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Angular forces in group-VI transition metals: Application to W(100)
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Quantum-mechanical analysis based on a tight-binding model is used to generate a functional form for
angular forces in transition metals. Using a moment analysis, an expression is derived that includes an-

gular forces via both explicit many-body interaction terms and a matrix description of a site s local envi-

ronment. A fit based on this analysis, with only four fitting parameters, is used to treat Cr, Mo, and W.
Calibration results for vacancy-formation energies and structural-energy differences are in excellent
agreement with experiment and ab initio values. Application to the W(100) surface yields a physical pic-
ture of the c(2X2) reconstruction based on enhanced surface bond-strengthening effects. Agreement
with ab initio results for the reconstruction amplitude and energy is obtained for reasonable values of
the parameters, although both of these quantities depend on the cutoff radius.

INTRODUCTION

It has become clear over the past few years that an ac-
curate description of interatomic forces in bcc transition
metals necessitates the inclusion of angular terms. On
the one hand, free-electron-based perturbative calcula-
tions' indicate that such terms are large in magnitude
and make a major contribution to structural-energy
differences. On the other hand, there have been several
treatments ' of the bcc transition metals using the
"embedded-atom" format and a matrix generalization
thereof. ' Even though these are highly optimized, they
generally obtain structural-energy differences which are
much too small or even have the wrong sign. ' This pa-
per describes an approach to taking the next stop beyond
the embedded-atom format in describing transition-metal
energetics. This step is based on tight-binding analysis
within a moment framework, which gives a natural se-
quence of locally based approximations for describing the
energetics of transition metals. The intent is to establish
the degree to which an extension including up to angular
four-body interactions can describe bulk and defect ener-
getics correctly. We treat only transition metals with
nearly half-filled d bands. The method is simplest for
these because approximate electron-hole symmetry al-
lows one to ignore, to a first approximation, the effects of
odd moments of the electronic density of states. The
method we describe here is similar to one developed ear-
lier for Si. However, we find that it is possible to obtain
accurate results without including electrostatic-dipole
terms which were included in the Si method; these are ex-
pected to be less important in transition metals because of
the short-ranged metallic screening that is present.

QUANTUM-MECHANICAL ANALYSIS
AND PARAMETRIZATION

Our method is based on a tight-binding Hamiltonian of
the form

ij ap
lWJ

where the ~i, ct ) are localized orthogonal atomiclike d or-
bitals on atomic sites i and the h J& are interatomic cou-
pling strengths; a and P index the d orbitals on a particu-
lar site. The energy zero is chosen so that the on-site i =j
terms vanish. The effects of the s electrons are not in-
cluded at this stage in order to keep the number of fitting
parameters as small as possible. We believe that this is
not a serious omission. A large number of tight-binding
calculations have shown that, particularly for the half-
filled d-band transition metals, the bulk of the structural
energetics is contained in the d band. ' Furthermore, at
least part of the effects of the s electrons is included in the
pair-potential repulsive term to be discussed later.

A local description of the electronic structure of this
type of Hamiltonian is obtained via the moments

p, „(i) = ,' I E—"p;(E )dE,

of the electronic density of states (DOS). Here i denotes a
particular atomic site and p, (E) denotes the projected
DOS on that site; the factor of one-half eliminates spin
degeneracy. Thus po(i) =5. The p„are rigorously
given" as sums of n-hop paths; for n=4, the highest-
level moment to be included here, one has

p (i)= g g h,"~h~rhkr, h„

At the level of the embedded-atom format, one in-
cludes only p2 in the energy function. This contains only
radial pair terms and describes the mean-square width of
the projected d DOS. For nearly-half-filled d-band tran-
sition metals, the next level at which significant new
physics is obtained involves inclusion of p3 and p4. These
describe the shape, as opposed to the width, of the
DOS. ' At a fixed value of p2, p3 describes the asym-
metry of the DOS with respect to its center of gravity. p4
describes degree to which the DOS is divided into two
distinct peaks, as opposed to a central peak. For small
values of p~ (when appropriately scaled by IM2), well-

defined bonding and antibonding peaks can usually be re-
volved; such a DOS distribution may be thought of as
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where

p ~(i)=(i,aIH Ii,p) = gh; rh J~ (5)

having a partly covalent character. On the other hand,
large values of p4 correspond generally to a DOS dom-
inated by a central peak. Electron-hole symmetry implies
that p3 and the higher odd-order moments, do not con-
tribute in first order to the energy in the exactly half-
filled band case. Furthermore, the numerical value of p3
in transition metals, when appropriately scaled by p2, is
typically quite small. ' Therefore, in the interest of sim-
plicity, we ignore the p3 term and include only the effects
of p4.

