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By comparing the exact free energy with the free energy of the random-phase approximation (RPA),
we find that the spin-wave description of a spin-s Heisenberg ferromagnet breaks down near the temper-
ature T=0.18zJs, where J is the ferromagnetic coupling constant and z is the number of nearest neigh-

bors. The scaling of the crossover temperature with zJs agrees with the early results of Vaks, Larkin,
and Pikin. We calculate this crossover temperature by expanding the RPA free energy in powers of 1/z
on a d-dimensional hypercubic lattice. While the zeroth- and first-order terms in the RPA expansion
agree with the terms in the exact expansion, the second-order term disagrees with the exact 1/z free en-

ergy. Below T, the difference between the RPA and exact free energies is negligible. So for T & T, the
RPA summation is justified and the spin-wave description is appropriate. Above T, however, the spin-

wave interactions become highly nonlinear and the RPA free energy deviates from the exact result. Be-
cause all momentum states contribute to the energy above T, the transverse free energy enters an

equipartition regime and the transverse specific heat tends to zero. As a result, the crossover is marked

by a peak in the fluctuation specific heat. The crossover temperature is unchanged if a more sophisticat-
ed spin-wave theory is used in place of the RPA. The predicted crossover has been observed as a shoul-

der in measurements of the total specific heat.

I. INTRODUCTION

The spin-wave approximation' has been remarkably
successful at predicting the low-temperature properties of
ferromagnets. Due to this success, many workers '

have tried to establish the limitations of the spin-wave ap-
proximation for the spin-s Heisenberg model. Even the
founders of the spin-wave theory expected this ap-
proximation to fail above some crossover temperature,
when the interactions between the spin waves become
nonlinear and the concept of a weakly interacting spin
wave loses its meaning. Vaks, Larkin, and Pikin predict-
ed that the spin-wave approximation would fail above a
crossover temperature proportional to zJs, where z is the
number of nearest neighbors and J is the ferromagnetic
coupling constant. They also predicted that the cross-
over would be marked by an anamoly in the specific heat.

In this paper, we build upon the work of Vaks, Larkin,
and Pikin by explicitly calculating the crossover tempera-
ture. Our main result is that the crossover temperature
occurs very close to T=0.18zJs, where the fluctuation
specific heat of a ferromagnet has a peak. Hence, the
crossover leaves a definite thermodynamic signature. In
fact, this crossover from a low-temperature spin-wave re-
gime to a high-temperature nonlinear regime has already
been observed in measurements of the specific heat.
Above the quantum peak in the fIuctuation specific heat,
the nonlinear spin Auctuations can no longer be described
as spin waves. Since the Curie temperature is of order
zJs, the range of temperatures between T and T& grows

as the spin increases. If the temperature is scaled by zJS,
then the spin-wave regime vanishes in the classical limit
of infinite spin.

The fundamental assumption of the spin-wave approxi-
mation is that the spin fluctuations can be described as a
collection of weakly interacting, particlelike excitations.
A single spin wave is, in fact, an exact eigenstate of the
Heisenberg Hamiltonian. But due to their interactions,
two or more spin waves are not eigenstates. While a
state with two spin waves can be diagonalized exactly,
states with more than two spin waves are intractable. A
simple solution to this dilemma, popularized by Dyson,
is to simply ignore the many-body interactions between
three or more spin waves. The ferromagnetic Hamiltoni-
an is then replaced by a spin-wave Hamiltonian which is
fourth order in the spin-wave creation and annihilation
operators and which couples only two spin waves at once.
This approximation is justified if the number of spin
waves is small so that many-body interactions are unlike-
ly. As the temperature increases, however, the number of
spin waves grows and many-body interactions become
more common.

Another weakness of the spin-wave picture is that it
violates the spin kinematics. ' A proper treatment of the
spin kinematics restricts the eigenvalues of the spin
operator S;, on site i to quantized values between s and
—s. Since the ground state is defined with S;,=s at every
site, only 2s spin deviations are permitted at each lattice
site. Without introducing an awkward set of projection
operators, the spin-wave approximation cannot enforce
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these kinematic constraints. Since the average number of
spin deviations is small at low temperatures, the kinemat-
ic constraints are customarily ignored by the spin-wave
approximation. Because the spin operators are replaced
by a set of Bose operators with particlelike properties, the
number of spin deviations at each site can assume any in-
teger value between 0 and ~. Hence, the spin-wave ap-
proximation will violate the kinematic constraints when
the number of spin deviations exceeds 2s.

The interactions between spin waves are usually inves-
tigated in a perturbative expansion about a noninteract-
ing spin-wave Hamiltonian. In the 1/s expansion of Hol-
stein and Primakoff, the spin-wave interactions are con-
tained in a 1/s correction to the noninteracting Hamil-
tonian. In the random-phase approximation' " (RPA),
the single-particle energies are renormalized by the pres-
ence of other spin waves at finite temperatures. The re-
normalized spin waves form the basis set of noninteract-
ing particles at any temperature. More complex spin-
wave interactions will couple these renormalized excita-
tions. Any such Perturbative approach breaks down
when the single-particle excitations form bound states.
Dyson demonstrated that two spin waves cannot form a
bound state if their total momentum K is sufficiently
small. But Wortis showed that if K is close to the edge
of the Brillouin zone, two spin waves can form a bound
state with energy of order zJs. Above the crossover tem-
perature T~zJs, the formation of bound states invali-
dates the spin-wave approximation.

This crossover affects the thermodynamics of a fer-
romagnet. For example, at low temperatures the exact
free energy of a ferromagnet can be expanded in powers
of T' . In three dimensions, the lowest-order term in
the transverse free energy is of order T . Because the
exact free energy also contains exponential corrections,
proportional to powers ofe, the power-series expan-
sion is only asymptotically correct. Dyson conjectured
that the spin-wave description remains valid only so long
as the exponential corrections can be neglected and the
power-series expansion is meaningful. In this paper, we
find that the largest exponential correction to the power-
series expansion is proportional to some power of e
So above a temperature of order zJs, both the analytic
and nonanalytic terms in the free energy are equally im-
portant. Just as argued by Dyson, the breakdown of the
spin-wave picture coincides with the failure of the asymp-
totic expansion.

In the nonlinear regime above T, all of the many-body
interactions contribute to the free energy. These many-
body interactions depend very sensitively on the kinemat-
ic constraints discussed above. Unlike spin waves, the
nonlinear fluctuations above T are more easily described
in real space, with the kinematic constraints automatical-
ly enforced. A convenient real-space formalism for cata-
loging the many-body interactions and studying their
effects is the 1/z expansion. ' Any thermodynamic
quantity, such as the order parameter or free energy, may
be expanded in powers of 1/z. The lowest-order term in
such an expansion agrees with mean-field (MF) theory,
which neglects the correlation of fluctuations on different
lattice sites. The higher-order 1/z corrections embody

the coupling of spin fluctuations on neighboring sites.
Because the 1/z expansion is formally exact, it can be

used to check the accuracy of approximate techniques,
order by order in 1/z. Since even the spin-wave Hamil-
tonian proposed by Dyson cannot be treated exactly, we
use the RPA to represent the more general class of spin-
wave theories. While we recognize that the RPA has
some serious weaknesses, our calculation of the crossover
temperature is independent of the particular spin-wave
theory chosen. The relative simplicity of the RPA en-
ables us to clearly demonstrate the reasons for the failure
of the spin-wave picture.

