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Diffusionless first-order phase transitions in systems with frozen configurational degrees of freedom
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We consider systems that can be described in terms of two kinds of degree of freedom. The corre-
sponding ordering modes may, under certain conditions, be coupled to each other. We may thus assume
that the primary ordering mode gives rise to a diffusionless first-order phase transition. The change of
its thermodynamic properties as a function of the secondary-ordering-mode state is then analyzed. Two
specific examples are discussed. First, we study a three-state Potts model in a binary system. Using
mean-field techniques, we obtain the phase diagram and different properties of the system as a function
of the distribution of atoms on the different lattice sites. In the second case, the properties of a displa-
cive structural phase transition of martensitic type in a binary alloy are studied as a function of atomic
order. Because of the directional character of the martensitic-transition mechanism, we find only a very
weak dependence of the entropy on atomic order. Experimental results are found to be in quite good
agreement with theoretical predictions.

I. INTRODUCTION

The interplay between different ordering modes can
strongly modify the shape of phase diagrams. Typical ex-
amples of such a situation are magnetic alloys' and
liquids crystals. In the former case, the presence of
magnetism can inAuence the atomic distribution among
the different lattice sites. In the second case, the inter-
play between translational and rotational ordering modes
can even change the order of the smectic-nematic phase
transition.

We consider the case of systems with two relevant
kinds of internal degrees of freedom, associated with two
different ordering modes. Landau theories with two or-
der parameters are the natural way to deal with such
problems and they have been investigated for 20 years. '

Different coupling terms between the two order parame-
ters can be included in the expansion of the free energy
depending on the symmetry properties of each system.
The equilibrium values of the order parameter are then
found after minimization of the proposed free-energy
functional. Generally speaking, equilibrium coupling
effects appear when the phase transitions associated with
both ordering modes are close to each other.

In this paper, we assume that these two phase transi-
tions take place at very widely separated temperatures.
Properties of the phase transition associated with the pri-
mary ordering mode are then studied, assuming that the
secondary ordering mode can be externally controlled.
An experimental realization of this situation is, for in-
stance, observed in metallic alloys which undergo an
order-disorder transition as well as a displacive structural
transition at a much lower temperature. In this case, the
primary and secondary ordering modes are, respectively,
the deformation associated with the displacive transition
and the configurational atomic order. The interplay be-
tween them comes from the fact that the atomic correla-
tions between different kinds of atoms can modify the

characteristics of the displacive transition. The
configurational atomic order can be externally controlled
in the following way. It is first established by annealing
at a temperature T; and then retained by quenching to a
lower temperature T&, above the structural transition
temperature. If T& is low enough to ensure that no
diffusion takes place in the system, by changing T; in a
suitable way, the displacive structural transition can then
be studied in systems with different internal states. ' '"

We focus our attention on two particular cases. First,
we consider a three-state Potts model on a cubic lattice
with two kinds of atoms, A and 8. The mean-field ap-
proximation allows us to study how the first-order transi-
tion, associated with the Potts variables, is modified when
the distribution of atoms over the lattice sites is external-
ly changed. The goal is then to obtain a complete mean-
field solution of the problem.

Second, we consider, from a more phenomenological
point of view, the case of bcc alloys undergoing a
structural transition of the martensitic type. This prob-
lem has already been considered from a theoretical as
well as from an experimental point of view. On the basis
of the displacive character of the transition, it was sug-
gested" that the entropy change is independent of the or-
dering state. In addition, experiments seem to confirm
this idea. Here we reformulate the problem in a more
general context and discuss the results in the light of
those obtained from the Potts model system for which
the transition is simple and well understood. We find
that, in general, the displacive character of the transition
is not a definitive condition for the entropy change to be
independent on the internal state of the system. Symme-
try conditions play an important role as well and have to
be considered in the discussion. The main reason for the
entropy change to be, in the case of martensitic transi-
tions, nearly independent of the ordering state is the large
elastic anisotropy. Finally we compare the theoretical
predictions with available experimental results.
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II. GENERAL CONSIDERATIONS

The equilibrium condition for a first-order phase tran-
sition to occur is given by

AF =0=b,E—TpAS,

where AF, AE, and AS are, respectively, the free energy,
energy, and entropy changes at the phase transition and
Tp is the equilibrium transition temperature. In writing
Eq. (1) we have assumed that the volume change at the
phase transition is negligible. In what follows we denote
the H and L phases, respectively, as the high (stable for
T & To) and low (stable for T ( To) temperature phases
and restrict ourselves to dift'usionless first-order transi-
tions.