The first term in our energy function is similar to that
used in Ref. 8a. It is based on p2 and has the form

E,'i'= QE,i(i)= —QTr[p2(i)'~ ],

=E',i'(j )= —lh I

—2lh
I

—2lhsl, and the E,', ' estimate
for the binding energy of the molecule is
= —21h I

—41h I

—41hsl. On the other hand, the two-
atom Hamiltonian naturally breaks up into 2X2 blocks
for each m; each of these blocks has two eigenvalues
+ lb (I ) I. The binding energy of the molecule is obtained
by placing two electrons in each of the lowest five
levels, which yields a binding energy of
= —2lh

I

—41h I

—41~s I. Thus the E,'i' energy is exact
for the dimer molecule. Although tests that we have per-
formed indicate that the matrix character of p2 is not im-
portant for transition-metal point defects and surface
structure, it may well be important for treating grossly
undercoordinated configurations such as those which
might occur in surface diffusion.

Although p4 contains up to four-body interactions, a
part of it can be calculated by performing only two-body
calculations. We define

is the second-moment matrix. ' This part of the energy is
relatively fast to compute, since by Eq. (5) p2(i ) is a col-
lection of pair sums. Each term E,'i'(i) in E,'i' is simply
minus the sum of the square roots of the eigenvalues of
P2(i). This form for the p2 energy can be derived from
the matrix recursion method. ' It reduces to the
embedded-atom form in the single-orbital case and, also,
for geometries in which all of the orbitals are equivalent.
However, unlike the embedded-atom format, the p2
terms contain angular information about the local envi-
ronment. E,'& ' can, in fact, be described approximately by
an angular three-body potential; ' if only o. couplings
are present, then the angular potential is proportional to
P2( cos8), where P2 is a Legendre polynomial. ' In cubic
symmetry the eigenvalues split into a triply degenerate
complex and a doubly degenerate one, giving the usual
crystal-field splitting. In cases of higher symmetry
(which occur only in icosahedral environments), pz is a
multiple of the identity matrix. In an arbitrary low-
symmetry environment, the five eigenvalues are in gen-
eral distinct.

There are also several model physical systems which
are treated more accurately by p2 than by p2. For exam-
ple, model studies ' of Si indicate that the vacancy-
formation energy in this system is obtained to much
better accuracy by p2. In addition, the electronic-band-
energy contribution to the binding energy of a
transition-metal dimer molecule is obtained exactly by
the p2 formulation, but not by the embedded-atom for-
mat. To show this, consider the basis Ii, m ) and

Ij,m )
for the d orbitals on the atoms i and j in the molecule,
where m is the usual azimuthal angular momentum quan-
tum number and the axis of quantization is the bond axis.
Then rotation about this axis is a symmetry of the Hamil-
tonian H, so that H couples Ii, m ) only to Ij,m ) and
vice versa. Thus

(i,m IH li, m') =5 .h(m)

where h(m ) =h for m =0, h for m =+1, and
h& for m =+2. Thus the eigenvalues of P2(i)' and
P2(j )' are simply I

h (m ) I. Therefore, E,'i '(i )

p' '(i)= Q g h "~h~rhii' hI;
j, l a,P, y, 5

so that only paths returning to site i after the second hop
are included. By using Eq. (5) this can be written in the
form

p4' '(i ) = Tr[p2(i ) ] .

