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Dynamic behavior of quadrupolar orientational glasses: K„Na, „CN mixed crystals
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The ultrasonic velocity and attenuation of TA[100] acoustic waves have been measured as a function
of temperature and frequency in K„Nal „CN mixed single crystals. Relaxation behavior is revealed by
comparing our ultrasonic c44 elastic sti8'ness data with hypersonic c44 data obtained from Brillouin
scattering. Combining ultrasonic velocity and attenuation data we are able to determine the Kramers-
Kronig ratio R in the disordered paraelastic phase and to estimate it in the orientational glass phase.
For the regime co~, &&1, R is a direct measure of the cooperative quadrupolar clamped relaxation time
r„which can be represented by the empirical form inr, = A, B,T i—n the paraelastic phase. Quadrupo-
lar relaxation processes in the orientational glass state are also discussed.

I. INTRODUCTION

Mixed crystals of K Na, CN have attracted consid-
erable recent interest because they exhibit an orientation-
al glass phase. ' In the dilute regimes 0&x &0.15 and
0.87 &x ~ 1, such mixed crystals undergo a weakly first-
order soft-mode phase transition to a long-range orienta-
tionally ordered ferroelastic phase. In the broad inter-
mediate composition range 0. 15 &x &0.87, long-range
order is frustrated and an orientational quadrupolar glass
is observed at low temperatures. ' Because there is no di-
lution of the pseudospin CN ions, no percolation effects
occur. However, the random distribution of cations of
different sizes has two effects —the lattice-mediated
CN -CN coupling is perturbed in the same way as in
K„Rb, CN (where ordering occurs for all x), ' and
large quenched random-strain fields frustrate long-range
quadrupolar (elastic) order. ' ' "

The phase diagram for K„Na, CN mixed crystals
was first established by dielectric and optical measure-
ments' and has been confirmed by x-ray and neutron
diffraction work. ' This diagram is shown in Fig. 1,
which also includes features obtained from our ultrasonic
investigation. A detailed dielectric study on glassy
K Na& CN crystals has revealed that dipole freezing
follows an Arrhenius law with a broad distribution of di-
polar relaxation times. The quadrupolar freezing pro-
cess has been characterized by studying the temperature
dependence of the c44 elastic shear stiffness constant with
inelastic neutron scattering, Brillouin scattering, ul-
trasonic measurements, and shear-torque experiments.
The high-temperature static behavior of c44(T) in K-rich
mixed crystals can be reasonably well described by
Michel's random-strain-field model, but Na-rich mixed
crystals show significant deviations from expectations
based on this model. Recently, Michel has extended his
theory to include a nonergodic instability at the onset of
the orientational glass phase. ' This extended model has
been used to explain the central peak intensity of quasi-
elastic neutron scattering in a sample with x =0.89. It

should be noted that there are many analogies between
the K Na& „CN quadrupolar glass system and
Rb, „(NH4) H2PO4 (RADP) dipolar glasses. '

In the present paper, we report the dynamic behavior
of K Na& CN mixed crystals as determined with ul-
trasonic techniques. The elastic constant c44 associated
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FIG. 1. Phase diagram for K„Nal CN mixed single crys-
tals. The order-disorder transitions for x &0.15 and 0.87&x
are weakly first order, and transition temperatures T&(x} are
based on dielectric data ( o ) from Ref. 1 and ultrasonic data (~ )
from Ref. 8. For samples forming an orientational glass, the ul-
trasonic echo pattern was lost on cooling and subsequently rees-
tablished at a lower temperature, as marked by + symbols. The
open squares indicate estimated values of the glass formation
temperature Tg.
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with the TA[100] acoustic mode involves a shear strain e4
with the same symmetry ( T2 ) as the cyanide quadrupo-
lar orientational order parameter Y. The velocity and at-
tenuation of this TA[100] mode have been measured
simultaneously as a function of temperature over the
range 7—300 K. The results for K Na& „CN are similar
to but more detailed than those reported for the dynam-
ics of Rb(CN)„Brt mixed crystals. ' In particular, ul-
trasonic data are now available in the orientational glass
phase.

II. THEORY

The Michel quenched random strain model' '" for the
static shear elasticity of cyanide crystals yields bc'(co—) = C(T)G (cur), (6a)

(=c from the above formulation). The quantity
c—=c(co)=pu is the real part of the complex stiffness,
where p is the mass density and v is the TA[100] shear ve-
locity at frequency co=2mf. The quantity ha is the
cooperative configurational attenuation at m.