For a system of N atoms, we assume that the state of
the system, associated with externally controlled degrees
of freedom, can be characterized by a state vector
o =(o „o2, . . . , oz), where o.; describes the internal
state of the atom i. o.; can be, for example, a magnetic or
an occupation variable. In these two cases, the internal
state is the magnetic or the atomic configurational order
state.

Associated with this internal state, we assume that the
system presents, at a certain temperature T, far from Tp,
a secondary phase transition. In a magnetic system, if
T, «Tp, the application of an external magnetic field
provokes a change in the internal state of the system. In
a substitutional alloy, if T, )&Tp, and Tp is low enough,
the internal state can be changed by means of a fast
quench as explained in the Introduction.

Suppose we now change the internal state of our sys-
tem from o. to a+6o. Then the transition temperature
changes from Tp to Tp+5Tp which, for a small 66S, is a
solution of the equation

af af
BT BT

(7)

g —
gp is the discontinuity of the order parameter at the

first-order transition point. g and gp are solutions of the
equations

2a, ( T —T„)(g—iso)+

+Kxg, 2(J, T)(g" ' —qo ')=0, (8a)

+Kg,2(g, T)(g"—il o)=0 . (8b)

The first equation comes from the minimization condi-
tion df /dan=0, and the second from the condition
b,f=0 that determines the position of the equilibrium
first-order transition. Multiplying Eq. (8a) by (r)+r)0),
Eq. (8b) by (

—2), and taking into account Eq. (7), one ob-
tains that, only when x =2 and $,2 does not show an ex-
plicit dependence on temperature, is ES independent of g.
This kind of coupling is merely energetic and its eFect is
to induce a shift on the transition temperature only.

f=a, (T —T„)7) +P,(r))+a&(T —T,2)g

+i/2(g)+kg"I/J, 2(g, T),
where the integer x and the functions P„g2, and $,2 de-
pend on the symmetry properties of the system.

Suppose now that g remains constant, b S is then given
by

5(b E) TO5(bS ) b—S5TO =0—
equivalent to

5(b,S ) 5TO

AS Tp

where 5(bE ) =hE( cr +5o ) bE(o ) and—

5(KS)=b,S(o.+5cr )
—b,S(o ) .

In the particular case 5(ES)=0, then

5(EE) 5(EE )

AE ES

(2)

(3)

(4)

III. EXAMPLE: BINARY ALLOY WITH THREE-STATE
POTTS MODEL VARIABLES

Let us consider a d-dimensional lattice with N sites and
z nearest neighbors per site. On each site i =1,2, . . . , N,
we define two variables: a spinlike variable o; which
takes value + 1 ( —1) when the site i is occupied by an
atom A (atom 8) and a three-state Potts variable
S;=(1,2, 3) which describes the state of the particle sit-
ting on the site i.

We then consider the following Hamiltonian:
NN

H = g 5(S;—S )[J„„5(cr;—1)5(o)
—1)

+J„„5(cr,+1)5(cr, —1)
Let us consider that both ordering modes can be de-

scribed by scalar magnitudes, and define r) and g' as the
primary and secondary order parameters, respectively.
The free-energy density f of the system can be written as

f =fi(n»+f2(k»+f i2(rl k T»

where f, gives rise to a first-order transition associated
with il. In Landau theory, f is, in the absence of external
fields, usually written as

+J„~5(cr,—1)5(cr.+1)
+J~~5(o, + 1)5(o;+1)],

where the summation extends over all nearest-neighbor
(NN) pairs. 5 is the Kronecker 5 function [5(0)= 1, or 0
otherwise), and the different pair interactions are Jzz,
J~~, and J~~.

