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The dynamics of an order-disorder transition is investigated through a nonlinear Langevin model
known as model C. This model describes the dynamics of an ordering nonconserved field (e.g. , sublattice
concentration), P, coupled to a nonordering conserved field (e.g., absolute concentration), c. An approxi-
mate asymptotic time-dependent solution is presented for both fields through a singular perturbative
solution of th0 coupled nonlinear-dynamical system. In particular, analytic expressions for the dynamic
structure factors [i e., S&(k,t):(P(k, t)P—(k, t)), and S,(k, t) =(c(k, t)c (k, t)), where k is the wave vec-
tor and t is time] of both fields are presented. In the late-time regime these expressions reduce to the
scaling forms S&(k, t)=t" f&(Q) and S,(k, t)=t"~ 'f, (Q), where Q=kt'~. Furthermore it is shown
that f&(Q) ~ Q ', f, (Q) ~Q "+' for Q)) I and f, (Q) ~ Q for Q ((l. Intermediate-time correc-
tions, due to a finite interfacial width, to the asymptotic solutions of both fields are also obtained. Many
of these predictions are experimentally accessible.

I. INTRODUCTION

The understanding of the dynamics of phase separation
has been greatly enhanced by the concept of dynamical
scaling. ' The purpose of this work is to examine the scal-
ing behavior of a model of phase separation for a noncon-
served ordering field coupled to a nonordering conserved
field, known as model C in the Halperin-Hohenberg
classification scheme. The scaling hypothesis asserts
that the growth of individual phases (f) (e.g. , concentra-
tion in binary alloy systems) from a homogeneous initial
state is a function of one scaling length, the average
domain size, D o- t", where t is time and n is the growth
exponent. Verification of this hypothesis has been possi-
ble due to its relatively simple predictions for readily ac-
cessible quantities in numerical and experimental studies.
In particular the scaling conjecture directly implies tha. t
the time-dependent structure factor, [S( k, t)
—= (g(k, t)g*(k, t) ) ] takes the scaling form

S(k, t) ~ td"f(kt"),

where d is the dimension, k is the wave vector, and f is
the scaling function. Equation (I) is valid at late times
when D is much larger than any nonscaling lengths (e.g. ,
the interfacial width W) encountered in the process. The
dynamic scaling exponent n is thought to be universal
and has been used to delineate universality classes. It
takes the value n =

—,
' for nonconserved systems ' and —,

'

for conserved systems. ' ' ' ' Although these results
are still somewhat controversial, mounting evidence
seems to confirm the existence of these universality
classes. In the following pages an asymptotic solution to
Model C is presented and employed to determine the
growth exponent and scaling functions for both fields.
Care is taken to include the interfacial structure so that

early-time corrections to the scaling behavior can be ex-
plicitly determined.

This solution provides a description of both long- (i.e.,
scaling lengths, k =2m/D) and short- (i.e., nonscaling
lengths k=2m/W) wavelength fiuctuations for the con-
served and nonconserved fields. In terms of boundary-
layer theory, the short- and long-wavelength solution
can be thought of as the inner and outer solution, respec-
tively. The long-wavelength behavior is obtained by em-
ploying a technique initially developed by Suzuki ' to ex-
amine laser models and later extended by Kawasaki,
Yalabik, and Gunton" to study the time-dependent
Ginzburg-Landau equation. This method has recently
been applied to a number of dift'erent physical systems
and has been generalized to a class of dynamical systems.
The essence of this method is to resum an infinite singular
perturbation series in a late-time long-wavelength limit.
This outer solution provides an analytic approximation to
the scaling functions and growth exponents for both con-
served and nonconserved fields. The short-wavelength
behavior is obtained by a technique which is valid once
domain walls are well established (i.e., once the ordering
field is locally saturated) and for wave vectors of the or-
der of the interfacial width. The inner and outer solution
are combined to provide insight into the approach to the
scaling regime. In particular, intermediate-time correc-
tions to the growth exponent n, and to Porod's law are
explicitly determined.

For a greater understanding of the dynamical system,
it is useful to consider a specific example of an ordering
process described by model C. Consider a binary alloy
(made up of A and B atoms) in which the interaction en-
ergy between neighboring atoms favor a state in which all
A atoms are surrounded by B atoms (i.e., an AB crystal
structure). Examples of experimental systems that have
been studied are Cu-Al, ' ' Fe-A1, and Ti-Al. " At low
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7= Jdr —P +—P +—P c+—(c) + —~V$~
2 4 2 2 2

(2)

where r, u, a, w, and ~ are phenomenological
temperature-dependent parameters. Odd powers of P do
not appear, since the + and —phases are identical. In
scattering experiments the structure factor for the f field
would correspond to the Bragg peak centered at 2m. over
the lattice constant associated with the ordered AB
phase. The structure factor for the c field would corre-
spond to concentration-concentration fluctuations mea-
sured at small wave vectors.

The above discussion is also directly applicable to oth-
er systems such as an Ising system with antiferromagnet-
ic interactions and Kawasaki dynamics, where, for exam-
ple, the "A" atoms correspond to "up" spins and the "8"
atoms correspond to "down" spins. In addition this free
energy has been employed to study isotropic Ising sys-
tems on an isotropic compressible lattice, where, the
conserved field c is the scalar V u and u is the displace-
ment vector. Bergman and Halperin have shown this
free energy to be applicable to compressible liquids,
where c is identified with the deviation from the liquid
density. Alternatively Eq. (2) has been derived for
metamagnets by Nelson and Fisher (which also includes
a P term), where P is the sublattice magnetization and c
is the magnetization.