For a simple Debye relaxation, one obtains the familiar
elastic relaxation equations' and R =r, = (co /c )~,
where co is the static stiffness, ~, is the constant-strain re-
laxation time, and r is the free (constant-stress) relaxation
time. In the case of critical behavior associated with
long-range ordering, linear response theory and dynamic
scaling concepts yield more general expressions for—hc'(cu}, —bc"(co), and R

C~ =1+by,
c44(0)

—b,c"(co)= C ( T)co~F(co~),
ZV

(6b)

where e44(0) is the low-frequency limit of the TA[100]
elastic constant, c~ is the "bare" stiffness expected in the
absence of the ye4 Y bilinear coupling term, y is the di-
mensionless free (constant-stress} orientational order pa-
rameter susceptibility, and b=y /c is a constant. ' '
The susceptibility in the presence of random strain fields
is given by C(1—q)/[T —T, (1—q)], where C is the Cu-
rie constant, T, is the critical temperature at zero stress
in the absence of random strains, and q is the Edwards-
Anderson glass order parameter with the high-
temperature form X/T . Thus one obtains

c~~ T —T, (1—q)

c44(0) T —To( 1 —q)
(2)

C44(CO) =C44+AC44(CO), (3)

where b c44(co) =b c44(co)+i bc 4'4(co) is the (negative)
complex "critical" or "con6gurational" contribution.
This quantity is given by

—b,C44(CO) =y y„(CO), (4)

where y is the bilinear coupling constant and y,&(co) is the
clamped (constant-strain) susceptibility (y, &

' =g
+y /c ). It follows that

which provides a good description of c44(0) data for
Rb(CN)„Br, , K„Rb& „CN, and K„Na& CN in the
disordered high-temperature phase. ' It should, how-
ever, be stressed that in the case of K Na, CN the
fitting parameters are physically reasonable for K-rich
mixed crystals but artificial for Na-rich mixed crystals.

In general, one needs to consider a complex
frequency-dependent stiffness

P

p F (cow) p arctanco~
zv G(cor) zv co

(6c)

where the relaxation strength C( T) varies like
(T —T, ) " and the free relaxation time r varies like
(T —T, )

' near a fluctuation-dominated critical point.
The scaling functions F(co~) and G(cur) both equal unity
in the cow&(1 limit; their complete forms are given in
Ref. 17. The approximate form for R given in Eq. (6c} is
a good approximation for all cow when p/zv~0. 2S. In
this case, the Kramers-Kronig ratio has the limits
R ~(p/zv)~ for co (r0. 2 and R ~(p/zv)(m/2') for.
cow) 30. In the limiting case where p/zv= 1, R =r for
all co~. For cyanide mixed crystals that exhibit long-
range orientational orderings, Eqs. (6) should pertain
with some modified version of the ~ temperature depen-
dence. "Smeared" or rounded versions of such critical
behavior might be observed due to the inhuence of
nonzero random strain Aelds.

For cyanide mixed crystals that form an orientational
glass phase at low temperature, it seems more appropri-
ate to utilize a temperature-dependent distribution of re-
laxation processes g (r, T) that becomes very broad at low
temperatures. In view of the analogy between quadrupo-
lar cyanide glasses and the RADP dipolar glasses, we
have followed the treatment of Courtens et aI. ' in as-
suming a rectangular (tlat) distribution of constant-strain
relaxation times with a short-time cutoff ~ and a long-
time cutoff r, . The latter value is strongly temperature
dependent. For this model, one has

y )(a), T)=y, ,(T)I(cow)=y, ((T)I ' d Inc,
0 1 EEOC

where g,&( T) is the clamped static susceptibility, ' and
—b,c'(co)=y y,',(co)=c„—c,

bc "(co)=—y y,'I(co) =2pv b,a/m,

(Sa)

(Sb)

1 arctan(co~, ) arctan(co~—)R=—
~ In(v;/r ) ——,'in[(1+co 2)/(I+co r )]

1 &cl 1 b c"R—:—
~ X,', co hc'

c 2vha
(c —c) (Sc)

This expression for the Kramers-Kronig ratio has several
limiting regimes of interest:

where R is the Kramers-Kronig ratio. The subscript 44
has been dropped, and c is the infinite-frequency limit

C(i) R=, for car (( I, car, &0.4,
ln ~, /~
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(ii) R =
(
—incor~ )

arctanco~,
x=0. 30

100

for cga ((1, cor, ) 10, (10a)

1

( —incor ) 2'
for cor ((1, cur, )30, (10b)

2—
E

a at 10 MHz
+ c&& at, 10 MHz

- 80

CL
CD

— 40

(iii) R -=2r, for cow ~10, cur, ~~ .