The energy from this part of p4(i ) is already included in

E,'i'(i). This is most readily seen by examination of the
DOS distribution which is used to generate E,'I'. As
mentioned above, this DOS is obtained via the matrix re-
cursion method; with a continued fraction truncated after
the first level, this gives a DOS distribution of the form

5

p' '(E)= g [5(E E)+5(E+E )—],
v=1

where the E are the square roots of the eigenvalues of
P2(i) (The results to be demonstrated are actually in-
dependent of the termination method; the truncation
choice employed here is used because it yields the sim-
plest algebra. ) From Eq. (2) one readily shows that, for
this DOS distribution, p4= +5 i E . On the other hand,
by the definition of the E„ the eigenvalues of P2(i ) are
simply E,. Thus the eigenvalues of P2(i) are E; since
the trace of a matrix is simply the sum of its eigenvalues,
pz '= +5,E,. Comparing with the above results for
p' ', we have that the value of p4 associated with p' ' is
simply p4 '. Therefore, the DOS generating E,'&' already
has the value p4

' of p4, and corrections to the E,'&' term
should contain only the deviation of p4 from p4 '.

We find that p4
' typically contains only roughly half of

p4, so that the corrections to E,', ' are clearly necessary.
Thus we include another term which contains p4 —p4 '..

Here B is an adjustable constant. The factor of pz in
the denominator is obtained via dimensional analysis; it is
also given by treatments' based on model DOS distribu-
tions fitted to pz and p4. In general, the electronic bind-
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ing energy obtained by such model DOS distributions is a
nonlinear function of p2 and p4., however, the nonlineari-
ty in the p4 dependence of the energy in model DOS cal-
culations is not very strong. ' Therefore, in the interest
of simplicity, we linearize this dependence as in Eq. (7).
We find that inclusion of the E,'& ' term leads to
significantly improved structural-energy differences.

Finally, we include a phenomenological repulsive pair-
potential term to counter the attractive electronic energy.
Thus the total energy has the form

(8)

where

A f f exp[ —
( kr ) ]dr —a +b (r

& r), —r ( r
&h(r)=

0, r&r, .

This form guarantees that both the first and second
derivatives of h are monotonically decreasing with dis-
tance; this is important, because these determine the
forces and force constants. The constants a and b are
chosen to make both h (r) and dh /dr go to zero smoothly
at the cutoff radius r &. The Gaussian integrand is chosen
because this gives a more rapid large-r cutoff than many
other possible forms, such as exponential and power-law
decays. We use the double integral because otherwise
monotonicity of the derivatives is not guaranteed. The
same form of radial function is chosen for Vz'P.

Because the multiplicity of the E,'j' terms is high, we
have used a simpler form for their radial dependence to
reduce computation time:

ho( — )
h(r)= 10 „)„ (10)

To specify our model completely, it is necessary to give
the interatomic coupling strengths and the radial form of
Vz'P. The coupling strengths h; ~ are given via the usual
Slater-Koster' relations in terms of interatomic cou-
plings of o., m, and 5 symmetries. We assume the "canon-
ical" ratios of 6:—4:1for h:h:h&. The radial depen-
dence of the d couplings in the pz term is given as the fol-
lowing double integral:

In addition, the cutoff is chosen such that r2 &r, . This
form is used for both the p4 and p2 factors in Eq. (7).
Thus the Harniltonian matrix elements that are used in
the E,'&' terms are somewhat different from those in the
E,'&' terms. Although this causes some loss in accuracy,
we feel that this loss is more than made up for by the gain
in computation time, which is roughly two orders of
magnitude.

Given this form, one would have five parameters to fit:
two prefactors 3,&

and A„ for the electronic and repul-
sive terms, the two associated decay constants k, &

and
k„, and the angular prefactor 8 [The constant ho in Eq.
(10) is not an additional parameter, because varying it is
equivalent to varying 8 in Eq. (7).] To reduce the num-
ber of free parameters, we make the further restriction
that k, p

2 5k ] This provides for a reasonable balance
between the attractive and repulsive terms. Comparison
of calculated electronic-band energies and cohesive ener-
gies ' suggests that the repulsive terms cancel less than
50% of the electronic-band energy in nearly-half-filled-
band transition metals. We find that, if the restriction on
the decay rates is not made, there is a tendency for can-
cellations of 70%—80% or more to occur. We consider
such cancellations to be unphysical. The values of the
four remaining parameters were obtained by a least-
squares fit to a database comprised of the cohesive ener-
gy, equilibrium lattice constant, and three independent
elastic constants for each metal. The values of the pa-
rameters are given in Table I. We note that the number
of parameters here is smaller than is typically used in ra-
dial methods with the embedded-atom format, even
though the energy function has considerably more rich-
ness.