To calculate the crossover temperature, we compare
the 1/z expansion of the exact free energy with the 1/z
expansion of the RPA free energy. As shown in Sec. III,
the RPA free energy can be expressed as an infinite series
of ring diagrams, with escalating order in 1/z. To zeroth
and first order in 1/z, the RPA free energy is exact. But
to second order in 1/z, the RPA free energy disagrees
with the exact result, ' calculated on a d-dimensional hy-
percubic lattice with z =2d nearest neighbors. The ring
diagram that represents the second-order RPA free ener-

gy is only one of the infinitely many diagrams which con-
tribute to the I/zz correction to the exact free energy.

Above the temperature T, ~ Js but not too close to the
Curie temperature, the 1/z expansion of the RPA free
energy converges rapidly. By comparing the RPA and
exact free energies, we find that the spin-wave approxi-
mation remains valid up to the crossover temperature
T=0.18zJs )T, . Below T, the RPA and exact free ener-
gies are approximately equal. Hence, the summation
over ring diagrams is probably justified and the spin-wave
description is appropriate. Above T, however, the RPA
and exact free energies begin to differ significantly and
the spin-wave picture breaks down.

Of course, the RPA can be improved by including in-
teractions between the renormalized excitations. But this
procedure will, at best, only incrementally increase the
crossover temperature. The spin-wave free energy will
still deviate from the exact free energy at a temperature
very close to T. Yet such refinements will certainly im-
prove the spin-wave approximation below the crossover
temperature, where the spin waves are well defined.

Although the crossover temperature may lie slightly
above or below the peak in the fluctuation specific heat,
we shall usually not distinguish between the two. The
quantum peak at T appears in the first-order specific heat
C, /N, which is the same for the RPA and the 1/z expan-
sion. We show in Sec. III that the quantum peak in
Ci /N survives the summation over ring diagrams to ap-
pear in the total RPA fluctuation specific heat. Hence,
the quantum peak appears in calculations on both sides
of the crossover. A shoulder in the total specific heat sig-
nals the crossover between the linear and nonlinear re-
gimes.

The crossover is most easily explained in terms of the
spin-wave interactions. At low temperatures, the max-
imum spin-wave frequency is 2zJs. Above T o-zJs, the
transverse spin-wave free energy enters an equipartition
region in which all spin wave states contribute to the en-
ergy. The interactions between spin waves with large
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momenta are highly nonlinear and so the spin Auctua-
tions above T can no longer be described as weakly in-
teracting, long-wavelength excitations. Because the
transverse free energy becomes a linear function of T
above T, the transverse, fluctuation specific heat peaks at
the crossover temperature.

This paper is divided into five main sections. In Sec. II
we review the 1/z expansion and calculate the 1/z
correction to the free energy. By summing over ring dia-
grams in Sec. III, we demonstrate that the RPA free en-

ergy is exact only up to first order in 1/z. Using this free
energy, we numerically evaluate the RPA fluctuation
specific heat. The main results of this paper are present-
ed in Sec. IV, in which we compare the exact and RPA
free energies through second order in 1/z. In this sec-
tion, we also evaluate the second-order, fluctuation
specific heat. Finally, in Sec. V we consider a more gen™
eral class of spin-wave theories. The physical significance
and observability of the crossover is also discussed.

Technical details that would clutter the main text are
relegated to the Appendixes. Appendix A contains a
proof of the semi-invariant expansion used to evaluate
the 1/z expansion of the free energy; Appendix B con-
tains the results for the 1/z and 1/z corrections to the
exact and RPA free energies; Appendix C demonstrates
that the entropy and free energy of the 1/z expansion are
continuous at the Curie temperature, as required for a
second-order phase transition; and Appendix 0 provides
an alternate derivation of the RPA based on linear-
response theory.

II. THE 1/z EXPANSION

The 1/z expansion for a Heisenberg ferromagnet was
originally formulated by Horwitz and Callen, ' Stin-
chcombe, " Brout, ' and Vaks, Larkin, and Pikin. Its
development was interrupted by the discovery of
"anomalies" in the 1/z corrections to the order parame-
ter and free energy at the MF Curie temperature. Re-
cently, Fishman and Liu (FL) have established that these
so-called "anomalies" are required for the consistency of
the theory and lead to no unphysical effects. For exam-
ple, the divergence of the 1/z correction to the order pa-
rameter at the MF Curie temperature signals a shift in
the Curie temperature from the MF value. As discussed
below, the other "anomalies" of the 1/z expansion in
zero field are also simple to understand.

In this section, we extend the discussion of FL to cal-
culate the 1/z corrections to the free energy. Our start-
ing point is the Hamiltonian for a spin-s Heisenberg mod-
el with N lattice sites:

[S;,Sjii] = i 5;~e ii~S;y— (2)

with 4= 1. As in FL, we separate H into a MF term H, ff,
a constant term H „and a fluctuation term H2 ..

H= —J QS;SJ,
(~,j)

where J)0 is the exchange coupling and the spin opera-
tors obey the commutation relations

H =H,ff+Hi+H~,

H,fr= —zJMO g S.. .

(3)

(4)

Hi =
—,'NzJM0,

H2= —J gR;

(A) „= Tr(e ' 3),

ZO=Tr(e '
) .

Notice that (A )~F depends only on the dimensionless

temperature T*=T/zJ and on the spin s.
The MF theory of the Heisenberg model is well

known. ' Because H, ff is the sum of single-site operators,
the MF partition function Z0=Z00 is the product of the
single-site partition functions

sinh[P*MO(s + —,
'

) ]
ZOO

sinh(P'Mo/2)
(10)

with p*=1/T*. Using Eqs. (8)—(10), we find that the
MF order parameter M0 is the solution of the self-
consistent equation

Mo =(s + —,
' )coth[p*MO(s + —,

' )]——,'coth( —,'p*MO) .

Upon setting Mo(T*) to zero, we obtain the MF Curie
temperature Tc =s (s + 1 ) /3. Explicitly including the
contribution of H „the MF free energy is

= —T*lnZ +—'M0 2 0 (12)

which is a function only of T' and s.
In terms of F0/NzJ, the MF specific heat is given by

C (T0*) d ~ Fo
dT*2 NzJ

(13)

As required by Nernst's theorem for any finite value of
the spin, Co/K vanishes at T:T*/s(s+1)=0—. But in
the classical limit s~~, C0/N approaches 1 at T =0.
Therefore, the MF specific heat develops a shoulder as
the spin increases. For 5 ~3, C0/NT contains a peak
below the Curie temperature. Both features are caused

—Mo /T
by the exponential term e in the MF specific heat.
As discussed below, the shoulder in C0/N and the peak
in Co/XT occur very close to the crossover temperature
T.

Of course, MF theory neglects the correlation of fluc-
tuations on neighboring sites, which are introduced by
the fluctuation Hamiltonian H2. In the formal limit
z~ oo (only possible in infinite dimension), the mean-field
zJ experienced by every spin diverges and the coupling of

R; =(S;,—Mo)(S, —Mo)+S; S)„+S;S

where Mo=(S„)~F is the MF order parameter. The
MF expectation value of any operator 3 is evaluated by
neglecting H2 and ignoring the c-number H, :
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fluctuations can be ignored. But as the coordination
number decreases, the coupling of Auctuations on neigh-
boring sites becomes increasingly important. Hence, the
effects of correlations can be investigated with a 1 /z ex-
pansion about MF theory. In the 1 /z correction to MF
theory, the spin correlations follow simple, nonintersect-
ing paths in the lattice. For example, the 1/z correction
to the MF free energy involves the spin correlations be-
tween two neighboring sites. As the order of the correc-
tion increases, the correlations follow more complicated
paths.