In the present work we restrict ourselves to the case
of stoichiometric composition N„ /N =

—,', N~
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(Nz=N —Nz) being the number of A atoms. Given
that N„ is constant, we have the following conservation
condition:

g;=0 .

Let J„B« JAA =JBB and further assume that the
geometry of the lattice is such that the ground state of
the system is formed by two equivalent sublattices, called
+ and —,occupied by A and B atoms, respectively, and
with all the particles in the same Potts state. The square,
cubic, and bcc lattices apply to this case with z =4, 6,
and 8, respectively. This ground state is sixfold degen-
erate and its energy is Eo =J„zzN/2.

We now introduce the occupation numbers N+, and

N, defined as the number of particles in sublattice +
( —) of kind o (A or B) in the Potts state S (1,2, or 3).

In the mean-field (MF) approximation, the Hamiltoni-
an can be written as

3
Z +HMF= 2N

k=1

+JAB(NAk+Bk +NBkNAk )

+J~~N~PN~k ] .

Let us choose one of the six ground states as the starting
point of our mean-field analysis. For instance, the
configuration with N„+i =N/2, N~, =N/2, and all the
other occupation numbers equal to zero. Using symme-
try considerations we can write NA2 NA3, NB2 NB3

NA 3 and NB 2
=NB 3 ~ This is equivalent to restrict

the study to only one branch in the full order-parameter
space. ' '

(N/2)!
N-+, !(N+—

~!)
(13)

Let us now define the following four order parameters
corresponding to the Potts variables:

+N —
i
—N 2

m
N~i +2N~2

(14)

The total number of A and B particles is constant and
equal to N/2. Therefore, we can define a unique quantity
m that controls the amount of A and B atoms in each
sublattice and that we consider can be externally con-
trolled. This parameter is the one that would depend on
the quenching conditions. It is defined as

4(N„+i+2Nq )
m = —1.

m =0 corresponds to the case in which the A and B
atoms are randomly distributed on the lattice sites. The
case m = 1 means that the A and B atoms are perfectly
arranged in the + and —sublattices, respectively.

In order to simplify the solution of the problem, let us
consider only the case JA„=JBB= —JJo with J„B= —Jp.
J ((1) is a parameter and Jo is a positive unit of energy.
With these definitions, the mean-field free energy per par-
ticle (in zJo units) can be written as

Provided that the configurational degrees of freedom
(o ) are frozen, the entropy of the system can be written,
up to constants, as

S =k~T[ln( W'„+)+ln( W'„)+ln( W~+)+in( W'ii )], (12)

where kB is the Boltzmann constant and

f= —
—,', [J(1+2m„+m„)(1+m )(1—m )+(1+2m„+m~ )(1+m )

+(1+2m&+m& )(1—m ) +J(1+2m++mz )(1+m&)(1—mz)]

+ j(1+m )[X(m„+)+X(mii )]+(1—m )[X(m„)+X(m~+)]I, (16a)

where T*=kB T/z Jo and

X(m) =
—,'(1+2m)ln[ —,'(1+2m)

1+2m,
J(1+m )ma+(1 —m~)mi =2T ln

1 —m 1

(19)

+ —,'(1 —m)ln[ —,'(1 —m)] . (16b)

A minimization with respect to the four order parame-
ters, defined in (14), yields

mA =mB =mp, mA =mB =mi . (17)

mo (m, ) is the order parameter which informs us about
the Potts order of the rich (poor) component. The tem-
perature dependence of mp and m, is given by

1+2mp
J(1—mz)mi+(1+m )m0=2T*ln, (18)

1 mo

We can now analyze some simple solutions:
(i) Totally disordered alloy (m~ =0) with J =0. In this

case the solution of Eqs. (18) and (19) gives ma =m, =m.
The system shows a Potts-like first-order phase transi-
tion. The low-temperature limit of the coexistence region
is T& =—,', while the upper one is T„=0.1821. A careful
study of the stability of these solutions gives an equilibri-
um transition temperature of T,*=0.1803, with an entro-

py change of ES=0.231 05.
(ii) 1 )m~ )0 and J=0. The case of J =0 is, actually,

a very particular case because the Potts transition splits
ofF in two decoupled first-order transitions, associated to
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FIG. 1. Phase diagram showing the transition temperature
lines for J =0, 0.2, 0.5, 0.8, and 1 as a function of the
configurational order parameter m~. Note the splitting off in
two phase transitions when J =0, as explained in the text.