RESULTS

The first set of calculations are aimed at assessing the
overall accuracy of the method in calculating broken-
bond energies and structural-energy differences. We take
r, =6.0 A for W and Mo; for Cr the cutoff is scaled by
the lattice constants. For r2 we take a value of 4.2 A for
W, using scaled values for Cr and Mo; sensitivity tests for
W are described below. The results for the vacancy-
formation energies and bcc-fcc energy differences are
given in Table II. The three cutoff distances used in the
sensitivity tests for W are between the second-neighbor
distance 3.16 A and the third-neighbor distance 4.47 A.
It is convenient to think of these cutoffs as corresponding

TABLE I. Values of parameters in the angular force method. Note that B is dimensionless. Three
diferent values of r& (which is not a fitting parameter) are used for W.

r2 (A)

A, g (eV)

A„p (eV)
k,i (A )

B

Cr
3.829

7.914
773.1

0.4015
4.936

Mo
4.187

9.990
368.6

0.3242
3.477

4.0

11~ 101
341.3

0.3133
3.655

W
4.2

12.191
371.3

0.3148
3.296

4.4

13.027
373.6

0.3132
2.888
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TABLE II. Calibration tests for vacancy-forrriation energy cf and structural-energy difference
AEIb f, (per atom). Vacancy calculations include relaxation of nearest-neighbor shell. r2 is the cutoff
distance in the E,'& ' terms.

r, (A)

~f (eV)
Present
Expt.

AE„„„,(eV)
Present
Ab initio

Cr
3.829

2.2
2.0'

—0.38
—0.40'

Mo
4.187

3.4
30"

—0.40
—0.44

4.0

4.1

—0.45

W
4.2

4.2
4.0b

—0.46
—0.53'

4.4

4.4

—0.47

' Reference 22.
Reference 23 ~

' Reference 24.
Reference 25.

' Reference 26.

to diff'erent efFective exponents in I /r" decay laws, where
n is determined by forcing the algebraic decay law to ob-
tain the same ratio of second- to first-neighbor couplings
as is given by Eq. (10). It is readily seen that

n =2 in[(r, —.»)/(. ,—.»N)]/»(r2NN/rNN)

where rNN and r2NN are the first- and second-neighbor
distances. Using the bcc ratio rNN/r2NN =&3/2, one
finds that n =5.67for rz=4. 0 A, n =4.75 for r2=4. 2 A,
and n =4.08 for r2=4. 4 A.

All of the calculated vacancy-formation energies are
within the error bars of the experimental measure-
ments. ' They are also fairly insensitive to the choice
of cutoff radius. These results are in line with previous
studies of broken-bond properties, which show that a
large part of these energies comes from the reduction in
local electron bandwidth; this is described already by p2
(or even by the scalar p2). The structural-energy results
are more surprising, however. These are within 15% of
the ab initio estimates and are also essentially in-
dependent of the cutoff radius. This is remarkable, in
view of the fact that no structural-energy information
was in the input database. The bcc-fcc energy difference
is due almost entirely to the E,'&' terms; in fact, the net
contribution of the remaining terms favors the fcc struc-
ture. However, p4-based calculations using model DOS
distributions typically obtain at most 60—70% of the ab
initio values. ' It is likely that the more accurate values
obtained here are partly due to the use of empirical input
quantities. The input quantity that seems to be the most
closely associated with the angular forces is shear elastic
constant C'= (C» —C,2 ) /2. The lattice distortion asso-
ciated with this elastic constant does not change nearest-
neighbor bond lengths to first order, and thus it is likely
that angular effects make a large contribution to C'. We
have, in fact, found that changing the input values of C'
can cause large changes in the calculated structural-
energy differences.

0.2

0.1

0

—0.1

—0.2

0 0.1

FIG. 1. Energetics of surface relaxation for the W(100) sur-
face, including only first-layer motions. Displacement is in A;
energy is per surface atom.