Unlike a cluster expansion, the 1/z expansion does not
restrict the Auctuations to some finite cluster of sites in
the lattice. For example, the 1/z correction to the order
parameter and the 1/z correction to the free energy,
calculated below, involve an infinite number of lattice
sites. Although higher-order corrections become increas-
ingly more dificult to calculate, every term in the 1 /z ex-
pansion can be evaluated exactly. The two lowest-order
terms in the 1 /z expansion are independent of the topolo-
gy of the lattice: they are functions only of the coordina-
tion number z, not of the lattice dimension d. Starting
with the second-order correction, the Auctuation correc-
tions also depend on the lattice dimension.

Any expectation value can be expanded in powers of
1/z. Formally, the expansion of the order parameter
M = (S„)can be written

be evaluated exactly:

M',"(T')
M, (T*)= g M', '(T*)=

1 f (—T') (15)

where

M'i ' =
—,'P* (R,~(S„—Mo))~„.

The function f is given by

y =P*&(S„—M, )') (17)

1 1T*=T +—T + T +C 0 1 2 2
z

The first-order correction T, is derived by expanding the
condition M (Tz ) =0 to first order in 1/z, with the result

which is equivalent to the bare susceptibility in a uniform
magnetic field.

Because M, is negative, the coupling of Auctuations
suppresses the long-order of the spins. As T* approaches
the MF Curie temperature, f approaches 1 and M,
diverges to —~ . This divergence signals a shift in Tc
from the MF value To—=s(s+1)/3. Like the order pa-
rameter, the Curie temperature can also be expanded in
powers of 1 /z:

M =M (0T*)+—M, (T*)+ M~(T')+1 ~ 1

z' T, = —
—,
' s (s + 1 ) ——,

' (19)

Mi
S& z "S,z

+ +

Q,
n-2

II 2

where every coefficient M, is a function only of the di-
mensionless temperature T* and of the spin s. Diagram-
matically, the first-order correction M

&
is represented by

the infinite set of terms shown in Fig. 1 . Each line
represents a factor of JR; which couples neighboring
sites. It is straightforward to evaluate the order of each
diagram in Fig. 1 . For example, the diagram M '&

' cou-
ples site 1 with any of the z neighboring sites j. Since
each line carries a factor of J, this diagram is of order
zJ =(zJ) /z. Because all factors of zJ combine with p to
yield the dimensionless parameter P*, diagram MIz' is of
order 1 /z. Similar counting arguments demonstrate that
the mth-order diagram M', ' /z is also of order 1 /z.

As shown in FL, the sum over diagrams M', '/z can

In the limit of large s, both T, and To are proportional to
s . The second-order corrections M2 and T2 will be de-
rived elsewhere.

Two equivalent methods may be used to calculate the
fluctuation corrections to the MF free energy. The first
and more straightforward method is to directly expand
the partition function in powers of H2 ..

Z= g (
—1)"P" Tr[e ' (H2)" ] .

n =0 n t
(20)

Each term in the partition function is represented by a di-
agram without free ends. After scaling the temperature
by zJ, we identify and collect all the diagrams of a partic-
ular order in 1 /z. The lowest-order term in the 1 /z ex-
pansion is the MF partition function Zo. Higher-order
corrections are proportional to powers of N: a connected
diagram is proportional to N while a nonconnected dia-
gram with m + 2 parts is proportional to

To eliminate these extensive terms, the partition func-
tion is rewritten as an intensive quantity exponentiated to
the Nth power:

z M'
(n}

z 1 „Q.
N

(21)

FIG. 1 . Diagrammatic representation of the first-order
corrections to the order parameter. through second order in 1/z, the coefficients Q, are
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Qo —Zpp

Qp
&R 12 &MF

(22)

(23)

—F
1

Z

—2F + g g + +

Qo
= —„',P* (P(R12R23R34 41»MF+ 1'2P 12

esp (P(R 12R 23 ) ~MF 32p (R 12 ~MF

F (a} "
F (b)

Z2 2 Z2 2
F (c)

Z2
F (5}

Z2 2

1 2, 3 n-2, n-1 n

+ +
~ ~ ~ ~ ~ ~

F (n+1)Z'
(P (R 12R 23R 34 ) ~ MF2X5!

(P (R 12R 23R 34R 45 ) ~MF ' (24)2X6!
Unlike Qp and Q„Q2 contains an infinite number of
terms. The permutation operator P simply sums all dis-
tinct permutations of the R,- operators. For example,

(P(R,2R23) )MF —(R,2( R,2R23+R23R, 2R23

+R 23R 12 ) ~MF

(R 23 ( R 23R 12 +R 12R 23R 12

+R 12R 23 ) ~MF (25)

Because the various R,- do not commute, the MF expec-
tation value of each permutation must be evaluated sepa-
rately.

The partition function can now be related to the free
energy, which is also expanded in powers of 1/z as

F 0 1 1 1 2

+zJ +zJ z +zJ 2 +zJ
where every coefficient F;/XzJ is a function only of T
and s. After some simple algebraic manipulation, we find
that

Fo = —T*lnQp+ —,'Mp,
XzJF1,Qi——T
NzJ Qp

(27)

(28)

XzJ

2
„Q2 1 „Qi

Qo 2 Qp
(29)

Of course, Eq. (27) for Fo/NzJ is equivalent to Eq. (12)
above.

The fluctuation free energy is represented diagrammat-
ically in Fig. 2. As discussed earlier, simple counting ar-
guments can be used to evaluate the order of any dia-
gram. For example, the one-loop diagram which
represents F, /NzJ can occupy Nz/2 positions between
neighboring sites. So the contribution of this diagram is
proportional to zJ =(zJ) /z or, in dimensionless units, to
1/z. Similarly, the diagrams which represent F2/NzJ are
all of order 1/z . Like the diagrams F2 — /NzJ, the di-
agram F2 'INzJ and the ("two-loop" ) diagram F2'/NzJ
do not depend on the dimension of the lattice. But as dis-
cussed below, the square diagram F'z'/XzJ does depend
on the lattice topology. This ring diagram can occupy
Nd (d —1)/2 diff'erent positions in a hypercubic lattice of

F (6)
Z2 2

FIG. 2. Diagrammatic representation of the first- and
second-order corrections to the free energy.

AF = —T ln(e ')MF, (30)

may be expressed as

(31)

Here, M'I", '
I

is the semi-invariant of order n, which sub-
tracts off parts of a diagram in a very specific fashion.
For example,

dimension d. Using the relation z =2d, we find that its
contribution is proportional to z J = (zJ) /z .

While the other diagrams each correspond to a single
term in F2/¹J, the two-loop diagram corresponds to
boo terms in the fluctuation free energy: the connected
term ( R,2R 23 )MF as well as the disconnected term

(R12)MF. The disconnected term is produced when
F2" /NzJ is cut along its central vertex to create two
one-loop diagrams. If such a procedure were performed
on any of the other diagrams, the disconnected parts
would not survive.