The available cyanide data in the disordered paraelastic
phase fall in the cor regime of Eq. (9) and low-
temperature data deep in the glass phase should conform
to Eq. (10). It appears that the regime of Eq. (11) is never
realized for ultrasonic data on cyanide mixed crystals.
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III. EXPERIMENTAL RESULTS

The K Na, CN single crystals have been described
previously in connection with a study of the temperature
dependence of the static acoustic velocity in the paraelas-
tic regime. For the present investigation, the surfaces of
the samples were further polished to reduce any non-
parallelity to less than 1 pm in a thickness of -5 mm.
The room-temperature lattice parameters determined by
powder x-ray diffraction were well described by the linear
relationship a (A) =5.886+0.635x, which agrees well
with recent neutron diffraction measurements. '

The ultrasonic measurements were made with a
coherent phase-sensitive technique that has a wide dy-
namic range and good single-to-noise ratios for weak sig-
nals. See Ref. 10 for details of the method and acoustic
bonding of the lithium niobate transducer to the samp1e.
The only modification of the previous procedure was to
use propyl and isobutyl alcohol as bonding materials in
the 80 K & T & 170 K range.

The velocity u and attenuation a of shear waves propa-
gating in the [100] direction were measured simultane-
ously as a function of temperature for several frequencies
(-10, 32, 54 MHz) in five K„Na, „CN samples with
x =0.30, 0.44, 0.60, 0.73, and 0.88. Temperature was
scanned slowly (less than 2 K/h in critical regions), and
the agreement between cooling and warming runs was
good. No velocity dispersion (i.e., no frequency depen-
dence of U) was observed; 10-MHz-velocity data are
presented since reliable absolute values are available over
the most extensive temperature range.

The temperature dependence of the elastic stiffness
c&4=pu and the 10-MHz attenuation a are shown for
samples with x =0.30, 0.44, and 0.60 in Figs. 2, 3, and 4,
respectively. In each case there is a region where data
are missing due to a very high level of attenuation. On
cooling, the echo pattern became progressively weaker
until all the echoes disappeared. Then after further cool-
ing, echoes slowly reappeared at a lower temperature.
This change in echo pattern was reversible on heating,
and "annealing" the sample for -4 h in the gap did not
cause any echo pattern to develop. A similar behavior
was observed for a Rb(CN), Br, sample with

FICz. 2. Shear stiffness c«and acoustic attenuation a for
Kp 3pNap ppCN. The smooth curve is an estimate of c« in the
gap.

x-0. 44

a at 10 MHz 100
+ c&& at 10 9Hz

3 lee

O
50

I

100 200

FICi. 3. Shear stiffness c44 and attenuation o. for
Kp 44Nap g6CN. The smooth curve is an estimate of c44 in the
gap.

x =0.19.' The background attenuation level ao shown in
Figs. 2 —4 represents the noncritical contribution ob-
served far from the phase transition or glass formation
temperature. The value of ao is independent of T in the
paraelastic phase (over the 90—170 K range)' and in the
glass phase.

The c44 data in the paraelastic phase (90—300 K) have
been analyzed previously in terms of a quenched-
random-strain-model. Using the fitting parameters ob-
tained for this model, one can calculate Tf, defined as the
temperature where c~ should go through a minimum
value for glass-forming samples or go to zero for samples
that exhibit long-range order. ' The glass-formation tern-
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perature T lies below Tf and estimates of T defined as
the attenuation maximum at 10 MH z are given in Fig. 1.

Attenuation data were also obtained on two other sam-

p es, but only in the paraelastic phase. F 1

x =0.73x = . , the echo pattern below T was too weak and
distorted to provide reliable dat Fa a. or a sample with
x =0.88, long-range ordering occurs at —130 K
scat tering from antiphase domains destroys the echo pat-

a — and

tern, as it does for K„Rb
&

CN crystals. The paraelas-
tic attenuation in these two samples

'
hp es is s own together

with that from the other samples in Fi . 5. Thin ig. ~ is figure
presents the temperature dependence of b, / 1a co ca culat-
e rom - Hz data. All ultrasonic attenuation data in
the paraelastic phase of Rb(CN) Br 1'kr

&
vary i e co, this

quadratic scaling is likely but has not been established for

tion
K a, C . Due to pulse distortion and hi h att
ion levels, no reliable a data could be obtained in the

paraelastic phase at 32 and 54 MH Th b
frequency data were obtained at 30 MHz for the x =30
and 0.44 samples over the range 100—120 K. The
could not be

ese data

Aa T cur
not be scaled quadratically onto the 10 MH

( ) curve, but the poor echo pattern (a single distort-
e z

ed echo and very limited frequency and temperature
range make this observation inconclusive.