Our second set of calculations is aimed at obtaining a
real-space description of the factors determining the
structure of the W(100) surface. Surface relaxation prop-
erties are strongly affected by many-atom interactions in
metals. The breaking of the surface bonds leads to
the strengthening ' of "back bonds, " which typically
leads to a contraction of the first interlayer spacing.
Effects of this type are naturally included in the
embedded-atom format via the nonlinear dependence of
the energy on the density of the local environment. Our
results for the W(100) surface relaxation, in the absence

0
of reconstruction, are shown in Fig. 1, using rz =4.2 A.
In this analysis and in the subsequent analysis of recon-
struction, we treat only first-layer displacements. The
sum of the E,'&' and E„ terms favors the relaxation, as is
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expected from previous results with "embedded-atom"
potentials. In contrast, the four-body terms oppose the
relaxation. The equilibrium contraction is 0.10 A, with a
relaxation energy of —0.08 eV/atom. Because the actual
surface reconstructs, there are no experimental results to
which to compare these numbers. For this reason we
compare our results to ab initio results instead (cf.
Table III). We again use three different values of r2 as a
sensitivity test. Both the equilibrium contraction and re-
laxation energy are quite insensitive to the value of r2.
For all of the values of r2, the first-layer contraction is
very close to the ab initio results. The relaxation energy
is also within the apparent "error bars" of the ab initio
results. The surface energies are somewhat lower than
the ab initio results and vary by roughly 15% with chang-
ing values of r2.

The physics behind reconstructions, in contrast to re-
laxations, is not in general given by embedded-atom for-
mulations. In fact, calculations with the embedded-atom
format have not obtained the reconstructions observed on
W and Mo surfaces. The W(100) surface undergoes a
c(2 X 2) reconstruction. In the most widely believed
model for this reconstruction, alternate atoms are dis-
placed in the (0,1,1) and (0, —1, —1) directions in the sur-
face plane. This results in the formation of zigzag chains
along the surface, with some bonds being lengthened and
some being shortened. A large number of theoretical cal-
culations have been performed for this system, ranging
from fairly empirical approaches to completely ab initio
calculations. We do not have space to review all of these
here, but an extensive summary and list of references is
given in Ref. 36. In general, two types of physical pic-
tures have been emphasized. The first involves long-
ranged interactions resulting from "nesting" of the Fermi
surface, which leads to greatly enhanced values of the
electronic susceptibility at particular wave vectors. Such
nesting has not been explicitly demonstrated, although
some calculations have indicated a strong wave-vector
dependence of the surface phonon frequencies, with some
of them becoming imaginary and providing an instability.
The second picture involves surface bond-strengthening
effects. ' ' In this picture the strengthened surface
bonds cause the second-neighbor atoms on the surface to
move closer to each other, as occurs in the observed
reconstruction. As mentioned above, such effects are nat-
urally included in embedded-atom formulations. Since
the observed W(100) reconstruction is not obtained by
these formulations, it is apparently necessary to have
more pronounced bond-strengthening effects than are ob-
tained in the embedded-atom formulation. Surface bond
strengthening has been observed in both charge densities
obtained via ab initio calculations and force constants
obtained in tight-binding calculations. ' At this point it
has not been conclusively established which of the two
mechanisms, long or short ranged, is the dominant one.

Our results for the c(2 X 2) reconstruction are shown in
0

Fig. 2 for r2 =4.2 A. In order to establish the physics as
clearly as possible, only lateral displacements are includ-
ed. The situation if precisely the reverse of the case for
relaxations. The E,'&' and E„ terms in combination op-
pose the reconstruction, while the E,'&' terms favor it.

0.2—

0.1—

—0.1—

—0.2
0.0 0.1 0.2 0.3

FIG. 2. Energetics of c(2X2) surface reconstruction for the
W(100) surface. Reconstruction amplitude is 5„„.Only lateral

0
motions of first surface layer are allowed. Displacement is in A;
energy is per surface atom.