Notice that the diagrams which represent F2/XzJ in-

volve the many-body interactions between three or more
spin fluctuations at the same lattice site. For example,
the diagrams F21 — '/¹Jand F2' '/¹Jcontain vertices
where three Auctuations interact at once. In the two-loop
diagram, four spin fluctuations interact at the central site.
Generally, the complexity of the many-body interactions
increases with the order of the correction. In addition to
the three- and four-body interactions contained in
F2/¹J, the third-order free energy F3/¹Jalso involves
five- and six-body interactions.

An alternate and somewhat more elegant method of
deriving the Auctuation free energy AF=F Fp is to
directly expand AF in terms of semi-invariants. This
method was originally developed by Horwitz and Cal-
len' to evaluate the free energy of the Ising model. The
semi-invariant expansion for the Heisenberg model is de-
rived in Appendix A, where we show that
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M12 ~+12 ~MF &

M1,2;1,2 ~+12 ~MF (+12 ~MF (+ 12 ~MF ~

M~1, 2;1,22, 3;23 + 12 23 MF (+ 23 ~MF~ 12 ~MF '

(32)

As mentioned earlier, the extra term in Eq. (34) corre-
sponds to the two one-loop diagrams that are created
when the two-loop diagram is cut along its central vertex.
Since the disconnected parts of any other 1/z diagram
cannot survive on their own, only F12'/NzJ contains an
extra contribution from the semi-invariant method.

In the semi-invariant expansion of Eq. (31), disconnect-
ed diagrams appear only as corrections to connected dia-
grams. Hence, Eq. (31) is similar to the linked-cluster ex-
pansion, ' which eliminates disconnected diagrams from
the expansion of the free energy. Unlike the linked-
cluster expansion, however, the semi-invariant expansion
is valid even without a Wick's theorem for the spin
operators. The summation over nearest neighbors in Eq.
(31) automatically performs the permutation P over all
possible arrangements of the operators R; . Not surpris-
ingly, the semi-invariant summation agrees with the
direct expansion of the partition function in Eqs.
(26)—(28).

We complete this formal discussion by expanding the
specific heat C/N in powers of 1/z as

I
/I

0
0 0.1 0.2 0.3

T'/s(s + 1)

I

0.4 0.5

FIG. 3. The first-order, fluctuation specific heat for s =2
(solid}, —,

' (long dashed), and —,
' (short dashed).

c' Co 1 Ci 1 C2+- + + 0 ~ ~

N N z N z2 N
(35)

where Co/N is the MF specific heat discussed earlier.
The coefficients in this expansion are related to the free-
energy parameters by

C„(T') d2 F„——T'
dT*2 NzJ

(36)

T =T*/s(s+1)=0. 177/(s+1) .

As mentioned earlier, this peak signals the breakdown of
the spin-wave approximation. When s =

—,', the peak is
hidden by the large fluctuation specific heat near the Cu-
rie temperature. The peak first appears when s = 1.
With the specific heat plotted versus T in Fig. 3, the
peak disappears in the classical limit of infinite spin.

We emphasize that the peak is a quantum-mechanical
phenomenon induced by the non commutation of the
transverse and longitudinal spin components. Since the
transverse components are absent in the Ising model, the

for all n ~0.
The first-order corrections to the MF free energy and

specific heat were calculated in FL. Unlike M&, which in-
volves an infinite number of diagrams, F,/¹Jinvolves
only the one-loop diagram. The expression for F& /NzJ is
reproduced in Appendix B while the first-order fiuctua-
tion specific heat, obtained by numerical differentiation of
the free energy, is plotted in Fig. 3. Remarkably, C&/N
contains a peak below To at the temperature T*. In Sec.
IV, we show that the temperature T* of the peak is ap-
proximately equal to 0.177s or that

Auctuation specific heat of that model does not contain a
peak.

Because the diagrams which represent M, and F, /¹J
do not contain closed paths, the first-order corrections
calculated in FL are independent of the topology or di-
mension of the lattice. For instance, T, /z is the same for
a hexagonal lattice in two dimensions or a cubic lattice in
three dimensions. But the 1/z corrections to the order
parameter and free energy do involve diagrams with
closed paths, such as the square diagram in Fig. 2. So the
second-order corrections depend on the topology of the
lattice. For example, the square diagram will contribute
to the 1/z free energy in a cubic lattice but not in a hex-
agonal lattice, even though both have z =6 nearest neigh-
bors.

A particularly important class of closed-path diagrams
are the ring diagrams, such as the one-loop and square di-
agrams of Fig. 2. Previous authors "" have assumed
that every ring diagram is of order 1/z. Since the contri-
bution of a ring diagram with n & 2 lines depends on the
topology of the lattice, they were classified by FL as the
lattice-dependen, t corrections of order 1/z. But in the
next section, we show that the contribution of a ring dia-
gram with 2n lines (a ring diagram with an odd number
of lines is prohibited on a hypercubic lattice) is of order
1/z", not of order 1/z as previously assumed. In Sec. IV,
we use this result to expand the RPA free energy in
powers of 1/z.

Unlike F,/¹J, the second-order correction F2/¹J
contains an infinite number of terms. Using our previous
results, the infinite sum over the diagrams F2 — '/NzJ
can be evaluated exactly. Each such diagram is simply
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the product of a diagram M1 ' and a diagram M', ':

F(m)
= ——'M' 'M' ' with m +5 .

NzJ
(37)

0.5

s = 3/2

Summing over m, we find that the total contribution of
all diagrams F~2 — '/NzJ is

F(m)

5 NzJ
1 (M',")'
2 1 —f (38)

-0.5

Unlike M„ this function approaches a finite value at the
MF Curie temperature. Because the right-hand side of
Eq. (38) vanishes above To, F2/NzJ is discontinuous at
To. This "anomaly" is discussed below. The final result
for F2/NzJ, presented in Appendix B, depends on the
MF order parameter Mo( T*) and the functions

N -1.0
LLOl

-1.5

G„(T*)= (S"„+')MF= g m"+'e1 P mM

m= —s
(39)

-20

e
P ml

(40) -2.5 I

0.1

I I

0.2 0.3
T*is(s + 1)

I

0.4 0.5

with n =1, 2, or 3. The single-site MF partition function
Zop was explicitly evaluated in Eq. (10). Of course,
Go( T* ) =Mo( T* ).

Our results for the free energy are somewhat compli-
cated. As required for the consistency of the expansion,
both F1/NzJ and F2/NzJ vanish at T*=O. At low tem-
peratures, each correction to the free energy can be ex-
panded in powers of

—Mo( T )/T
y e

—s/T (41)

which vanishes as T*/s tends to zero. For s ( oo, the
low-temperature expansions of the MF and fluctuation
free energies are given by

= —
—,'s —T*y + —,'y (1—T*)+O(y ), (42)

F1 == —
—,'P'y[2s +(2s —1) y]+O(y ), (43)

F =
NzJ

= ——'P" s y [s +2y (2s —1) ]

—
—,', P* y (1 —6s+6s )

—
—,'P* s y +O(y ) . (44)

These analytic results are used in Sec. IV to compare the
RPA and exact free energies.