Only 10-MHz data could be obtained below T~ for the
samples with x =0.30 and 0.44. In h

0 6 ao 4 ow-temperature data were obtained at
three frequencies in the glass phase and the attenuation
variations are shown in Fig. 6. Th 10-MHe - z attenuations
are accurate absolute values based on two echoes How-
ever, the 32- and 54-MHz attenuations are relative values

ase on t e temperature dependence of the
o e rst echo (the only undistorted echo observable).
Their absolute values can be rou hl t d fg y es imated from pre-

but not reci
vious experience with echo patterns on the 11e osci oscope

ut not precisely established. We have proceeded by as-
sumin that Ae =g =e —ao should scale with frequency like

10-13

K„Na CN

+ x=a. 30
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x=a. 60
x=a. 73
x=a. 88
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ee". With the values a(32.4 MHz) and a(54.4 MHz
shown in Fi . 6ig. , one obtains an excellent scaling over a
range of -20 K with n = 1 .3, as shown in Fig. 7. Indeed,

e limits on n are rather tight: n = 1 .3+0. 1 5 for 95%

a(32 MHz) or a(54 MHz) values; thus the present data
are inconsistent with co scaling. Th 1'd 1e so i ine in Fig. 7
is the best fit with an empirical form ha/co'
=(1.77X10 '

) exp(0. 064T).
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FIG. 5. Semilog plot of Aa/~ vs T for 10-MHz
isor ere paraelastic phase. The sample with x =0.88 un er-
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~

——130 K.
x = . under-

The smoot curve for the rubidium mixed t l
'

crys a is ta en from

x=Q. 60

8
8

O
O

a at 10 MHz
+ c44 at 10 MHz

40 m

20

100-

75—
R
UI
es 50—

x=a. 60

~8'

O
0

+ 10. 4 MHz

32. 4 MHz

54. 4 MHz

0
0 100 200

0
300

25-
o = '0

FIG. 4. Shear sti n

Ko Na C
sti ness c44 and attenuation fa or

a e o c44 in t eo.6o o.4o ~ e smooth curve is an estimate f

I

10 20 30
T N)

40 5D 60

FIG. 6. Tern perature dependence of acoustic attenuation for
Kp 6pNao 4pCN at three frequencies in the glass phase.
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x=0. 60

+ 10. 4 8Hz.
0 32. 4 HH2'.

54. 4 9Hz

of shear elasticity in the paraelastic regime and with the
behavior of c44 and Ao; in the orientational glass phase.

Let us first consider the sample with x =0.88, which is
the only one investigated that undergoes a phase transi-
tion into a long-range ordered phase. As shown in Fig. 5,
the temperature dependence of the attenuation for this
sample is considerably difFerent from the other
K Na

&
CN crystals but closely resembles that for

Rb(CN)p 79Brp 2„which also undergoes a phase transi-
tion. ' ' Taking r=(c„/cp)R, using cp=c(10 MHz) and
c =cb'"=5.68X 109 N/m (value given in Ref. 8), and
representing ~ by

1 rp[(T —Tf )/Tf [ =rp)t( (12)

10-10
0 10 20 30

T (K)

40 50 60

FIG. 7. Scaling plot of Kp 6pNap 4pCN attenuation data in the
glass phase (see text).

IV. DATA ANALYSIS AND DISCUSSION
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A previous analysis of the static elastic shear behavior
for temperatures above T has shown that K-rich mixed
crystals were quite well described by an extended version
of the quenched-random-strain model but that Na-rich
crystals exhibit significant systematic deviations from the
model. We are concerned here with the dynamic aspects

as was done for Rb(CN)p 79BIp 2] we find from a least-
squares fit ~p=2. 36X10 ' s and zv=4. 5. The Tf value
was held fixed at 119 K, which is the value obtained from
the static velocity fit. This power-law variation of ~ for
Kp 88Nap ~2CN must be viewed with considerable caution
since (a) only a very narrow t range is available
(0.09—0.18), (b) there was a distortion of the echo shape
when T was close to Tf and (c) any concentration gra-
dients would play a large role because x =0.88 is just at
the boundary x, between regimes of long-range order and
orientational glass formation (see Fig. 1). The critical ex-
ponent zv=4. 5 is far from the conventional van Hove
value (zv=1) that is found for KDP-type ferroelectrics
having bilinear piezoelectric coupling' and from critical
Iluctuation values ranging from zv=1. 28 (3D Ising) to
zv=1. 43 (3D Heisenberg). ' It is, however, quite similar
to the value zv=3. 7 obtained for Rb(CN)p79Brp2, .'
Furthermore, there are theoretical predictions that z =6
for a spin glass, ' in which case zv=3 to 4 since v= —,

'

(mean-field) to ——', (critical Iluctuation). Perhaps these
random-strain cyanide systems are more closely related
to spin glasses than critical order-disorder systems.