0
The optimal reconstruction amplitude 6 is 0.25 A, with
an associated energy stabilization of —0. 11 eV per sur-
face atom. This number is given relative to the unrelaxed
surface; the energy difference between the reconstructed
and relaxed surfaces, which is sometimes referred to as
the "reconstruction energy, " is much smaller (

—0.03 eV
in this case). The physical picture behind the results ob-
tained here corresponds most closely to the surface
bond-strengthening mechanism discussed above.
Changes in the E,'&' terms come from changes in both p4
and pz. If pz is fixed, then by Eq. (7), a decrease in p4
provides a stabilizing contribution. On the other hand, if
p4 is fixed, then an increase in p2 provides a stabilizing
contribution. Since p2 is determined completely by the
number and distances of the near neighbors (and not
their angles), the stabilizing contribution associated with
increasing p2 corresponds to an enhanced surface bond
strength, above and beyond what is already contained in
the E,'&' terms. This enhancement is the dominant effect
here.

This is illustrated in Fig. 3, which shows E,'~ ',

p'„=@~—p4' ', and y~=p&gc4 j(p2) in the first two surface
layers, as well as the bulk values. For the first two layers,
the left-hand (dashed) bar indicates the value for the ideal
surface, while the right-hand (solid) bar indicates the
value for the reconstructed surface. The quantity y4 pro-
vides a measure of the shape of the DOS; according to
the p4 discussion above, small values of y4 corresponds to
a two-peaked structure for the DOS and large values cor-
respond to a single peak at the center of the band. The
factor of po ensures that y4 is independent of the overall
normalization of the DOS. The value of E,'j ' is strongly
enhanced at the surface. This enhancement can be asso-
ciated with the increased surface value of y4, seen in the
middle frame, since E,'&'=By~& . The large surface
value of y4 corresponds to a value of the DOS at the Fer-
mi level which is higher than what would already be ex-
pected from the surface reduction in p2. Upon recon-
struction, E,'&' in the surface layer is reduced; this reduc-
tion, in fact, accounts for most of the energy stabilizing
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E(4)(ey)

1st Layer

r-z
I

I I
I

I I
I
I }
I

2
I I
I

2nd Layer Bulk

1.5—
r 1
I
I I1.0—
I

I
I
I

0.5—
I

I I
I I
I I

0 I I

I I
I I
I I
I I
I
I I

1.0-

r l
I I
I I
I I
I I
I I
I I

QQ I I

p.'lp, (bulk)

r-a
I I
I I
I I
I I
I I
I
I I
I I
I I

FICr. 3. Four-body energy E,'~', band-shape parameter y4,
and part p4 of fourth moment for %(100) surface layers for
r2=4. 2 A. Dashed bars indicate values in absence of recon-
struction or relaxation; solid bars indicate values for reconstruc-
tion of amplitude 0.25 A, with only lateral displacements.

the reconstruction (cf. Fig. 2). The drop in E,'~' is associ-
ated with a reduction in y4. This reduction, in turn, is
due to a reconstruction-induced increase in p2 rather than
a decrease in p4,

' in fact, as is seen in Fig. 2, p4 increases
upon reconstruction. Thus our results support the
enhanced bond-strengthening mechanism discussed
above. Surface states may play an important role here.
The increased value of y4 at the surface is likely due in
part to surface states, ' which have been found in the ab
initio calculations. ' Thus the drop in y4 upon recon-
struction may correspond to the elimination of some of
the surface-state peak. We note that the angular charac-
ter of the contributions to p4 is still important. If, for ex-
ample, the various paths contributing to p4 all contribut-
ed with the same sign (as would be the case in an s-band
model), then p~ would be expected to be roughly propor-
tional to (p2) . E,'~ ' would then increase, rather than de-
cease, as a result of the reconstruction. The constancy of
p4 is partly due to the cancellation effects resulting from
different paths having opposite signs.