Some general comments about the phenomenological
parameters can be made. u must be positive, since a neg-
ative u would imply unbounded growth of the P field (if u
is negative a P term must be included). The coefficient r
is positive (i.e., 9' has a single well centered at $=0) in
the disordered state and negative in the ordered phase

temperatures these interaction energies cause an ordering
of A and 8 atoms to occur, defining the ordered state.
The ordered system contains two sublattices, one on
which the A atoms lie and the other on which the 8
atoms reside. Since the two sublattices are symmetric it
is energetically irrelevant to which sublattices the A

atoms lie. If c, and cz are the concentrations of A atoms
on sublattices one and two, respectively, then the order
parameter (P) describing this system is simply
P=(c, —c2)/2. Thus in an ordered state P is positive if
the A atoms are on the first sublattice and negative if
they lie on the second. At high temperatures, thermal
fiuctuations (i.e., entropic infiuences) dominate and a
disordered state arises, which is characterized by /=0.
The temperature and global concentration of A atoms at
which the interaction energies balance the entropic terms
is called the c& line. When an equilibrated system above
this line is quenched below the c& line a dynamical order-
ing process occurs, in which P evolves from 0 to a + or
—state. These dynamics are the focus of this work.

Although the field P is globally nonconserved, the dy-
namics must be coupled to a conserved field, since the to-
tal amount of A (or 8) atoms is fixed. This field (c) is
conveniently described in terms of c

&
and cz through the

following relationship: c =(ci+cz)/2. Thus c denotes
the local concentration of A atoms. The free energy (V)
of this system can then be expanded in the two fields, i.e.,

(i.e., P has a double-well structure). For the case dis-
cussed above, w must also be positive (i.e., the separation
of A and 8 atoms is not energetically favorable). Finally
the coupling constant (a) and gradient energy term (~)
are positive. In Appendix A these parameters are deter-
mined in terms of microscopic quantities using a Bragg-
Williams approximation for the free energy. An impor-
tant feature of this model is the existence of a tricritical
point. This point is defined by the temperature and glo-
bal concentration at which the c& line coincides with
8 9'/Bc =0. From Eq. (2) this occurs when (r +ac)=0
and a /(2uw) = 1. Below the tricritical point phase sepa-
ration in the c field occurs even for positive m. In this pa-
per, the dynamics will be studied above the tricritical
point, but below the c& line (i.e., a /(2wu ) ( 1 and r (0).

The dynamics of the disorder-order transition involve
the growth of positive and negative domains (in P)
separated by antiphase boundaries. As discussed above,
it has long been accepted that these domains grow as a
power law in time and the correlations of P should scale
in time. A great deal of progress has been made for a =0.
In this case the two fields are completely decoupled and
the dynamics are described by model A. Allen and
Cahn "have presented a theory for the dynamics of an-
tiphase boundaries, while, Ohta, Jasnow, and Kawasaki
and Kawasaki, Yalabik, and Gunton have obtained ap-
proximate solutions to model A in the late-time long-
wavelength limit. Although the method for obtaining
these solutions is difFerent, the solutions themselves are
identical. The result of these works is the prediction for
the two-point correlation function ((P(r„t)P(r2, t)) ) and
n =

—,'. These predictions compare favorably with numeri-

cal simulations of various nonconserved systems, such as
model A, an Ising system with long- (but finite-) range
interactions' and the Potts model on a triangular lat-
tice. ' For sufFiciently long times, the softness of the
domain walls should be irrelevant, since the domain size
D becomes arbitrarily large. Nevertheless there can be
important crossover e6'ects for early to intermediate
times. The main discrepancy in these approximations is
that they contain infinitely sharp domain walls, while the
real systems have soft domain walls. Recently Mazenko,
Valls, and Zannetti have developed an ambitious theory
for domain growth in both models A and B. In addition
Oono and Puri have determined the first-order correc-
tions to Porod's law due to soft domain walls. Numeri-
cally Sahni et al. have conducted a Monte Carlo study
of a tricritical system.

The more interesting problem of a nonzero a has been
considered by Zia et al. and Mullins and Vinals. The
work of Zia et al. examines the stability of a planar in-
terface to infinitesimal perturbations. The linear disper-
sion relationship obtained in this work implies that per-
turbations in the interface decay like k t for (P ) =0 and
k t for (P)%0. From this a growth exponent of —,

' in the
former case and —,

' in the latter can be inferred. By as-

surning self-similarity Mullins and Vinals predict a
growth exponent of —,

' for the (P) =0 case. These predic-
tions will be examined in the following pages.

The structure of the paper is as follows. In the next
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section the dynamical equations for model C are present-
ed and expressed in dimensionless form. Following this
section a linear-stability analysis of these equations is de-
rived. An asymptotic analysis of both the long and short
wavelengths is presented in Secs. IV and V. The two
asymptotic solutions are then combined to obtain a late-
time solution for all wavelengths. The asymptotic solu-
tions are used to determine the scaling function for the
correlation functions of the two fields and the dynamic
growth exponents in Secs. VII and VIII. In the succeed-
ing section early-time correction due to the interfacial
width are determined from the asymptotic solutions. Fi-
nally, a summary of the findings is presented.

II. DYNAMICAL EQUATIONS

ay 5V
at ~5y '

Bc 25V
dt ' 5c (4)

The time derivatives of the conserved and noncon-
served fields are proportional to the functional derivative
of the free energy with respect to c and P, respectively.
To maintain the global conservation law for c, the func-
tional derivative is multiplied by a Laplacian. In the ab-
sence of thermal noise, the dynamical system is described
by the following equations:

strength of the coupling between the two fields. In these
units the tricritical point is defined by a'=1 and h =1.
To estimate the magnitude of the coupling constant, a
Bragg-Williams approximation for V will be employed
with the addition of an elastic energy term (see Ref. 7 and
Appendix A). In Fig. 1 a' is plotted as a function of con-
centration at a temperature (i.e., T =1000 K) above the
tricritical point for the Fe-Al system. The coupling
disappears at perfect stoichiometry (i.e., co =0.5) for zero
elastic energy and increases symmetrically about co =0.5.
Thus, the conserved field is only important when the
mean concentration does not match the concentration of
the preferred crystal structure, unless elastic energies de-
form the antiphase boundaries. The growth of a crystal
phase for e'(1 will be considered in this work. In the
following section a linear-stability analysis of the coupled
dynamical system described by Eqs. (9) and (10) will be
presented.