Returning to Fig. 5, it is clear that for samples forming
orientational glasses the behavior of Ao, above T is
difFerent for K-rich (x =0.60 and 0.73) and Na-rich
(x =0.44 and 0.30) samples. The Kramers-Kronig ratios
R as calculated from Eq. (5c) are shown in Fig. 8 in the
paraelastic regime for x =0.30, 0.44, 0.60, 0.73, and 0.88
samples. A smooth curve representing the data for
Rb(CN)p ~98rp 2, (Ref. 14) is also included for compar-
ison. These 8 values were calculated with the assump-
tion that c values are equal to the c values given in
Ref. 8. For co~, && 1, R is a direct measure of the
cooperative constant-strain relaxation time ~, . Upon
cooling, the quadrupolar relaxation time increases as ex-
pected since the system is freezing into an orientational
glass state.

The R (or r, ) values for T) T in glassy K Na& „CN
samples (0. 15 (x (0.87) can be well represented by the
empirical expression

FIG. 8. Kramers-Kronig ratio R given by Eq. {5c) for
K Na& „CN samples. The line indicates the R values of
Rb(CN)p 79Brp» taken from Ref. 14. For co~, && 1 as here, R is
a direct measure of the cooperative constant-strain relaxation
time ~, .

ln~, = ink = A, —B,T, (13)

which is also observed for Rb(CN), Br, „samples with
x &x, . Values of parameters A, and 8, are given in
Table I, along with the analogous A and B that represent



6736 Z. HU, A. WELLS, AND C. W. GARLAND

TABLE I. Least-squares values of the parameters A, and B, in lnr, =A, —B,Tand A and B in ln v.= A —BT, where ~, and ~ are
the relaxation times at constant strain and constant stress respectively. The temperature range of each fit is also given.

0.30
0.44

0.60
0.73
0.88

T
range (K)

115-160
94-132

132-150
106-132
106-126
130-139

—18.58
—18.77
—14.31
—14.48
—14.39

9.93

B,

0.045
0.045
0.080
0.088
0.097
0.282

0.98
0.93
1.01
1.16
1.62
5.41

—16.56
—17.31
—12.61
—12.57
—10.78

21.81

0.045
0.044
0.080
0.090
0.106
0.344

0.99
1.05
1.01
1.19
1.68
4.10

the ln~= A —BTbehavior, where ~ is the relaxation time
at constant stress. The R values for the x =0.88 sample
exhibit systematic deviations from Eq. (13) at the low-
temperature end of its narrow range, which distinguish
this sample from glassy samples. Note also that the R
curve for the x =0.44 sample bends rather sharply at
—132 K. Parameters for x =0.44 were obtained by
fitting Eq. (13) to data over two temperature ranges:
94—132 K and 132—150 K.

We have also tried other functional forms for ~ that are
commonly used to describe the relaxation behavior in
glassy systems, including an Arrhenius law
r=r„exp(E/T), a Vogel-Fulcher law r=r„exp[E/(T
—To)], and a power law. None of these yields satisfacto-
ry results, in agreement with the conclusions of our
analysis of the quadrupolar acoustic relaxation in glassy
Rb(CN), Br, samples. ' In spite of the systematic
character of the deviations, the poor y values, and physi-
cally unreasonable parameter values (see Ref. 14), Ar-
rhenius fitting parameters are given in Table II to facili-
tate a comparison with published fits to dipolar relaxa-
tion behavior as determined from dielectric measure-
ments on K Na, CN. There is no real correspondence
between these two relaxation probes: dielectric data
characterize the single CN electric dipole reorientation
and ultrasonic data characterize the cooperative quadru-
polar relaxation. Dipolar relaxation is 10 to 50 times
more rapid than quadrupolar, and its temperature depen-
dence is different. Although the phase diagram for
K Na, CN strongly resembles that for the dipolar
glass systems RADP, the dynamic behavior seems
difFerent. For the latter system, the cooperative (dipolar)
relaxation time follows a Vogel-Fulcher law over a wide

temperature range. ' For the cyanide system, ~ grows
more slowly on cooling than expected from an Arrhenius
fit rather than more rapidly as required for a Vogel-
Fulcher form. That is, deviations from Arrhenius behav-
ior are opposite to those modelled by the Vogel-Fulcher
form, as was also observed for Rb(CN) Bri .' Unfor-
tunately, these ultrasonic data characterize ~ only over a
narrow range of -40 K.