FIG. 3. Discontinuity of the order parameters at the transi-
tion point vs m~ in the case J =0.2 and 0.5. Solid lines corre-
spond to Am& and dashed lines to Amo. The solid line at
Am =0.5 corresponds to the case J=0 (hm

&

=b m0 =hm ).

0.3
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0 0.2 0.4 0.6 0.8 't.0

FIG. 2. AS values for J=0.1, 0.2, 0.5, and 1 as a function of
m~.

the order parameters m o and m i, respectively. The
reason is the lack of interaction between the 3 A and BB
pairs.

(iii) m =1, J =0. In the limiting case of m =1, the
order parameter m i becomes meaningless because, in the
fully configurational ordered case, there are no misplaced
atoms on the sublattices. The mo order parameter sufFers
a first-order phase transition similar to the one described
in (i) but including a factor of 2 in the temperature scale
( r,*=0.3607 ).

(iv) In the case of 1)J )0 (J ) 1 is not considered be-
cause we are only studying the case of small J„„and J~~)
the two order parameters are always coupled, and a
unique first-order phase transition occurs. Figure 1

shows the phase-transition line for different values of J.
In order to better characterize the transition it is also
useful to study the behavior of AS which is shown in Fig.
2 for J=0.1, 0.2, 0.5, and 1. It is interesting to notice
that, as a consequence of the frozen configurational order

(controlled by m ), a minimum on hS appears. Only in
the trivial limit J =1, where the distinction between A
and B atoms vanishes, there is no influence of the
configurational order on the phase-transition properties.
Figure 3 shows the values of the jump in the order pa-
rameters at the transition point. The continuous line cor-
responds to mo and the dashed line to m, .

In this example of diffusionless first-order transition,
the entropy change hS shows a dependence on the inter-
nal ordering state. This dependence is nonmonotonic and
exhibits a minimum at a given value of m which, in turn,
depends on the interaction.

IV. APPLICATION
TO A DISPLACIVK PHASE TRANSITION

IN A BINARY ALLOY

Let us consider a binary alloy that undergoes, at To, a
structural first-order phase transition (SPT) and an
order-disorder transition (ODT) at T, )To. This system
is exemplified by a bcc A„B, binary alloy which shows
at low (or relatively low) temperatures a martensitic tran-
sition (MT) and well above an ODT. Specific examples
are the P-Cu-Zn and the P-Cu-Al alloys.

Let x; (i =1,2, . . . , N) be the positional coordinates of
the particles in the lattice. The structural first-order
phase transition will be, conversely to the Potts model de-
scribed in Sec. III, associated to continuous degrees of
freedom. We also need a set of variables
o =

I cr „crz, . . . , o ~ I in order to describe the atom distri-
bution over the different lattice sites. o.; takes the value 1

(
—1) when site i is occupied by an atom A (8).

We assume that the value of u can be changed by
quenching from T; to a low enough temperature T& as
explained before. The state obtained in this way will be a
long-lived metastable state which does not change, at
least at the usual experimental time scales.



DIFFUSIONLESS FIRST-ORDER PHASE TRANSITIONS IN. . . 6719

A. Calculation of 55,E

The Hamiltonian for this system can be written as

H= g [E~„(x;,)5((T; —1)5(o., —1)
(ij )

+ E „2)(x; ) [5(cr; + 1 )5(o i
—1 )

+5(o; —1)5(cr + 1)]

+Ei)2)(x; )5(cr;+1)5(c7 +1)], (20)

(21)

where the summation extends over a11 the ij pairs
(separated by distances x; ). E f3(x) ((x,/3= A, B) are the
pair-interaction potentials assumed to be central.