III. LINEAR STABILITY ANALYSIS

The model system discussed in the preceding section
will now be analyzed by linearizing about the average
value of both fields, where 5$ and 5h are defined to be
fiuctuations about the average value of g and h, respec-
tively:

(13)

where I
&

and I, are phenomenological constants. As-
suming r is negative and the other phenomenological pa-
rameters in Eq. (2) are positive, these equations can be
transformed into a dimensionless form, using

x=(
I rl /i~')' r,

@=(u/lrl)'~ y,
r=(r, lrl)t,

h = (all rl )c .

In these variables the dynamical equations of motion for
the two dimensionless fields (g and h) become

h—:ho+5h . (14)

and

a =(1+V )f f fh——
7

Bh =RV (A+a'f ),a7.

(9)

(10)
0.5

where

and

M

I~
0.4 0.8

a'=a /(2wu) . (12)

Thus, there are only two parameters in the dimensionless
equations of motion, namely R and a'. The parameter R
is the product of the ratios of the respective time and
length scales of the two fields, while a' controls the

FICr. 1. Coupling constant (a') evaluated for an Fe-Al system
through Eq. (A2) as a function of average concentration. In this
figure, T =1000 K, Y =463 K/T V& + V2 =175 K/T,
e, =0.45, and e&= —0.22. These values were taken from Ref.
7(a).
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5h(q, r)=e ' 5h(q, O) . (24)

Thus the two linear solutions completely decouple. The
g field in this approximation grows exponentially in time
and the h field decays to zero exponentially. The un-
bounded growth of f predicted in this analysis is clearly
in contradiction of the physical picture in which f satu-
rates at finite values. The saturation of g is taken into ac-
count by the nonlinear terms as will be shown in the non-
linear analysis of the following sections.

In the preceding analysis the solution is linearized
around the initial average values of the two fields. If the
fields are linearized around the two phase states, quite a
different result occurs. This approach has been employed
by San Miguel et al. in tricritical systems. One result of
this analysis is the prediction of another classical spino-
dal at a'=1. As discussed in the Introduction the tem-

I

perature and average concentration at which this spino-
dal coincides with the other spinodal (i.e., 3gii+ho= 1)
defines the tricritical point. Both these *'spinodals" arise
naturally in the analysis of the stationary solution of the
short-wavelength modes as discussed in Sec. V.

IV. LONG-WAVELENGTH SOLUTION
(OUTER SOLUTION)

In this section an asymptotic solution to the coupled
dynamical system will be presented for /&=0. As dis-
cussed in the Introduction this corresponds to the order-
disorder transition in binary alloys across the e& line. In
the following derivation an approximate form for both
the f and h field will be obtained. The first step in this
derivation is to rewrite Eqs. (9) and (10) in integral form,
so that a diagrammatic expansion can be developed. The
integral representation is

(26)

t/i(x, r)=g (x, r) f dr'e —' f dxe'q'"P ( ,x'r)+ af 'dr'e ' ' ' f dr" fdxe'q*P(x, r')Pe ~' "g (x,r") .
0 0 0

(27)

g(q, r)=f (q, r) —f dr'e ' f dxe'q "[p'(x, r)+1((x,r)5h(x, r)], (25)
0

5h(x, 'r) =5h (x, r) a'P~—f dr'e ' g (x, v')

where f (x, r)—:er'g(x, O) and 5h (x, r)—=e ~'5h(x, O). In this analysis go=0, and thus 5$=$. For simplicity the ini-
tial fiuctuations in h will be set to zero. This restriction is not very important, since 5h (x, r) goes to zero in the asymp-
totic limit. An equation for g can be written in closed form, since the right-hand side of Eq. (26) does not depend on
5h (x, r), i.e.,

A diagrammatic expansion of eq. (27) is given in Fig. 3.
In this figure the solid lines terminating in a circle
represent the vertex,

f''d 'e"' 'f dxe'q*
0

and the solid lines terminating in a diamond represent the
vertex,

a'f dk, dkzdk, 5(q —k, —k2 —k3)

( y) P Pk +k (7 7 )

0 0 1 2

m products of functions of the form e ' (where k; and
are integration variables or sums of integration vari-

ables). The time integrals can be evaluated in the asymp-
totic limit by assuming that e ' is much greater than one

The second time integral in this vertex (i.e., over r")
operates only on lines emerging in from the top and bot-
tom corners of the diamond. The solid lines represent the
bare propagator or linear solution for the g field ti.e.,
g (x, r)].

A general diagram in this expansion can be
significantly simplified in the late-time long-wavelength
limit, by considering the similar features of each diagram.
If n equals the number of circle vertices and m equals the
number of diamond vertices in a given diagram, then
there are n+2m time integrals and 2(m+n)+1 wave-
vector integrals (once all 5 functions are integrated out).
The integrand of these space and time integrals will con-

~k. j
tain a product of n+m functions of the form e ' and

FIG. 3. Diagrammatic expansion of t( fie11 [i.e., Eq. (27)].
The relationship between the symbols and their mathematical
counterparts is given in the text.
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near q =O. Once the time integrals have been performed
the resultant diagram will contain Fourier integrals over

T —
pi, ~

products of e ' and e ', leading to integrals of the
form

. expl. (uk +rk + Pk
—+.

fdk; f dr~e ' G(k;)g(k;, 0)
0

rk. j —1

= f dk; G(k, )itj(k;, 0)
Vk,.

fdk;e ' g(k;, 0) .
y;=k,.