Not enough data are available to allow a more exten-
sive analysis of the x =0.73 sample, but low-temperature
(T( Tg ) data exist for the other three glass formers and
they will be analyzed over the temperature range 0—150
K along with analogous data for Rb(CN)0»Bra s, over
the 0—55 K range (see Fig. 3 in Ref. 10). In addition to
ultrasonic c44 and ha data in the orientational glass
phase for samples with x =0.30, 0.44, and 0.60, there are
recent Brillouin scattering c44 data over the entire 0—300
K range for K„NaI CN crystals with x =0.19, 0.31,
and 0.59. This allows a direct characterization of disper-
sion effects for the latter two samples. The elastic con-
stants c4~ measured by ultrasonic (US) techniques at 10
MHz and Brillouin scattering (BS) techniques at —6
GHz are shown as a function of temperature in Figs. 9
and 10 for the x =0.30 and 0.60 samples, respectively.
The smooth curves are alternate choices for the infinite
frequency limit c,which will be discussed later.

Inspection of Figs. 9 and 10 shows a clear velocity
dispersion at intermediate temperatures near T but rath-
er little dispersion at the lowest temperatures or above
—170 K. In the paraelastic regime far above Tg (say
T) Tg +75 K), there is no dispersion between BS and US
data for x =0.60 and only a small "non-critical"
(temperature-independent) dispersion for x =0.30. The

TABLE II. Least-squares values of the parameters E and ~„ in the Arrhenius expression
exp(E/T). It should be stressed that this form provides a poor representation of the data (see

text).

0.30
0.44
0.60
0.73
0.88

T
range (K)

115-160
94-132

106-132
106-126
130—139

E(K)

825
552

1231
1398
3486

3 ~ 19X 10
1.56 X 10-"
2.44 X 10
5 30X 10
2.22 X 10

5.70
4.86
2.29
2.05
5.03
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FIG. 9. Ultrasonic (US) shear stiffness data at 10 MHz and
Brillouin scattering (BS, Ref. 7) data at —6 GHz for
Ko 3Nao 7CN, together with two choices of c„:( 1 ) c =c '"' for
all temperatures, (2) c„=c '" for T) 180 K and a lower c
choice for T & 180 K (see text).

presently available data are not conclusive, but it appears
that no dispersion occurs in the high-temperature parae-
lastic regime for K-rich samples, but a small
temperature-independent dispersion does occur for Na-
rich samples. Behavior similar to that exhibited in Fig. 9
can be inferred for a x =0.19 sample, where both Bril-
louin and neutron scattering (NS) data are available. '
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FIG. 10. Ultrasonic (US) shear stiffness data at 10 MHz, Bril-
louin scattering (BS, Ref. 7) at -6 GHz, and neutron scattering
(NS, Ref. 6) data at -0.7 THz for Ko 6Nao 4CN, together with
three choices of c: (1) c =c '"' for all temperatures, (2a) and
(2b) c =c"'" for T) 160 K and lower c choices for T& 160
K (see text). The absolute values of the NS data are somewhat
unreliable, and NS data points have been shifted up by 0.7 X 10
N/m to avoid unphysical negative dispersion at low tempera-
ture and near room temperature.

The BS and NS data agree well for T)200 K and T & 60
K and show dispersion at intermediate temperatures. By
interpolating between our published ultrasonic data for
x =0.13 and 0.30, we can obtain an estimate of c44 at 10
MHz for x =0.19. This US cz-vs-T curve is parallel to
but 0.3 X 10 N m below the BS curve over the range
165—300 K. Between —130 K and 165 K the US curve
lies even lower, as expected in the region of "critical"
dispersion on approaching T~. A temperature-
independent dispersion between BS and US elastic con-
stants has also been observed in pure NaCN, where the
effect has been attributed either to noncritical dispersion
or to the existence of inhomogeneous structures in the
crystal. ' Specifically, inhomogeneities due to mosaic
grains are quite common for Czochralski-grown samples,
and angular-resolved Brillouin scattering has revealed
such mosaic regions in Na(CN)„CI&, mixed crystals. '

In contrast to this, there is no high-temperature paraelas-
tic BS/US dispersion in pure KCN or CN-rich mixed
crystals of K(CN) Br, „or K(CN)„C1,