Most of the bcc alloys undergoing a MT have a D03 or
a L2, ordered structure. In order to compare our results
with experimental data, we consider a bcc binary alloy
which undergoes two order-disorder transitions: a D03
(or L2() ~B2 transition at T,2 and a B2~32 (disor-
dered alloy) transition at T„)T,2 ())To). For the sake
of simplicity we assume that the structure of the L phase
is fcc which can be obtained from the bcc H phase
through a Bain distortion mechanism' (Fig. 4).

We divide the bcc lattice into four sublattices (see Fig.
4). If the fraction of A atoms x )0.50, then the L2, is
defined by Pz =PzWP„WPzWPz, where P' (a= A, B
and i = 1,2,3,4) are the occupation probabilities (directly
related to the o.

, variables). The D03 ordered structure is
defined by P„' =P„=P„WP„. Due to the diffusionless
character of the MT, the distribution of atoms (occupa-
tion probabilities) will be the same in the H phase and in
the L phase.

Note that, in the (bcc) H phase, a given atom has z, = 8

NN and z2=6 next-nearest neighbors (NNN). The z,
NN are also NN in the fcc phase, four of the zz NNN in
the bcc phase transform in NN in the fcc phase and the
other two NNN remain NNN in the L phase. For each
structure, we extend the summation in (20) to the
minimum range to assure its mechanical stability.

In the H phase we consider pairwise interactions up to
NNN. The energy of the system in the H phase E~ is

=5Ez —5EH .

Taking into consideration that

N.",'=N.",'+ ,'N.",', -
a straightforward calculation gives

5gE —
( P. ( I ) y( l ) )5N( i )

+( 2 P (1) y(2))5N(2)
AB

where

(23)

(24)

(25)

and

are the ordering energies in the H and L phases, respec-
tively.

When T,&) T,2, even for quenches from temperatures
slightly higher than T,2, the number of NN AB pairs
remain nearly constant. ' One can then write

while in the fcc phase we consider only interactions up to
NN:

—y N (1)s~(1) (22)
a, P

where N'& (N ('p') is the number of ith-neighbor a)(3 pairs
in the H (L) phase. s'& (E'p) is the interaction energy
corresponding to the value of E &(x) [in Eq. (20)] at the
equilibrium distance between the ith-neighbor pairs in
the H (L) phase. In principle, we should consider that
the c.

& energies depend on o.. Nevertheless, we will con-
sider that the Bain distortion associated with the trans-
formation from the H to the L phase does not depend on
the frozen internal state of the system. We will return to
this point later.

Given that o remains unchanged by the MT, the ener-
gy shift 54E associated to a change from cr to cr' is

5b E = [EL(cJ') EH(cr') ]——[EL (o ) EH(cJ )]-
= [EL (cr') —EL (cr ) ]—[EH(cJ') EH(cr )—]

a,P a, /3

(
2 P (1) y(2) )5N(2)
3 (26)

Bain Mechanism

—3—
—3-=—

I

I ~~ I=, 1 -~
3

g 3~ —
1~1~~

3
3

1~ —
1

24 4

~3
3~~ 3

FICx. 4. Schematic sublattice representation for the bcc and
fcc structures.

B. Calculation of 5AS

Let us assume that the entropy change for the transi-
tion from the H phase to the L phase is given by'

b,S= 3Nkii In((()H lt()L ), (27)

where wH and wz are Einstein frequencies corresponding
to the H and L phases, respectively. Equation (27) is ap-
propriated for temperatures above the Einstein tempera-
tures.

The change in the Einstein frequency from the H to the
L phase is due to both changes in the geometry and
changes in the strength of bonds (interaction energies) be-
tween atoms. If C, and C2 represent, respectively, the
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strength of NN and NNN bonds between atoms. For
C, »C„ then"

for 0.5 (x & 0.75, and of the D03 type for x =0.75. ' It is
easy to see that

wH=(z, C, +z2C2)

In the hypothesis of central forces, the elastic constants
C44 and C'= —,'(C» —C,2) only depend on C, and C2, re-
spectively, in such a way that

5N~2I= —4'N[X —(4x —2) ] .