(28)

This approximation asserts that 6 can be expanded about
the maximum of exponential (i.e., at k; =0). To first or-
der, all diagrams containing a diamond vertex are asymp-
totically zero, since 6 will be a product that contains at
least one P which is zero at k,. =0. Thus all diagrams
containing a diamond vertex are zero. In simple terms,
diagrams that are proportional to P are zero in the long-
wavelength late-time limit.

The above approximations imply the 5h(x, r) field is
slaved to the g field. Thus the equation of motion for g is
identical to that for the time-dependent Ginzburg-
Landau equation for a nonconserved order parameter
(i.e., model A). An asymptotic summation of this series
was presented by Kawasaki, Yalabik, and Gunton. " The
technique for evaluating the nonvanishing diagrams is
the same as discussed in the above paragraph. Once the
late-time long-wavelength approximation has been made

G(k„k2, . . . ),
where G is dependent on the speci6c diagram. In the lim-
it that ~—+~ the integrals can be approximated by
Laplace's integral approximation since the maximum of
(yk +yk + —Pk + . . ) is greater than zero. For
illustrative purposes a typical integral is approximated
below:

the series can be resumrned. The approximate late-time
long-wavelength solution for the g field is then

g (x, r) ~ g (x, r)
t 1+[1('(x,r)Z~]'I'" lp (x, r) I

(29)

P~ 1 ( —P~)u
5h(q, r)=a'P e ' rf du e ' dxe'q "P (x, u~) .

0

(30)

The integral can be asymptotically evaluated using
Laplace s integral approximation in the limit —P r)) l.

( —p ~Ju.
In this limit, e ~ is a maximum in the interval I0, 1]
at u =1. Equation (30) can then be expanded in the fol-
lowing fashion:

where A —= (1—ho)'~, and the second equivalence occurs
at very late times. Since P (x, r) grows exponential in
time this solution quickly saturates to +(1—ho)' in the
bulk with very sharp domain walls separating the phases.
The prediction of infinitely sharp walls separating the
domains does not agree with the well-known hyperbolic
tangent profile solution of the stationary one-dimensional
problem. This discrepancy is a direct consequence of the
large wavelength approximation used in summing the di-
agrammatic series. In the next section a technique for
obtaining the short-wavelength behavior of itj will be
presented and combined with Eq. (29).

Equation (29) predicts that the interfacial position is
completely described by the zeros of the linear solution.
Consequently the interface is Gaussianly correlated (since
the linear solution itself is Cxaussianly correlated). Clear-
ly this method cannot be applied to conserved systems
where very strong nonlocal interactions dominate the in-
terface dynamics. The position of the interfaces in this
approximation is identical to that obtained by Ohta,
Jasnow, and Kawasaki using an interfacial dynamics
method.

To evaluate the 5h(x, r) field it is convenient to consid-
er Eq. (26) with the variable change u =r'/r, i.e.,

5h(q, r)=a'P e ' rf du e ' fdxe'""P (x, ur) + fdxe'""P (x, ur)q 0 u=l u=1
(u —1)+

Retaining the erst term in this expansion leads to the fol-
lowing approximation of 5h (x, r):

5h(q, r)=a'(e ' —1)f dxe'q'"itj (x, r) . (32)

The next-order correction term is of the order—2(1 —ho )wre ' (see Appendix B). It should be noted that
this formula can be easily modified to include higher-
order terms in the gradient expansion for h in the free en-

—p' v—p ~ e
(e ' —1)—+

1+q
(33)

where P'q= Rq (1+q ). —
Although Eq. (32) was derived for 5h (x, r) in the limit

ergy provided these terms do not create a linear instabili-
ty in h. For example, if a term proportional to lVh l

ap-
peared in the free energy, then the relaxation term would
become
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P r)) 1, it still maintains the conservation law, since for
small q, e ' —1 = —Rq s. This equation combined

—P

with Eq. (29) provides a description of the dynamics in
the limit of vanishing domain-wall width. Since 5h(x, r)
is zero everywhere except at domain walls, it is important
to incorporate a finite domain-wall thickness, ideally in
terms of the proper hyperbolic tangent profile. In the
next section an approximation for the short-wavelength
fiuctuations (or interfacial profile) of g is made and in
Sec. VII it is incorporated with the long-wavelength ap-
proximation.

V. SHORT-WAVELENGTH SOLUTION
(INNER SOLUTION)

The interfacial profile of the g field can be obtained by
considering the short-wavelength behavior in the asymp-
totic limit. Since the width of the interface is a nonscal-
ing length it reaches its asymptotic value very quickly
compared with the slow power-law growth of the
domains. To obtain this short-wavelength behavior it is
convenient to make the substitution v =r'/r in Eq. (25),

t/r(q, r) =P (q, r) re ~'—f dv e
' 'f dxe'~'"[g (x, vr)+5h(x, vr)g(x, vr)] . (34)

0

In the late-time short-wavelength limit [i.e., —y~r)) 1, or (q —1+ho)r &) 1] the integrand can be expanded around
the maximum of v in the interval [0, 1 J. Retaining the first term in the expansion gives

g(q, r)=f (q, r)+ (1 e—' )f dxe'& "[g (x, r)+5h(x, r)g(x, r)] .
Vq

(35)

XqIn the asymptotic short-wavelength limit e ' can be set
to zero. In this limit Eq. (32) becomes

5h(x, r)=a'[(P ) —P (x,r)], (36)

which can be further simplified by noting that
(g ) ~1—h„. Substituting this expression for 5h (x, r)
into Eq. (35) and setting e ' =0 gives the following re-
sult.