For s =
—,', the numerical results for F2/NzJ are shown

in the solid curve of Fig. 4. Both F2/NzJ and its slope
change discontinuously at the MF Curie temperature.
Although F, /NzJ is continuous at To, the first-order en-

tropy S, /N is discontinuous at To. Despite appearances,
however, neither the total free energy F/NzJ nor the to-
tal entropy S/N are discontinuous at the true Curie tem-
perature Tz ( To. Above Tc, the free energy and entro-

py should be evaluated with Mo set to zero in Eqs.
(3)—(7). Below Tc, the corrections to the free energy and
entropy are properly evaluated with Mo )O. So to calcu-

FIG. 4. The second-order free energies F, /NzJ (solid) and
F2RPA/NZJ (dashed) for s =

2

late the change in the free energy or entropy across the
Curie temperature, the shift in the Curie temperature
must be carefully observed. In Appendix C, we show
that the discontinuities of F2/NzJ and S, /N at To are re-

quired for the continuity of the total free energy and entro

py at Tc. Like the divergence of M1 at To, the discon-
tinuities in F2/NzJ, S, /N, and S2/N signal the shift in
the Curie temperature from the MF value.

The results for the second-order specific heat C2/N
will be presented in Sec. IV. Both C, /N and C2/N
behave like e ~ ' at low temperatures. This result
disagrees with the measurement' of a T specific heat at
low temperatures in a three-dimensional ferromagnet. In
the following section, we show that the T specific heat
is recovered when the infinite number of ring diagrams
are summed in a special way. Below T, this summation is
justified and the spin-wave thermodynamics is accurate.

Despite the advantages of the 1/z expansion, it also
has some serious weaknesses. The absence of spin-wave
thermodynamics at low temperatures is certainly the
most significant. In two-dimensional ferromagnets, spin
waves destroy the long-range order of the spins. ' Since
any finite expansion in powers of 1/z does not obey the
Mermin-Wagner theorem, this method cannot be applied
to two-dimensional systems. Although we use a formal
expansion in 1/z to study the class of hypercubic lattices
with z =2d nearest neighbors, our results are strictly
relevant only to three-dimensional ferromagnets.

The 1/z expansion has other shortcomings near the
Curie temperature. Although the critical exponents of
MF theory are only correct in four dimensions and
higher, the critical exponents of the 1/z expansion are
unchanged from the MF exponents. The 1/z expansion
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also yields a finite specific heat at Tc. Since the Curie
temperature itself is shifted by Auctuation corrections,
the 1/z expansion does not break down near Tz. Rather,
these shortcomings imply that the critical exponents and
the specific heat near Tc are nonanalytic functions of
1/z.

gF RPA

RPA 1 RPA

Z2 2 Z3 3

III. THE RANDOM-PHASE APPROXIMATION

The RPA is a method which linearizes the spin Auctua-
tions about the MF order parameter. ' A simple deriva-
tion of the RPA based on linear-response theory is given
in Appendix D. In contrast to the 1/z expansion, the
RPA sums diagrams of all orders in 1/z in an uncon-
trolled fashion. Although the RPA is exact up to first or-
der in 1/z, it is only approximate above that order. The
main merit of the RPA is that it yields the familiar spin-
wave thermodynamics at low temperatures. In this sec-
tion, we show that the 1/z expansion of the RPA free en-
ergy converges rapidly above the temperature T, ~ Js.
The following section examines the breakdown of the
spin-wave approximation above the crossover tempera-
ture T~zJs & T, .

The RPA free energy can be derived by summing the
infinite series of ring diagrams shown in Fig. 5, for a hy-
percubic lattice in d dimensions with z =2d nearest
neighbors. Only two spin fluctuations interact at each
vertex of every ring diagram. So unlike the exact free en-

I

ergy, the RPA free energy neglects the many-body in-
teractions between more than two spin fluctuations.

Because the disconnected parts of any ring diagram
cannot survive, only the fully connected average enters
the semi-invariant expansion. According to Eq. (31) for
h,F, the contribution of a ring diagram with n sides is

AF„= —T (P(R, R, . R; ))MF,
(/3J)"

(45)

where i,j label the end points of a bond on the ring.
Since R,. commutes with H,~, we can define

(46)

and we can replace the permutation operator by an in-
tegral over a time-ordered product:

FICx. 5. Diagrammatic representation of the RPA free ener-
gx.

bF„=—TJ"f dr, . f dr„(V„[R;/ (r, ) .'R,
~ (r„)])MF, (47)

y r(r) = ( V'g(~(r)S)r(0) )MF,

where a or y can equal x, y, or z and

S;,=S;,—M0,

S; =S;

S; =S;

(4&)

(49)

(SO)

(51)

Because the matrix g r(r) is a periodic function of r with
period /3, its Fourier transform can be defined at discrete
Matsubara frequencies:

y ~(co )= f d~y r(r)e dr,
0

(52)

(53)

where Y, is the time-ordering operator.
Since each site index appears exactly twice, the average

in Eq. (47) decouples into the product of time-ordered
averages for pairs of spins. The correlation functions on
any lattice site are defined by

multiply Eq. (54) by the total number of ring diagrams of
order n:

y e(t„t, ) e(i„„i„), (55)
2n

where B(i,j)= 1 if sites i and j are nearest neighbors and
e(i,j) vanishes otherwise. To prevent a ring diagram
from crossing itself, we exclude the repetition of any in-
dex in the summation of Eq. (55). This is indicated by the
prime. The factor of 2n appears because every diagram is
counted 2n times in the summation: any of the n vertices
can be the starting point of the ring and each diagram
can be traversed in two opposite directions.

But the RPA actually sums over a much larger class of
diagrams, which is obtained from the ring diagrams by
deforming each ring in all possible ways. For example,
the class of RPA "square" diagrams includes a simple
'square, the two-loop diagram, as well as a diagram with
four lines joining neighboring sites. Each of these dia-
grams is evaluated according to Eq. (54), as if it were a
nonintersecting ring diagram. The number of RPA
"ring" diagrams of order n is

where v is an integer. So Eq. (47) can be rewritten as

bF„=—TJ"g Tr[y (co )"], (54)

gRPA y n( ~ )n
1

2n q
q

where

(56)

where the sum over v runs from —~ to ~.
If the RPA were a simple ring summation, we would

iq.(x.—x,. )

y =—ge ' 'B(i,j).
J

(57)
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=T=—g lndet[I zJy—@ (0i )],
q, v

(58)

where I is the unit matrix. Because every nng in a hyper-
cubic lattice must have an even number of bonds, the
terms with odd n automatically vanish.

The correlation matrix I (co ) can be easily evaluated
from its definition in Eq. (48). The longitudinal com-
ponent is

Xzz(~v) P~v 0( iz MF &

where

(S'„) „=G,(T*)—[M,(T")]'.

(59)

(60)

Notice that zJy, , (co =0) is just the function f, defined in
Eq. (17). The transverse components are given by

(co, ) =g (co ) =M0
co~+ 6

CO~

y.', (~.) = —y,'„(~,) =M,
co +6

(61)

(62)

where 6( T*)=zJM0( T*). The mixed terms y, , y„„
zy& arid gyz all vanish
Hence, the fluctuation free energy decouples into longi-

tudinal and transverse contributions. For T (Tc, we
find that

All momentum sums run over the hypercube—~ & q ~ m. for all a. So we finally obtain the RPA fiuc-
tuation free energy

hF= —T g g (yq)"Tr[y (co,)"](zJ)"
n=l q, v

term corresponds to the contribution of the nth-order
ring diagram. In a hypercubic lattice,

)2n 1 (2n)) +~
n 2n

q
zn+1 (67)

i ~~1 ~MF

z WzJ

M0
8zT*sinh (M0/2T" )

(68)

where the two terms on the right-hand side are the longi-
tudinal and transverse contributions, respectively. It is
straightforward to show that Eq. (68) agrees with Eq. (28)
for F, /NzJ, which was derived in Sec. II.