Introducing (36) in (34), one gets

5TD =—(I/&S)( —', v'" —v' ')[X —(4x —2) ] .

(36)

(37)
( C11 C12 ) /C44 =2C2/C 1

=2 ~ (29)

where 2 is the elastic anisotropy. For the alloys trans-
forming martensitically, A is large (it varies from 10 to
15 in Cu-based alloys) which justifies the assumption that
C&»C2. We now assume that the change in Cj can be
neglected. Considering, as before, only NN interactions
in the L phase, we obtain

bS= —,'Nk~ ln[(z, +z2/2)/z, ], (30)

where z& =12 is the number of NN in the fcc phase.
Now

5bS =AS(o') —bS(o )

=
—,'Nk& lnI [1+aA '(cr')]/[1+aA '(o')]I, (31)

The dependence of 6Tp on X has already been predicted
in the frame of the Landau theory. " Here we obtain (37)
from a more microscopic justification.

C. Comparison with experimental results

Given that, to our knowledge, no experimental results
are available for binary alloys, we compare our theoreti-
cal predictions with data corresponding to the Cu-(Zn-
Al) ternary system. Nevertheless, this alloy can be re-
garded as a binarylike system. This is because the order-
ing energy for Cu-Al pairs is only around 1.5 times
greater than the ordering energy for Cu-Zn pairs but 20
times greater than the corresponding to Zn-Al pairs.
We then assume

where a=z2/z, . Taking into account that o;2 ' is
small, Eq. (31) can be rewritten as

V'"=(x,„V,"„',„+x,V,"„'„,)/(1 —x},
V"'=(xz. Vc'-z. +x~1 Vc.'A1)/(1 —x»

(38a)

(38b)

5b,S=
—,'Nk21 a 1

6C44 C' 6C'= —,Nk~o, 1 (32)

where 5C'= C'(o'}—C'(o ) and

5C44=C44(o') —C44(o ) .

In the central-potential approximation, C44 only depends
on NN, AB pairs. ' If these kind of pairs is not affected
by the quench, then

5b S= 3NkI1 a(5C'/C—4—4 ), (33)

5TO
—=515E/&S=(1/&S)/( —'V"' —V' ')5N' ' (34)

where now AS can be taken as constant.
Using standard mean-field theory, one can calculate

6N&z. We define, in terms of the occupation probabili-
ties, the following long-range order parameter (LROP) X:

X=(P~ P~) —(4x —3) . — (35)

The ordered structure is supposed to be of the L2& type

where 6C' can be written in terms of 6N&z, ' resulting
that 66S is proportional to 6N„'~.

It is interesting to notice that, for the kind of alloys
considered here, 6C'/C44 &(1. For example, for the Cu-
Zn-Al alloy (studied in Sec. IV C), this ratio can be evalu-
ated using elastic constant values taken from Ref. 17.
One then obtains that 66S/AS &0.01. Hence, from
Eqs. (4) and (26) we obtain

where xz„and xA1 (1 x =xz~+xA1) are the atomic frac-
tions of Zn and Al, respectively, and V1

& ( V'„&) are the
ordering energies between the kth a-13 pairs in the H (L)
phase.

Within the composition of interest, x -0.65, the
Cu„(Zn-A1}, shows, at low temperatures, a L2, struc-
ture and a B2 structure at higher temperatures. In this
case, the ordering energies in the H and L phases have
been evaluated for the different atom pairs. For the par-
ticular alloy: Cu; 28.09 at. % Zn, 9.95 at. % Al, we ob-
tain (in units of R) V"'=863 K and V '=610 K. Tak-
ing b,S=—1.30 J/K mol, ' Eq. (37) leads to a maximum
shift of the transition temperature of 6Tp = 38 K
while the maximum value obtained experimentally is
(5TO),„„=—62 K. ' For the Cu3A1 alloy, V"'=1250 K
and V' '=825 K, and the maximum shift predicted is
6Tp „=49K of opposed sign to the previous case. This
result is consistent with experiments carried out on Cu-
(Al-Be) with x=0.74 and only a 2 at. % of Be for which a
positive shift of Tp after quench has recently been ob-
tained.