V $=(l —a')[g —Q(1 —ho)] . (37)

The one-dimensional solution of this equation is well
known [for fixed boundary conditions, i.e.,
f(x —+ —~ )~—A and g(x ~+ ~ )~+ A] and is

g(x)=A tanh(x/W),

where

2
(1—ho)(1 —a')

" 1/2

(38)

(39)

VI. SOFT WALL SOLUTION

As h0 or a' approaches 1 the interfacial width diverges.
Consequently this analysis predicts interesting behavior
at h0 = 1 and n'= 1, which is, of course, the tricritical
point.

Equation (29) together with this result describe the
influence of the conserved field on the dynamics of the or-
dering field. The rate of growth of domains is unaffected
by h0, since the zeros of the linear solution are indepen-
dent of ho. In contrast the amplitude of f and interfacial
width are altered through Eqs. (39) and (29). Although
8' does not influence the asymptotic scaling form it can
play an important role in the approach to scaling. In the
next section the short- and long-wavelength solutions will

be combined.

proximated in the asymptotic time limit. The critical
difference between the two solutions is the time scales on
which the dynamics evolve. In essence the interface
motion described by the zeros of Eq. (29) evolve in a
power-law fashion. In contrast, the shape of the domain
walls equilibrate to their final shape exponentially in
time. Consequently the shape of the walls is frozen long
before the process of phase separation is completed,
which implies that the two dynamics are decoupled in the
late-time limit (in this context "late" time means e '»1

(i —ho)
and e ' )& 1). In this section, the decoupling is used
to construct an approximation for g that includes both
the long- and short-wavelength fluctuations.

To accomplish this task, it is assumed that the domains
are large enough that g has reached its maximum ampli-
tude (i.e., A) in the center of each domain. As discussed
previously, the separation of time scales allows one to
write the soft (i.e., the one consistent with a hyperbolic
tangent) solution [g"'(x,r)] as a convolution of some
shaping function (4) with the sharp or hard wall
[f""(x, r)] solution. The shaping function can be ob-
tained by considering a hard solution that is —A from
x = —~ to x =0 and + 3 from x =0 to x = ~, and re-
qulrlng

+x hard x (40)

By substitution it is easy to show that

sech (x / W)
2S' (41)

g"'(q, r)=$(qW)g"'" (q, r),
where

(42)

satisfies this equation. Thus in Fourier space the full soft
wall solution for g can be written

In the preceding sections both the long-and short-
wavelength behavior of the dynamical system were ap-

qirW h qirW (43)
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and
0

~hard(„) ~ 0 (»r)

Equation (42) can then be substituted into Eq. (32) to
obtain a soft solution for 5h(x, r). A more convenient

way to obtain a soft solution for 5h (x,r) is to express
5h(x, r) in terms of a convolution over the zeros of the
linear solution with another shaping function. This un-
known function is again chose~ to be consistent with the
hyperbolic profile of the p solution. The soft g~ can be
written

[g (x, r)] = A —g 1 —tanh2soft 2 2
(x—x;)

8' +1 -, (45)

where the x,. represents the zeros of the linear solution. This can be further rewritten

FIG. 4. Thre-
4(d) —4 fields

e-dimensional representation of soft wall solution for both nonconserved [Figs. 4( ) —4( )] d d [F'a — c
&

an conserve L igs.
— (f)] e s, as constructed through Eqs. (42) and (50), respectively for a random initial condition for g and for a'=0. 5, ho=0,

and E =1. {a) and (d) are at ~=30, (b) and (e) are at ~=60, and {c) and (f) are at ~=90. In all figures the x and y axes are spatial
coordinates and the z axes are t( and 5h in (a) —(c) and (d) —(f), respectively.
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[g""(x,r)]'= A' —f dx'p(x', r)sech' +1(x—x')
(46)

where p describes the interface position, i.e.,

p(x, r)= +5(x—x, (r)) . (47)

In Fourier space, Eq. (46) becomes

dxe' "[P"'(x, r)] =A qrrW csch dxe' *p(x,r)+5(q)q~W (48)

By definition

p(x, r)=!V1( (x, r)!5(g (x,r)} .

Thus, 5h(q, r) becomes

5h' '(q, r)=a'(e —l)2WA $(qW) f dxe' "!Vg (x, r)/5(P (x,r)} .

(49)

(50)

The physical interpretation of this equation is quite sim-
ple. The first term (a') is the coupling constant. The
second piece !e ' —1 gives the relaxation to equilibrium,
and the third piece [2WA $(qW) ] describes the interfa-
cial shape (or goldstone boson). The last term is simply
the interface position.

Equations (42) and (50) are the main results of this pa-
per. They give an approximate solution to the asymptot-
ic behavior of the fields 5h (x, r) and g. To illustrate the
influence of the shaping function on the two fields a
three-dimensional plot of these two fields is displayed in
Figs. 4 at ~=30, 60, and 90. These figures were obtained

I I 1 I

!
I I l I

by dynamically evolving a random initial configuration
for g"" according to Eq. (44). This result was then sub-
stituted into Eqs. (42) and (50) to obtain a soft solution
for f and 5h(x, r) for the parameters a'=0. 5, ho =0, and
R =1. These figures indicate that the h field is relatively
constant except at the interfaces. To examine the interfa-
cial structure a cross section of these configurations is
plotted in Fig. 5, in which both fields are plotted versus x
position for one value of y. This figure shows the shape
of the 5h (x, r) field near interfaces. The value of 5h(x, r)
in the bulk domains is slightly negative, to offset the posi-
tive values near interfaces [i.e., the conservation law re-
quires that (5h(x, r) }=0]. In the following section the
asymptotic solutions will be used to obtain the correla-
tion functions for the two fields.