We have evaluated the RPA specific heat by numeri-
cally difFerentiating the RPA free energy. The results for
s =

—,
' are plotted in the solid lines of Fig. 6. This figure

compares the RPA results with the 1/z specific heat
C, /X, which is plotted in the dashed lines. Except at
low temperatures and near the Curie temperature, the
agreement between the RPA and 1/z specific heat is quite
good.

At low temperatures, the disagreement between the
RPA and 1/z specific heats is easy to understand. For
T(6, the transverse RPA free energy may be expanded
as

e
—nPA

= —T g 2nPE
0

z/2
—1, (69)

and the contribution of the nth-order ring diagram is of
order 1/z "~ . In particular, the only ring diagram of or-
der 1/z is the one-loop diagram. Since any other dia-
gram is at least of order 1/z, the RI'A is exact to order
1/z.

Using Eqs. (63) and (64), the first-order free energy can
be written as

XzJ

where

g ln
sinh(Pcoq/2)

sinh(PE/2)

g ln( 1 —P*yq(Si, )MF), (63)

(64)

where I0(x) is the zeroth-order Bessel function of imagi-
nary argument. ' If T (b, /z, then I0(x) =e'/&21rx for
x ))1. So in three dimensions, Eq. (69) reduces to

5.0

coq
——b(T )(1—y ) (65) 40—

s =3/2

is the RPA spin-wave energy. The exact eigenfrequency
of a spin wave with momentum q is given by Eq. (65)
with b(T') replaced by zJs. This bare frequency is re-
normalized by the presence of other spin waves at finite
temperatures. For T) Tc, b,F, is still given by Eq. (63)
but AI'j =26I, .

We have numerically evaluated the RPA fluctuation
free energy of Eqs. (63) and (64) by using the density-of-
states function

3.0—

2.0—

D(y)= —g 5(y —yq)
I

q

(66)
0.0

0.0 0.1 0.2 0.3
T / s(s+1)

0.4 0.5

to transform the momentum integrals into one-
dirnensional integrals over y. In the limit z ~~,
D(y) —+5(y) and the fiuctuation free energy vanishes.
Hence, both the longitudinal and transverse free energies
can be formally expanded in powers of yq. The nth-order

FIG. 6. The RPA Auctuation specific heat AC" /X (solid)
and the exact, first-order specific heat C, /N {dashed) vs
T*/s {s+ 1) for s = —.
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3 T5/2
3/2

2~
(70)

AF~

N
'

2ZT
(71)

This formula cannot be produced by any finite expansion
in powers of T. The same result could be obtained by
evaluating F, /NzJ in the limit of small temperature. So
in the temperature regime b, /z & T «b„ the transverse
free energy F~/XzJ is well represented by a term of order
1/z. As shown in the next section, the peak in the Auc-
tuation specific heat can be obtained from this free ener-
gy. The peak in C&/zX is very close to the peak in the
full RPA specific heat AC /N, as demonstrated by
Fig. 6.

Clearly, the peak can be predicted and explained from
the 1/z expansion. Yet the peak is also produced by
spin-wave contributions to the transverse free energy. As
the temperature exceeds the maximum spin-wave energy

which is the well-known result for the spin-wave free en-
ergy. Notice that the power-law behavior of EFj cannot
be generated by an expansion of Io(x) to any finite order
in x. Hence, the low-temperature behavior of hF~ cannot
be reproduced by a finite expansion in powers of 1/z. This
explains the discrepancy between the RPA and the 1/z
specific heats at low temperatures.

The failure of the 1/z expansion at low temperatures
and near the Curie temperature can also be explained in
terms of the momentum summations in Eqs. (63) and
(64). Although yz is formally of order 1/z at finite q, it
equals 1 for q=O. At low temperatures, the q=O contri-
bution dominates the summation in Eq. (64) for bFi/N.
Therefore, the 1/z expansion of AFi must break down at
low temperatures. The 1/z expansion also fails near the
Curie temperature, where the q=O term dominates the
summation in Eq. (63) for b,F, /N. Because the spin-wave
energy vanishes at q=O, the longitudinal specific heat
diverges like

~
T —Tc ~

' near Tc. On the other hand,
every 1/z correction to the specific heat is finite at the
MF Curie temperature. Hence, the specific heat of the
1/z expansion does not diverge to any finite order.

When T~b, /z, the Bessel function Io(x) can be ap-
proximated' by the first few terms of its Taylor expan-
sion in powers of x. This procedure generates a rapidly
converging 1/z expansion of the transverse free energy.
Therefore, we refer to the range of temperatures above
T, ~b, /z=Js but not too close to Tc as the 1/z regime.
Notice that in the limit z~ ~, T,*=T, /zJ +0 and the—
RPA free energy tends to its MF limit Fo/XzJ. So for
infinite z, the MF free energy can always be represented
by its 1/z expansion, which is not a surprising result.
For finite z, the RPA free energy may be approximated
by its 1/z expansion above some nonzero temperature
T,* ~s/z.

By far the most interesting feature of Fig. 6 is the peak
in the fluctuation specific heat at the temperature
T=0.18zJs, which lies within the 1/z regime. If we as-
sume that T «6, then the free energy can be approxi-
mated by

of order 6, all spin-wave states contribute to the energy.
In this equipartition regime, the transverse free energy
becomes a linear function of T and the transverse specific
heat vanishes. The transverse specific heat reaches a
maximum at the temperature T=0.185, where the popu-
lation of the large momentum spin-wave modes is grow-
ing most rapidly. If the spin is large enough that the lon-
gitudinal specific heat does not conceal the peak, the total
fluctuation specific heat will also peak at T. In practice,
the peak is absent for s =

—,
' and first appears for s = 1.

In the next section, we show that the quantum peak
marks the crossover between the linear and nonlinear re-
gimes. Above T, the spin fluctuations become highly
nonlinear and the RPA free energy begins to deviate from
the exact free energy, evaluated to order 1/z in the pre-
vious section. The breakdown of the linear description is
expected for two reasons. First, the spin-wave theory
cannot describe the nonlinear dynamics above T. In the
nonlinear regime, the contributions of spin waves with
large momenta dominate the RPA free energy. But the
interactions between spin waves with large momenta are
highly nonlinear and even lead to the formation of bound
states. Such nonlinear efFects cannot be described by any
perturbative scheme which assumes that the single-
particle excitations are weakly interacting. Secondly, the
thermodynamic functions above T cannot be represented
by a finite expansion in powers of T. Because of the ex-
ponential corrections to the free energy, the asymptotic
expansion of the free energy fails above T.

IV. COMPARISON OF THE EXACT
AND RPA FREE ENERGIES

FRPA

NzJ

FRPA
+ + + ~ ~ ~

NzJ z XzJ z XzJ
(72)

As shown in the previous section, this expansion con-
verges rapidly above the temperature T, o- Js. Each term
in the fluctuation free energy AF =F —Fo is
represented by a ring diagram in Fig. 5. While the first-
order correction F& /XzJ corresponds to the one-loop dia-
gram, the second-order contribution corresponds to the
square diagram. The superscript RPA is omitted from
the first two terms in Eq. (72) because they agree with the
exact results of Sec. II. So the first-order RPA specific
heat agrees with C& /X.