In Fig. 5 we present for Cu; 16 at. % Zn; 16 at. % Al
alloy, the measured 6Tp as a function of the relative
change bI /I in the x-ray intensity of the (111) superlat-
tice rejections. ' The 111 superlattice reflections arise
from the Lz& ordering. Measurements correspond to
different T; temperatures. In spite of experimental uncer-
tainties, results show a quite good correlation between or-
dering and transition temperature shift. However, more
accuracy is needed to justify the explicit dependence pre-
dicted in Eq. (36). Furthermore, in agreement with our
assumption of neglecting contributions coming from
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FIG. 5. Tp as a function of ( 1 —AI/I) for a Cu —16
at. % Zn —16 at. % Al alloy. AI/I is the relative change of the
x-ray intensity of the (111)superlattice reflection.

6X„"~, the intensity of the 200 superlattice rejections
arising from the 82 ordering presents a very small depen-
dence on T, . '

V. DISCUSSION

In this paper we have considered two different exam-
ples of systems undergoing a diffusionless first-order
phase transition which thermodynamic properties depend
on the internal state at which the transition takes place.
Associated with the degrees of freedom describing this
internal state, the system exhibits a secondary phase tran-
sition at a higher temperature, distant from the
diffusionless first order or primary phase transition. The
internal state can then be changed by means of a fast
quench and one can study the coupling effects between
the ordering modes associated to both phase transitions.

In the first example, we consider a three-state Potts
model in a system with two kinds of particles arranged on
a regular lattice. The specification of the particle distri-
bution on the different lattice sites determines the inter-
nal state of the system. We find that changes on such an
internal state produce a shift in the primary transition
temperature which is associated with shifts in both ener-

gy and entropy changes. The shift in the entropy change
between both high- and low-temperature phases is related
to different values of the discontinuity of the Potts order
parameter at the first-order transition point. The shift in
the energy change is associated with the different distri-
bution of particles which provokes variations in the
effective interactions.

In the second example, we analyze a metallic binary al-
loy which undergoes a displacive transition of martensitic
type from a bcc structure to a more compact phase (for
instance, a fcc). These systems are characterized by a
large elastic anisotropy. This property is intimately relat-
ed to the directional character of the MT mechanism
which is mainly described by a shear deformation associ-
ated to the C' elastic constant. This favors that the en-
tropy change between both phases depends only very
weakly on the ordering state of the system. When only
the L2& (or DO3) ordering (associated to NNN pairs) is
changed, the shift in the entropy change is proportional
to the ratio 5C /5C44 (33), which, in turn, is vanishingly
small. In a more general situation, when changes in both
NN and NNN pairs are induced, from Eq. (32), we ex-
pect that the assertion concerning the weak dependence
of the entropy change on the ordering state be right as
well. Consequently, the final low-temperature structure
is, in this case, independent of the internal state of the
system and the corresponding interaction pair energies
are now independent on the ordering state. The transi-
tion temperature shift is then only associated to a shift in
the energy change which, in turn, will depend only on
changes of the NNN AB pairs (34).

In terms of a Landau description, a y-6 free-energy ex-
pansion in the primary order parameter (related to the
deformation) has been proposed to describe MT. The
simplest suitable coupling term is then biquadratic in
both order parameters. This coupling gives rise to for-
mally the same results explained above. This Landau
model has been previously discussed in the context of the
MT." Here we have proceeded further and have shown
that the displacive character of the structural transition
is not a definitive condition to assure that the shift of the
entropy change is zero for different ordering states. Also,
the large elastic anisotropy together with symmetry
characteristics of the transition mechanism are relevant
for this condition to be satisfied.

In the case of the three-state Potts model, the descrip-
tion of the first-order transition needs a cubic term in the
Landau free-energy expansion. ' The coupling with the
frozen internal degrees of freedom can be introduced, at
least, by means of a cubic-quadratic term in the primary
and secondary order parameters, respectively. This
minimal model is qualitatively consistent with the mean-
field results discussed above.
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