VII. CORRELATION FUNCTIONS

0.5—

0 —--------------

The correlation of the nonconserved field can easily be
determined since the interface shape function does not
affect the correlations of the domains. The two-point
correlation function,

S&(q, )=(tt(q, )g( —q, ) },
can be approximated using Eq. (42), i.e.,

S (q, )=Z'(qW)(q"'"(q, )y"'"( —q, )} .

The correlation function in the above equation has been
determined by many authors using various methods. ' '

Using this standard result Eq. (51) becomes

I I I I I I I I

S&(q, r) =4 (q W) dx e' *arcsin2A; .„.S (x, r)
7T S'(o, r)

100
position

200 300
(52)

FIG. 5. Cross section of Figs. 4(c) and 4(f). The dashed and
dotted lines correspond to the g and 5h fields, respectively. The
solid line is g"" .

where, S (x, r) is the linear structure factor of the time-
dependent Ginzburg Landau equation and is given by

2(1 —h +V )~S (x, 7.)=e ' S(x,0) . (53)
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function for the h xr)The two-point correlation u
field, i.e.,

dl2 1 f —dx ig xfSsi, (q, r) =r (62)

Ss„(q,r) —= ( 5h (q, r)5A ( —q, v.

can be evaluated using Eq. (50), i.e.,

Ssi, (q, r)=$ (qW)4A W [a' e ' —1

X f d x e'q'"II(x, r ),
where

(54)

(63)

I I I II I I I I

}
I

}

p
i I I I I

which can be rewritten

'g "fdz e'*' ~fsi, (z/Q) .SSI, (q, r) =r

II —= (}Vie(, )}}VII( (O, )}5(@(, ))&(q

(55)

of II x, r) is given in Appendix C. TheThe explicit form of II(x, r is given
properties o e cf th correlation functions wi e e
the next two sections.

0.6

VIII. SCALING BEHAVIOR
QF CGRRELATIGN FUNCTIQNS

0.4

sions for the correlation functions can be
th toti 1' it.ut into a scaling form in e a

S ~ = " '
1 tion functions becomeS

' ~ =2q~ the corre a iSetting ~= „
0.2

S q r)=r" f~(Q)$ (QW/(2r'/S~ q, r (56)
(a)

I I I0
2 30 1

Ssh(q, r) v' d l2 If ( Q )g2—
( Q W/( 2 I /2

) ) (57)

(58)

for a random initial state i.e.,The scaling functions (f) or a ra
S(q, O)=const] are

—z /2f d z e'~ * arcsin(e ' /
)fp(g)= ze

O. B

I I II I I I I I
I

I I I I

}
I I I I

}
I I I

}
I I I

}
I I I

fsi, (Q)=2 A edg 4W2( —RQ /4 1)2G (g) (59)

(6O)

dix C. In the late-time lim-
it i.e., ', h ha ing functio s are uni-

) is iven in Appen ix
it [i.e., Q/(2r' ) && W ], the s aping
ty. Thus asymptotically,

S~(q, ~)=r"/ f~(Q) .

0.6

0.4

Ss„(q,r)=r" 'fsh(g) . (61) 0.2

endence of S (q, r) is consistent withThe large-Q dep

1 "The introduction of the shap-been shown previously. ' e in r

h h 1 th thfor wavelengt s mucPorod's law is valid fo
ll than the aver-s but much sma er andomain-wall thickness,

i n of this effectA more detail discussion oage domain size. m
'

n. A lot of the scalingiven in the next section. p o
1 t '

i
' F'f t' 'n a two-dimensiona sys einunction in

6(a).
( r) can be found byThe large-Q dependence of Ssi, q, r

writing

0
0 10 15 20

iction of the scaling functions in twop p
ensions. The solid line correspon s oand three dimensions.

=3. (a) The scaling function,
d th di io Th

line corresponds to = . a
E . (58) in two an t ree

h' h h«h 1on a logarithmic scale to ig ig
. (b)Th 1 f to, f,„

d th dimensions. The in-
i.e. Porod's law).

~ ~ ~for R =1 in two an t reegiven in Eq. (59) for
to hi hlight the large- andset depicts @ on

'
t on a logarithmic scale to ig ig

small-Q dependences.



6683LATE-TIME THEORY FOR THE EFFECTS OF A CONSERVED. . .

In the large-Q limit the scaling function is equivalent to
(see Appendix C)

1
fsh(x 0) (64)

Thus in the limit ~ ((2q ((8'—1/2 —1

(g )~g —8+I (65)

(66)

or simply

fsl (Q)"Q' (67)

h 1' it Q &&1. In Fig. 6(b) the fsi, (Q) is graphicallyin t e imi
1 ed for both two- and three-dimensiona sysdisp aye or o

it is in eres ingi ' t ting to note the dramatic asymme ymetr about
limitinthe peak. This naturally occurs from the two limi ing

cases discussed above.
The two parameters in the initial dimensionless ynam-

'
a s stem (R and a') have significantly different

influences on the domain growth. The coup
'

gu lin constant
1 ff ts the width of the interface and the ampli-e'onya ecs ew

tude o» q, ~,f S ( r) and consequently does not a er
Thescaling orm of of the correlation functions above. e

~ ~

inhuence of a' on the approach to scaling will be exam-

I I I II I I I

f
I I I I

ld b t d that this result implies that integrals
over the 5h correlation function are divergent m a i-

H r the nonscaling shaping functionmensions. oweve,
4( 8') decays exponentially in q as q~ao. us eq

ff in Fouriershaping unc
'

h f tion provides a natural cutoff
'

space. The small-Q behavior can also be extracted in a
similar manner, i.e.,

fsi, (g)~g fdxg(x),

ined in the following section. In contrast to a, the pa-
rameter R (which is a ratio of the length and time scales
of the two fields, h and It() does change the shape of scal-

f f the h correlation function, but does not affect
the approach to scaling. The rate at which the
walls are formed (which is not included in this approxi-

b R. In Fi . 7 the formmation) is, however, influenced by R. n ig.
of fsi, (g) is displayed for various values of R.