But to order 1/z and higher, the RPA free energy
disagrees with the exact free energy. The square diagram
that represents F2 /NzJ is only one of the infinitely

In the preceding section the RPA free energy was de-
rived by summing an infinite set of ring diagrams. Since
the contribution of a ring diagram with 2n lines is pro-
portional to 1/z", the RPA free energy contains terms of
every order in 1/z. In this section, we compare the RPA
free energy with the exact free energy evaluated in Sec.
II. Above the crossover temperature T=0.18zJs, the
RPA free energy deviates from the exact free energy and
the concept of a weakly interacting spin wave loses its
meaning.

Like the exact free energy, the RPA free energy can be
formally expanded in powers of 1/z:
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s'
lim —=— 2 —4 + e

2 T
(76)

C2
lim

z-* o N

CRPA
2= lim

1 s' S S2
12—8 + e ~ '. (77)

8 Tg4 T~ T)lc2

These low-temperature results imply that the peaks in
C2/N and C2 /N occur at about the same temperature.
Since T* is always scaled by s, the peak temperatures are
proportional to zJs, as expected. Evaluating Eqs. (76)
and (77), we find that C, /N peaks at the temperature
T=0.177s while C2/N and C2 /N peak at the lower

30

Above the crossover temperature, however, the three-
body interactions are non-negligible and the four-body in-
teraction cannot be treated as the product of two-body
interactions. So the spin-wave description breaks down.

Using the results for F2 and Fz, we have also calcu-
lated the second-order specific heats C2/N and C2 /N,
which are plotted in Fig. 8 for s =

—,'. The difference be-
tween the exact and RPA specific heats seems to reach a
maximum somewhat below the curie temperature. An
unusual feature of Fig. 8 is the appearance of a second
peak in the fluctuation specific heat. Both C2 and C2"
contain peaks at a temperature T', which is well below T.
Like T, T' is also proportional to zJs.

As mentioned in the last section, the peak tempera-
tures can be approximated by retaining only the lowest-
order corrections to the Auctuation free energy. Using
Eqs. (71) and (75) for the low-temperature limits of the
free energies, we obtain the low-temperature limits for
the specific heat:

temperature T'=0. 116s. Hence, the crossover tempera-
ture is approximately 0.18zJs. When the remainder of
the specific heat is added to Eqs. (76) and (77), T and T'
are slightly increased.

Because the quantum peaks are described by the
lowest-order terms in the low-temperature expansions of
F

~ /Nz J and F2 /Nz J, it seems likely that every Auctua-
tion correction to the specific heat will contain a peak.
The peaks in C„ /N and C„/N can be approximated by
retaining only the e ~ term in the expansion of Eq. (69)
for the transverse free energy. As n increases, the peaks
in C„IN and C„ /N move to lower temperatures. In
the limit n ~~, the peak temperatures vanish.

As shown in the previous section, the peak in C, /N
survives the ring summation to appear in the total RPA
fiuctuation specific heat b, C /N. Because the higher-
order peaks in C„» /N are below T, the peak in
AC /N is slightly below the peak in C&/N. Since the
RPA and exact free energies are approximately equal
below T, the peak in C, IN should also survive the 1/z
expansion to appear in the total Auctuation specific heat
ACIN. Like the peak in AC /N, the peak in b, C/N
will be slightly reduced in temperature but relatively un-
changed in height compared with the peak in C, /N.

Notice that with the temperature scaled by s(s+ 1),
the crossover temperature T/s (s + 1) vanishes in the
classical limit of infinite spin. In units of
T =T*ls(s+1), the classical limits of Fz/NzJs and
C2 /N always disagree with the classical limits of
F /NzJs and Cz /N, even for very small values of
T . Of course, if the temperature is not scaled by
s (s + 1), then the crossover temperature T ~ zJs diverges
in the classical limit of infinite spin. This provides the
usual justification for a 1/s expansion about the nonin-
teracting spin-wave Hamiltonian. ' But for large spin,
Tc/T scales like s. So the fraction of the magnetic state
below T decreases as the spin increases.

V. CONCLUSION

20

Z',
10

-10 I

0.1

I

0.2 0.3
T*/s(s + 1)

I

0.4 0.5

FICz. 8. The second-order specific heat corrections C2/X
(solid) and C& /N (dashed) vs T*/s(s+1) for s =—.

This paper has described the crossover from a low-
temperature spin-wave regime to a high-temperature
nonlinear regime in the Heisenberg ferromagnet. We
have used the RPA to represent the class of spin-wave
theories. The RPA free energy yields the familiar spin-
wave thermodynamics when T « 5/z. Although the
RPA free energy is exact to order 1/z, it is only approxi-
mate at higher order. Like the 1/z specific heat C&/N,
the RPA fluctuation specific heat peaks at the tempera-
ture T=0.18zJs. This peak is created when the trans-
verse free energy enters an equipartition regime in which
all momentum states contribute to the energy. Below T,

/NzJ is approximately equal to F2/N; above T, the
two free energies are substantially different. Therefore,
the RPA cannot describe the strongly nonlinear Auctua-
tions above the crossover.

Because all the many-body interactions are significant
above T, the RPA cannot be repaired by simply adding a
finite set of nonlinear terms to the spin-wave Hamiltoni-
an. For example, suppose that the three- and four-body
interactions are added to the spin-wave Harniltonian.
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Even if the spin-wave free energy could be evaluated ex-
actly, it would still exclude the five- and six-body interac-
tions which contribute to F3/XzJ above T. Although the
spin-wave theory may be very accurate at low tempera-
tures when y =e ~ ' is small, it will necessarily fail above
a crossover temperature of order zJs when y is of order 1

and the many-body interactions are important. In prac-
tice, the 1/z expansion is the only method which can be
used to study the thermodynamics of a ferromagnet
above T.

The breakdown of the spin-wave description is closely
related to the appearance of the quantum peak at T.
Above the quantum peak, the large-momentum spin
waves dominate the free energy and the many-body in-
teractions must be retained. Because these nonlinear
effects violate the assumptions of the spin-wave picture,
the concept of a spin wave loses its meaning above T.

The appropriate expansion parameters are different on
either side of the crossover. Below T, the 1/z expansion
converges rather slowly. In fact, the free energy at low
temperatures is a nonanalytic function of 1/z. Each term
in the 1/z expansion of the RPA free energy is exact to
linear order in y. Summing these linear terms produces
the power-law behavior of the free energy. Hence, the
appropriate expansion parameter at low temperatures is y
and not 1/z. But above the crossover, y is of order 1 and
each 1/z correction to the free energy is a slowly con-
verging function of y. Instead of y, 1/z becomes the con-
trolling parameter.

We believe that the results of this paper are indepen-
dent of the specific model we have used to calculate the
crossover temperature. As just discussed, the crossover
temperature does not change if the RPA is replaced by a
more sophisticated spin-wave theory. In order to calcu-
late the second-order corrections F2/NzJ and Fz /NzJ,
we have chosen to work on a hypercubic lattice. But the
temperature of the quantum peak in C, /X does not de-
pend on the lattice topology. Therefore, the crossover
temperature should be near 0.18zJs for any three-
dimensional lattice.

Thermodynamically, the crossover appears in the peak
of the fluctuation specific heat. Unfortunately, as shown
in Figs. 9 and 10 for a cubic lattice, this peak does not ap-
pear in the total specific heat. While the solid lines are
the RPA specific heat, the dashed lines are the expansion
C =Co+ C, /z. In the figures for both C/N and C/NT~,
the quantum peak is concealed by the large MF specific
heat Co/N. To uncover the quantum peak, the MF
specific heat must be subtracted from the data. Since
Co/X is a function only of T' = T/zJ and of s, this sub-
traction should be straightforward.