Table III provides comparison with ab initio results
and sensitivity analysis for the reconstruction. Here both
lateral and perpendicular displacements are included in
our results. Unfortunately, there is no unique set of ab
initio results, since there are large discrepancies between
ab initio results (the two full-potential linear augmented-
plane-wave lines in the table) obtained via similar
methods by different groups. For r2 =4.2 and 4.4 A, the
calculated reconstruction amplitude and magnitude are
consistent with the ab initio results (within the large ap-
parent error bars of the latter); they are also consistent
with the rather uncertain experimental data, which
place the reconstruction amplitude between 0.15 and 0.30
A. However, in the case of r2=4. 0 A, the calculated
reconstruction amplitude is much too small. Thus ob-
taining the correct structure is not guaranteed by the

TABLE III. Calculated properties of the W(100) surface. Energies E„& and E„, resulting from re-
laxation and reconstruction are in eV per surface atom and are measured relative to the ideal unrelaxed

0
surface. Displacements 5 are in A; negative values of 6„~ denote inward displacements. E',„' and 5'„,'
obtained including only lateral displacements; E„„and 5„, include both perpendicular and latera1 dis-
placements of first layer. E,„„fdenotes surface energy in eV per surface atom. The first three lines give
present estimates. "PP" denotes ab initio pseudopotential calculations; "FLAPW" denotes ab initio
full-potential linear-augmented-plane wave calculations. Present estimates of E,„„finclude both perpen-
dicular and lateral displacements; PP estimate includes only relaxation effects (perpendicular displace-
ments).

rz =4.0
r2 =4.2
r2 =4.4
PP'
FLAP Wb

FLAPW'

—0.07
—0.08
—0.07
—0.06
—0.05
—0.05

—0.10
—0. 10
—0.09
—0.09
—0.09
—0.09

(&)E rec

—0.05
—0.11
—0.16

—0.15

(0)
grec

0.19
0.25
0.28

—0.07
—0.11
—0.16

—0.09
—0. 15

grec

0.05
0.22
0.28

0.19

Esurf

2.5
2.7
2.9
3.1

3.3
' Reference 32.

References 33 and 34.' References 35 and 36.
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present method, although it is obtained for reasonable
values of the parameters. We believe that a major part of
the effect of changing r2 comes from changing in the ra-
tio of the second- to first-neighbor couplings. For
r2=4. 0, 4.2, and 4.4 A, Eq. (10) implies that this ratio
has the values 0.442, 0.505, and 0.556, respectively. Since
the pz term in Eq. (7) contains these couplings to the
third power, differences in second-neighbor coupling
strengths can cause substantial differences in E,'I'. It is
generally believed that d-orbital couplings follow roughly
a 1/r decay law. This gives a second- to first-neighbor
coupling ratio of 0.487, which would be obtained for
r2 =4. 14 A. Interpolation of the reconstruction energies
given in Table III suggests that this value would provide
an accurate treatment of the reconstruction. However,
the 1/r decay is not exact. We feel that the most reli-
able procedure for treating surfaces within the present
method is to choose a value of rz that gives a reconstruc-
tion energy consistent with the ab initio results.

CONCLUSIONS

In summary, the method described here gives a good
description of both bulk and surface structural energetics,
despite the small number of fitting parameters that are
used. Both the broken-bond physics determining
vacancy-formation energies and surface relaxations and
the DOS-shape physics that determines structural-energy
differences are obtained in a fashion that is fairly insensi-
tive to the precise form of fit that is used. The tendency
of the W(100) surface to reconstruct is also fairly fit in-

dependent; however, the reconstruction amplitude and
energy are sensitive to the choice of fit. We'believe that
the present angular force method is sufficiently accurate
to provide insight into a variety of materials properties.
Simulations of such properties, if done via molecular dy-
namics, require the forces or gradients of the total-energy
function. We have obtained these by analytic
differentiation of the various radial and angular functions
that enter the total energy, which increases the computa-
tion time by roughly a factor of 5. At this point it is not
clear which properties will be most sensitive to the types
of angular terms included here. It is widely believe that
the structures of closely packed defects, such as disloca-
tions, are primarily determined by hard-core packing
effects. This belief can now be tested by explicit calcula-
tions with angular forces. Our results for the W(100) sur-
face would suggest that the effects of angular forces on
structure are largest when broken bonds are present. The
total-energy method we have described is sufficiently fast
that it should be possible to perform realistic finite-
temperature simulations of surface structure and other
materials properties involving such broken bonds.
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