) interacting quasilo-
calized mode (v = 0.09, M,s = 49, p = 0.27). Note the
difFerent energy scales.
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we show the spectrum of an atom participating in a high-
frequency localized vibration but not in a low-frequency
one. Apart from the localized vibration above v = 2
the spectrum shows a broad distribution of modes, per-
haps slightly shifted to lower frequencies. Figure 11(c)
finally shows the spectrum of a mode participating in
a low-frequency localized mode. The spectrum shows
simultaneously a high-frequency localized mode. Such
spectra are familiar from self-interstitial defects in crys-
tals. The explanation is there that the high-frequency
localized modes are caused by the local compression of
the neighborhood of the interstitial. Frequently but not
always the local configuration is such that a vibration
is possible which does not, strain the compressed bonds.
Such a vibration can become soft (resonant mode) or
even unstable. This scenario is a possible explanation for
the observed spectrum and for the hard Einstein spec-
trum where the "soft" directions are compensated by
the hard ones. The atoms (or atom clusters) where the
low-frequency modes are centered would then be a sub-
set of the atoms participating in high-frequency modes.
Whether this picture is true for all low-frequency modes
cannot be determined with certainty at the moment since
the high effective masses of these modes mean low con-
tributions to the relevant local spectra. The pair cor-
relation functions for both sets of atoms show the same
compression of the first neighbor shell. As noted before
g(r) of the centers of the resonant modes has additional
intensity in the first minimum of the average g(r), Fig. 8.
This feature is absent for g(r) averaged over the centers
of all high-frequency localized modes. It might be the
signature of the structures allowing resonant modes.

VI. DISCUSSION AND CONCLUSION

Our investigation shows clearly the existence of lo-
calized low-frequency modes in accordance with recent
experiments and theoretical conjectures. These low-
frequency modes are found in much lower concentrations
(10 s) than their high-frequency counterparts. As is to
be expected, their localization is also much weaker. The
most localized modes are found to have effective masses
of about 10 to 30 atomic masses. The frequencies of
these modes are well below

&&
of the maximum vibra-

tional frequency. There is a broad distribution of effec-
tive masses. By its very nature computer simulation can
only give results on the low-mass side of the distribu-
tion. The transition between localized and delocalized
modes cannot be determined unambiguously due to the
limited system size. There seems to be a shift of the
mean effective mass with frequency but, especially at the
low-frequency end, the data do not sufBce to extract the
exact relation between mass and frequency. High- and
low-frequency localized modes are found centered around
the same atoms.

The two-particle radial distribution function, g(r),
for those atoms that maximally contribute to the low-
frequency localized modes indicates a structural differ-
ence to that of the average glass: the nearest-neighbor
distance is reduced and about one atom is pushed from
the nearest-neighbor shell into the region where the aver-
age g(r) has its first minimum. Whereas the compression
of the first shell is also found for the high-frequency lo-
calized mades the latter property of g(r) is not present
for these. It, therefore, might be caused by some addi-
tional feature only present in that subset of the configu-
rations leading to high-frequency localization which also
produced low-frequency localized modes.

At least partially, the width in the distribution of effec-
tive masses or participation ratios is due to clustering ef-
fects. It is well known from the studies of point defects in
crystal that these tend to cluster. We have seen that the
soft modes occur around atoms which have a surround-
ing different from the average and hence in some way
constitute defects. During the time the glass is cooled
down from the glass transition temperature to T = 0 K
some local rearrangements (relaxations) are still passible.
The high "defect" density present in our soft-sphere glass
makes it plausible that the defects will agglomerate. Such
agglomeration will regularly lead to an increase of the
participation ratio and effective mass. That agglomera-
tion has occurred in our simulation can be seen from the
eigenvectors of the modes. The quantity Ek;„=~ e (i) ~

is the fraction of the kinetic energy of mode i on atom
m, . To illustrate different possible situations we have for
three typical modes plotted in Fig. 12 the 50 largest
terms of Ek;„as function of the distance from the central
atom. For noninteracting localized modes this quantity
is centered around the central atom. This is observed
for the most localized modes, Figs. 12(a) and 12(b). For
less localized modes we find in some cases the kinetic
energy of one mode to be centered around two or even
three well-separated atoms [Fig. 12(c)j, which then par-
ticipate in two or three localized modes. We interpret
this as interaction of these modes. If the centers of two
modes are close neighbors the distinction between one or
two centers is no longer clear. This interaction of defects
explains also why there is a quantitative difference in the
average value of the participation of the soft modes for
different quenching procedures. A study of this interplay
of modes will be important for the understanding of low
temperature relaxations.
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