IX. APPROACH TO SCALING

6
2 Wgn .

189 4 1/2 (68)

Q—:2 v' . As an example, the moments of thewhere = q~
nl used to ascer-correlation functions, which are common y use

will be determined.tain the dynamic growth exponent, wi e e
The moments o ef th S (q r) correlation function
[M&(r)] are defined,

M" (r)—:f qd"q&S(q, )r. (69)

In this section, the inhuence of the wii th of the domain
walls or antiphase boundaries on the approach to the

'
e . The domain-asymp 0 it tic scaling forms wiB be examine .

wall thickness is a nonscaling length that reareaches its
asymptotic value exponentially

'
in time. The creation of

domain walls is not included in this theory, since it is a
1 -t rocess. This restriction is unimportant

except in the linear time regime (i.e., the regime in w ic

dynamica growt o e1 h f th domain-wall shape is very rapid,
the presence o a xe nf fi d onscaling length will inhuence

h f the correlation function when t e domain
idth.sizes are not much larger than the domain wi t .

1' tivel assess the inhuence of this nonscaling
it is useful to ex-length on various quantities of interest, it is use u o ex-

pand the shaping function for small q's, i.e.,
'2 4

1 8'Qn 1 Wgrr
eV (qW)= 1 ——, +

4~

0.6—

CX

0 4

1

+15
C"+

~ ~ ~

where

C&—= f dzz "f&(2z) .

In light of Eqs. (69) and (56) this can be rewritten
2 n+2

1 8'm.
Mq(r) =r "

CII,
—

3 2

(70)

(71)

Similarly for the h field the moments can be written

0
0

II I I

5 10

—n/2 —1 nM&(sr)=r " '
CsI, 3 2

2 Cn+'»
1

FIG. 7. Dependence of conserved field scaling function on
the parameter R [see Eq. (11)]in d =2. From top to bottom the
lines correspond to R = 1, 2, and 3. where

1
+15

'4 Cn+4»
(72)
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Csh = f dzz "fs&(2z) .

In Figs. 8(a) and 8(b) the first two moments [i.e., n =1
and 2)] are plotted versus time for the f and 5h fields, re-
spectively. The time taken to reach the asymptotic scal-
ing exponent depends on the order (n) of the moment.

The higher the order of the moment the slower the con-
vergence to the asymptotic exponent, since large wave
vectors contribute more to these moments. It is impor-
tant to note that the moments of the correlation functions

I I I I
[

I I I i
]

I l I I

]
I I I I

(
I I

I I I I I I I I I I

—10

—30

I I I I I

10 15

1.5 2.5
ln(q)

0—

—10—

—15—

—20
0

I I I I I I I I I

FIG. 8. Time dependence of moments of nonconserved and
conserved fields in d =2. In both figures the value of the pa-
rameters o.', ho, and R are the same as in Fig. (4). (a) Approach
of first two moments to asymptotic slopes as determined by Eq.
(70) for g field. The top line is the first moment and the bottom
line is the second moment. (b) Approach of first two moments
to asymptotic slopes for 5h field. The top line is the first mo-
ment and the bottom line is the second moment.

1n(Q)

FIG. 9. Time dependence of long-and short-wavelength be-
havior of structure factors in d =2. In both figures the value of
the parameters u', ho, and R are the same as in Fig. 4. (a) Ap-
proach of nonconserved structure factor to Porod's law. The
lines from bottom to top represent ~=10, 30, 100, and the
asymptotic scaling form [Eqs. (56) and (58)]. (b) Approach of
conserved structure factor to short- and long-wavelength
asymptotic values in d =2. The lines from bottom to top
represent r= 10, 30, 100, and the asymptotic scaling form [Eqs.
(57) and (59)].
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Q 1 ) Q
—d —i 1 WQ7r

1 WQ~1[W))

+ ~ ~ ~

+ ~ ~ ~

(74)

(75)

In Figs. 9(a) and 9(b) the approach to scaling in the tails
is examined for the g and 5h field, respectively. From
these figures, it can clearly be seen that a finite 8' causes
deviation from the asymptotic scaling results. As in the
case of the moments, the scaling form of the tails can be
obtained from experimental data at early times, by divid-
ing the structure factor by the shaping function.

X. CONCLUSIONS

In summary, this paper has provided experimentally
testable predictions for the growth of domains in an

I

divided by the shaping function will scale at very early
times (i.e., immediately following the linear regime).

The shaping function also has a major effect on the
tails of the scaling function. In the previous section it
was determined that f&(Q ))1)=Q

" ' and

fs& Q ))1)=Q "+'. The early-time correction to these
results can easily be obtained in a manner similar to that
described above, i.e.,

order-disorder transition in the presence of coupling to a
conserved field. The main predictions are the scaling
functions f&(Q) and f&&(Q) and a growth exponent of —,'.
The scaling functions predict tails of Q

' and Q
respectively. In addition the approach to these asymptot-
ic results can be examined through Eqs. (74) and (75),
which predict corrections of the order Q W /r. Of
greater interest is the predictions for the moments and
growth exponents. Again, experimental or numerical re-
sults can easily be compared with the results given in
Eqs. (70) and (72). Perhaps one of the most interesting
results is the inAuence of the domain-wall thickness on
the approach to scaling. By dividing the correlation
functions by the shaping function, scaling should be ob-
served during times where the domain sizes are not
asymptotically larger than the domain walls.
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APPENDIX A

An estimate of the coupling constant a' can be obtained by using a nearest- and next-nearest-neighbor approximation
(i.e., a Bragg-Williams approximation) for the free energy and adding a strain energy. In this approach P becomes