The temperature-independent dispersion between US
and BS c44 data in the paraelastic regime of Na-rich sam-
ples cannot be explained by experimental errors. Al-
though the room-temperature density and path length are
used for calculation of the ultrasonic elastic constant over
the entire temperature range, the error due to this is es-
timated to be less than l%%uo. The approximation of using
room-temperature density and refractive index only
yields a 1% error in Brillouin elastic constant data. The
difference in the noncritical high-temperature dispersion
behavior between Na-rich samples and K-rich samples is
not surprising since previous studies have revealed
significant differences between Na-rich and K-rich crys-
tals: (a) different orientational probability functions for
the cyanide ion in Na- and K-rich crystals are shown in a
neutron diffraction experiment; (b) the static shear elas-
tic constants of K-rich samples are in better agreement
with the random strain model than those of Na-rich sam-
ples; (c) an x-ray study shows that samples with x (0.05
exhibit a first-order phase transition with the lattice con-
stant undergoing a S%%uo change, whereas samples with
x )0.95 undergo almost second-order phase transitions
with only a 1% change in lattice constant. The asym-
metry in the behavior of Na-rich and K-rich crystals is
also supported by a recent molecular dynamics calcula-
tion which shows that there are two different local or-
dering mechanisms: Na+ ions act as nucleation centers
to align neighboring CN along a [100] direction, while
K+ ions tend to align neighboring CN along a [111]
orientation.

In summary, critical (temperature-dependent) shear ve-
locity dispersion between US and HS data is observed on
cooling below Tg +75 K and disappears again at low tem-
peratures. For the available US data in the paraelastic
regime above T~, co~, &&1 as in the disordered phase of
most order-disorder systems. In the glass phase at low
temperatures, the absence of dispersion indicates that
co~, && 1 or m~, )) 1 for data over the 10—700 6Hz range.

Let us now consider the analysis of cooperative dynam-
ical behavior in the orientational glass phase. In order to
extract ~ values from the experimentally known
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FIG. 11. Kramers-Kronig ratio R as a function of T for the
x =0.30 sample as calculated from Eq. (5c). Curves (1) and (2)
correspond to choices (1) and (2) for the c values shown in Fig.
9. The solid lines are guides for the eye.
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FIG. 12. Kramers-Kronig ratio R as a function of T for the
x =0.60 sample as calculated from Eq. (5c). Curves (1), (2a),
and (2b) correspond to the choices for c values shown in Fig.
10. The solid lines are guides for the eye.

—hc"(co), one must determine the relaxation strength
[C(T) or y y,t(T)] and the form of the frequency-
dependent relaxation function [(p/z v )corF(cor ) or
I"(cur, )]. The relaxation strength equals (c —co); thus
its determination requires both c „and co (the co~0 lim-
iting stiff'ness) as functions of temperature. In the case of
paraelastic data, the situation is simple:
co=c(10 MHz), c is known from independent static
Ats with the quenched random-strain-Geld model, and the
relaxation function is simply co~. However, in the glass
phase the situation is more complicated: co is uncertain,
c is not known, and the relaxation function is compli-

FIG-. 13. Kramers-Kronig ratio R as a function of T for
Rb(CN)o &9(ar)o „.Experimental data taken from Refs. 10 and
14. Curve (1) is based on c„=c '"=3.9$X10 N/m as o
tained in Ref. 10 from fits to the static elastic behavior. Curve
(2) is based on c =2 20 X 10 N/m for T( 15 K rising
smoothly to c =c '"' for T) 3S K, much like curve (2) in Fig.
9.

cated and imperfectly known. A better general approach
for the evaluation of ~ is to use the Kramers-Kronig ratio
R. The determination of R requires only known c and
Aa data plus a choice of c (T). The interpretation of R
requires only the ratio of the imaginary and real parts of
the complex relaxation function [(p/zv)co&F(cur)/G(cur)
or I"(cur, )I'(cur, )], which has a simpler form than the
imaginary part alone. This approach was already used in
Fig. 8 for the determination of the ~, behavior in the
paraelastic phase.

The behavior of R over the 7—150 K temperature
range for K Na& CN samples with x =0.30 and 0.60 is
shown in Figs. 11 and 12, respectively. The R values for
x =0.44, which are not shown, are very similar (-10%
larger) to those for x =0.30. The analogous plot for
RbCNO»Bro s, (for detailed data, see Ref. 10) is present-
ed in Fig. 13 over the temperature range 7—60 K for
comparison.