=
[ [c (1—c)+P ]V, + [c (1—c)—P ]V2 ]

V

k~T+ [(c+P)ln(c+P)+(1—c —P)ln(1 —c —P)+(c —P)ln(c —P)+(1—c+P)ln(1 —c+/)]2

+ Y[a,5c + ~&/') i],
where I is Young's modulus, k~ is Boltzmann's constant, T is temperature, and N, is the number of atoms per unit
volume. V; is the interchange energy defined as V, =E," —(E;""+E, )/2, w. here E; are the atomic interaction
strengths and the index i is 1 for nearest neighbors and 2 for next-nearest neighbors. The quantities e, and e& are elastic
constants defined by expanding the lattice parameter (a) on the ci line [i.e., a =a'(1+@,5c+e&P + )]. These pa-
rameters can be measured by determining the slope of a lattice parameter versus composition curves above and below
this line.

Expanding around 5c =0 (where, c —=co+5c) and / =0 gives

9=9(co 0)+ +2N( Vi —
Vz ) + + +4&&&Y

N, kii T y4 N, k~7'

co(1 co) 4 3 co (1—co)

+ N„k~T
(1—co}

1 +4EQEc ~ + (5c)'
Co

N, k~ T —2N, (Vi+ V2)+2E, Y (Al)

The term proportional to 5c is not included since it does not contribute to the equation of motion for either field. Un-
der these assum. ptions the coupling constant is

(2c —1+4c C e, e&Y')

2[1+cC[2e,Y' —2( Vi+ Vz)]][(C +c )/3+4c C e&Y']
(A2}

where C=—1 —c, Y'=Y/(N„k&T), and V,'=V;/(k&T). The various parameters in Eq. (A2) can be measured experi-
mentally. Allen and Cahn ' have provided estimates of several of these parameters for the Fe-Al system. Specifically,
Y'=463 K/T, e&= —0.22, e, =0.45, and V', + V2 = 175 K/T. These parameters were used to construct Fig. 1.
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The first-order correction term Ci to Eq. (32) is

APPENDIX 8

C, =a'P e "'rf e "du fdxe'q'"g (x, ru)
1 q 0 5V

Using Eq. (29) for g the derivative in Eq. (81) becomes

v=1
(u —1) . (81)

5 fdxe'q "g (x, ru) =2r fdxe'q'"g(x, r) 5 (x, r)
6v 5r

=Z d 'q" I'~ y
[1+[1t (x, r)] j

Substituting this result into Eq. (81) and evaluating the integrals over du, the correction term becomes

0 0
, [(1 P )

P 1]fd q. 1/l(x )rig(x )

t 1+[/ (x,r)] j

(1—ho)~
Since f (x, r) =e ', in the late-time long-wavelength limit, this becomes

—2(1—ho)~C10-e

Thus the correction term to Eq. (32) decays exponentially in time, and is asymptotically negligible.

(82)

(83)

(84)

APPENDIX C

The correlation function given in Eq. (55) can be evaluated in a manner similar to that used by Ohta, Jasnow, and

Kawasaki to obtain the area density in model A. Specifically the correlation function can be written (for d )2)

(2~)" (2~)'

X (expf i[A i/ (xi, r)+Azg (x2, r)+qi Vf (xi, r)+q2 VP (x2, r)] j ) (Cl)

where x = ~x, —xz~. Since the field variables i' are Gaussian, the correlation of the exponential can be written as an ex-

ponential of the correlation of the square of the argument of the exponential, i.e.,

(exp[i[A, ,Q (xi, r)+A2Q (x2, r)+qi Vf (xi, r)+q2 VQ (x2, r)] j )

=expI -'[(~i+~z+o(r)+2AikzS (x, r)+2(A2qi —Aiq2). VS (x, r)+(qi+qz)Pz(r) —2qiq2..VVS (x,r)]j,
(C2)

where

S (x, r)=—(g (x„r)g (x2,r)),
p (x, r) =e r'f(x, 0),
P,(r )

—= f dk k„S (k, r),
and

Po(r)= fdkS (k, r) .

Evaluation of the A,; and r; integrals leads to the following equation:

(C3)

(C4)

(C5)

(C6)

rl(x, r)=C,' .
'

fdq, fdq, (q, q, ) "+'V,'V',

1 q+ 2
&

[VS (x, r)]X p —— q+q: I—

VVS (x, r) + [VS (x, r)]—2qiqz.. ' + ' cos8 (C7)
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where, cos8—:S (x, T)/po, Cd ——(2&sr)" 'I ((d —1)/2), I is the unit tensor and the Cd =—(Cd ) /(2m. ) +'. This can be
further simplified by explicitly calculating p's and S (x, T) and making the variable change R =x/(2T' ). In Fourier
space the result is

II(Q, T)= T" 'f dRe' ~6(R)

where
I

G(R)= —,, „,f dql f dq2(ele2) '+'~'„~'„
e

—R 1/2

r

X exp ~
——(ql+ q2):

(R)'
2

+2qiq2: I— —R /22e—R

(C8)

(C9)

In the short-wavelength limit, the q; integrals equal 1/Cd, thus

6(R «1)=R
in all dimensions.

The above expression is valid for d 2, and can be further reduced by evaluating the radial part of the integrals. The
angular parts must be integrated numerically, however, these calculations need only be done once for all times, since
this piece scales. In d =2, 6 (r) becomes
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~l
d 2 2 2 C3

c)c2 c3 arccos
(1 e

—R )1/2 o 0 CIC2

C3 C3
arccos

C)C2
(C11)

c, —= 1 —asin PI,
c2 1 —a sin 42

c3
=—b, ( cosp Icos/2 +b, sing Isin/2 )

Ra =R /(e —1),
—R /2

) =e
—R

b2 =—1 —R /(1 —e ) .
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