The R values in Figs. 11—13 are based on two limiting
choices of c ( T): (1) a large T-independent value
c =c and (2) a low c value that is constant in the
0—30 K range and then rises to become c above —160
K. These alternative c choices are shown in Figs. 9 and
10. The c values represent a linear interpolation be-
tween the bare c«values for pure NaCN and KCN and
are the same values that were used in our analysis of the
static elastic behavior in the paraelastic phase. The ra-
tionale for choice (2) c values is the fact that little or no
dispersion is seen below -60 K for c44 obtained with US,
BS, or NS techniques, which suggests that co~ is very
large as expected for a glass phase. Thus the low-
temperature c value is chosen to be close to the ob-
served e&& at 7 K, and c is joined smoothly to c in the
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tional glass characterized by a monotonic increase in v on
cooling and a very broad temperature-dependent relaxa-
tion function can be described with Eqs. (8)—(11). At
high-temperatures, where co~ &&cov., & 1, R should con-
form to Eq. (9). Thus the increase in R on cooling is due
to the rapid increase in ~, . The Aat plateau in R at low
temperatures is expected from Eqs. (10a) and (10b) if
cur «1 but d'or, is large. Thus our data with choice (2)
c values are qualitatively consistent with cooperative
glass dynamics like those observed in RADP. ' A quan-
titative test of this model is given in Fig. 14 for the
x =0.60 sample, where low T data are available at
several frequencies.
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dispersion-free paraelastic region. Recently, Michel has
proposed that the quadrupolar order parameter suscepti-
bility y should include both a quenched-random-strain
field contribution and a nonergodic contribution. The
quantity y„, is zero above T, has a positive constant
value for low T and small wave vectors, and varies rapid-
ly over a narrow temperature range around T . A sharp
decrease in c around T may be related to this noner-
godic effect.

The low-temperature R values obtained with choice (1)
for c represent lower limits and do not seem physically
attractive. The overall pattern on cooling (increasing R
in the paraelastic phase, a broad maximum near T, and
a subsequent decrease) suggests a strongly smeared ver-
sion of critical behavior near an order-disorder transi-
tion' rather than the expected monotonic increase in ~
associated with glass formation. Furthermore, this
choice implies ~~&&1 deep in the glass phase, which
would require Aa-co frequency dependence and c4„
(US) =c44(BS) equal to co. The former is inconsistent
with our ha-co' scaling of x =0.60 glass phase data,
and the latter is inconsistent with 0.1-Hz shear-torque
measurements. Furthermore, recent elastic field experi-
ments on cyanide quadrupolar glasses has revealed that
the field-cooled behavior of a cyanide glass is essentially
the same as the behavior of a spin glass. Specifically, the
field-cooled strain decays in time following a
Kohlrausch-Williams-Watts law which represents typical
glass relaxation behavior. This further demonstrates that
the quadrupolar freezing process is not a smeared version
of order-disorder critical behavior.

The low-temperature R values obtained with c choice
(2) for the x =0.30 sample and choice (2b) for the
x =0.60 sample are much more reasonable. An orienta-

FIG. 14. Fit of R for Ko 6Na04CN with a broad rectangular
distribution function g(~, T) for which the short-time limit is

=5 X 10 ' s and the temperature-dependent long-time cutof
time ~, is given by the open circles and the dashed line.

V. SUMMARY AND CONCLUSION

Ultrasonic shear velocity and attenuation measure-
ments have been made to characterize the dynamic
cooperative behavior in K Nai CN mixed single crys-
tals. In one sample (x =0.88), long-range orientational
ordering occurs. In four other samples in the range
0. 15 &x &0.87, an orientational glass phase is formed at
low temperatures.

The x =0.88 sample exhibits critical slowing down of
the quadrupolar relaxation with a dynamic exponent
z v =4.5. This unconventional value, which differs
significantly from the van Hove value zv=1 observed in
bilinear coupled systems like KDP, is comparable to the
zv=3. 7 value for Rb(CN)o 798ro z& and may be related to
the spin-glass value (predicted z v= 3—4).

For glass-forming samples, the shear attenuation in-
creases dramatically on cooling the paraelastic phase,
goes through a maximum near T, and decreases very
rapidly on further cooling in the glass phase. Associated
with this attenuation behavior, the c44 shear stiffness ex-
hibits a broad minimum and frequency-dependent disper-
sion near T . Unfortunately, the attenuation becomes so
large that no ultrasonic data could be obtained over a
range of -55 K centered around T . Analysis of the
data above this gap shows that the relaxation time ~, in
the high-temperature paraelastic phase varies rapidly
with T according to the empirical form ln~, = A, —B,T
over a range of -35 K. Analysis of data below the gap
shows that the low-temperature glass phase data are con-
sistent with very long relaxation times and a very broad
distribution of relaxation times.

The dynamic behavior of this orientational quadrupo-
lar glass is compatible with that observed for the dipolar
glass RADP. Although there are not yet enough experi-
rnental data available to define uniquely the orientational
glass phase dynamics, an attractive and plausible prelimi-
nary picture can be drawn.
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