Although the crossover does not appear as a peak, it
does appear as a shoulder in the total specific heat. As
mentioned in Sec. II, the exponential term e ' is re-
sponsible for both the shoulder in Co/X and the peak in
C,/¹ Hence, the shoulder in the total specific heat
occurs near the crossover temperature T. This feature is
enhanced when the specific heat is divided by the temper-
ature. Numerically, we find that when s &3, C/NT con-
tains a peak near T. As shown in Fig. 10 for s =—,', the
shoulder in C/%T nearly coincides with the quantum

5.0
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3.0—

2.0—

1.0

0.0
0.0 0.1 0.2 0.3

T'I s(s+1)
OA 05

FIG. 9. The total RPA specific heat C /N (solid) and the
1/z specific heat Co/X+C&/Xz (dashed) vs T*/s(s+1) for
s = —' and z =6.
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FIG. 10. The total RPA specific heat C s(s+1)/NT
(solid) and the 1/z specific heat ( Co+ C, /z)s (s + 1)/NT
(dashed) vs T*/s(s+1) for s =

2 and z =6.

peak at T =0.071.
This shoulder has been observed in the specific heat of

gadolinium' (with spin —,') and terbium' (with spin 6).
Our theory predicts a crossover temperature of about
T&/s, in good agreement with the locations of the shoul-
ders in the experimental data. For terbium, the peak in
C/NT appears at a temperature T/TC=0. 18, in excel-
lent agreement with our prediction of 1/s =0.17. We are
hopeful that other measurements of the specific heat will
also support our theory for the nonlinear crossover.

Recently, Gros and Johnson have developed a 1/z
expansion for the mode frequencies of a spin- —,

' antifer-
romagnet at zero temperature. Using a related approach,
we have evaluated the mode frequencies in a ferromagnet
above T to first order in 1/z. To zeroth order in 1/z, the
mode frequencies are identical to the RPA frequencies
coq. So above T, the nonlinear mode frequencies are very
close to the RPA spin ivave fre-quencies Observing t.his
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agreement, some experimentalists ' have claimed that
spin waves are well defined up to temperatures very close
to Tc. Although their frequencies are indeed close to the
RPA frequencies, the nonlinear modes must not be inter-
preted as spin-wave excitations. Because the 1/z correc-
tions to the nonlinear mode frequencies differ from the
lowest-order corrections to the spin-wave frequencies, the
crossover may be observable in neutron-scattering experi-
ments. Details of this work will be reported in a separate
paper.

The calculations presented in this paper clearly demon-
strate the importance of nonlinear effects above T. Very
little is presently known about the nonlinear regime be-
tween T and Tc. In the future, we hope to develop the
same sort of intuition for the nonlinear modes above T as
presently exists for the spin waves below T.

M, (x)=&x &,

M, (x)= &x'& —&x &',

M, (x)=&x'& —3&x'&&x &+2&x &',

(A7)

(AS)

(A9)

b.F = T ln—& e (A10)

which is evaluated with the MF density matrix po. Com-
paring Eqs. (A10) and (Al), we find that

bF= —T g M„( H2) . —
n=1

(A11)

where the a~0 limit has been performed.
For either the Heisenberg or Ising models, the fluctua-

tion free energy is given in terms of the fluctuation energy
a, by
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APPENDIX A

This appendix generalizes the work of Horwitz and
Callen' to derive the semi-invariant expansion for the
fluctuation free energy of the Heisenberg model. Horwitz
and Callen used such an expansion to obtain the fluctua-
tion free energy of the Ising model, in which all the
operators commute. The semi-invariant expansion is de-
rived in terms of the function

For the Heisenberg model, the fluctuation energy is
defined by

H2=J g—R;
&ij &

(A12)

where the R; do not commute. Because Rij does com-
mute with H,~, we can define as in Sec. III,

(A13)

M„( H2)= lim J"—g D, "ln Trp(.
0

where we have introduced a set of ¹/2variables a;~. and
defined the differential functions D, and the generalized
density matrix p I

In the following, these operators will be used to remove
the ambiguities associated with the noncomrnutation of
the R;..

The semi-invariant can now be written as

P(a) =ln& e'"& =ln Tr[e' p(x)], (A 1)

P(a) = lim e ln Tr[p (x)],a~0 (A2)

where p(x) is any normalized weighting factor such as a
density matrix. Notice that P(a) can be rewritten as

J +ij

a,
p( )

=pQV'„exp g I R,"(r)dr
(ij )

(A15)

(A16)

where
where Y', is the anti-time-ordering operator. We have
defined pt I

so that

(A3)
ij PI aI PI aj ij (A17)

p (x)=e p(x) . (A4) with R; acting to the right. If the generalized nth-order
semi-invariant is defined by

Expanding the exponent of the derivative yields the re-
quired semi-invariant expansion

M'I",. 'I = lim D, D; D, ln TrpI
0 I

'1~1 'Z~Z 'n ~n
(A18)

oo n

P(a) = g M„(x),n (A5)
then the fluctuation free energy can finally be written as

where the nth-order semi-invariant is defined by

M„(x)= lim D" ln Tr[p (x)] .
a~0

The first few semi-invariants are

(A6)

M'(" . .; . ), (A19)
~=1«&~ J~~

which is the semi-invariant expansion for the Heisenberg
model.
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APPENDIX B

In this appendix, we summarize the results for the Auc-

tuation free energies. As derived in FL, the first-order
free energy F,/¹Jis given by

XzJ
= ——'P' [(M —G ) +—'[G —s(s+1)] ——'M

0 1 2 1 O

(Bl)

where G, (T*) were defined by Eq. (31). Note that this
correction is the same for the RPA and the 1/z expan-
sion.

—4Mp[Gi —s(s+1)] I, (B2)

which also only depends on Mp( T* ) and G, ( T' ).
For the second-order, exact correction F2/NzJ, it is

more convenient to provide expressions for each of the
MF expectation values that enter the components Q, and

Qz of Eqs. (22) and (23). The interested reader can add
everything together to obtain the total correction:

The second-order RPA correction F2 /NzJ is also
rather simple. We find that

FRPA

I 24(G, —Mp ) +Mp+ 3[6,—s (s + 1)]

(R, ) „=(M —G, ) +—,'[G, —s(s+1)] —
—,'M

(R )2 )Mp= (62 —2MpG, +2Mp ) +(G,Mp —G2)

+ —,'(G, Mp —Mp —G2) —(G, —Mp) —2[G, —
—,'s(s+1)—

—,'Mp]

(P(R,2R23R34R„, ))Mp=24(G, —Mp) +Mp+3[6, —s(s+1)] —4Mp[G, —s(s+1)]
(P(R, R )) „=6(6, —M ) (6 —4M G +6M G, —3M )

+(6,—Mp )[6,—s (s + 1)][—6G3+ 12MpG~ —6MpG,

+6s(s+ 1)(6,—Mp) —56, +4Mp+s(s+1)]

+ —,'[6, —s(s+1)] [3s (s+1) —6s(s+1)6, +363+56~ —2s(s+1)]
—Mp(6, —Mp )(106~—16MpG, +6Mp+Mp )+2MpG,

+[6~ s(s + 1)]Mp[5s(s + 1)Mp 5G2 Mp]

(R,~(S„—Mp ) )Mp= —2Mp+ —,'Mp(1+ 106, )
—MpG~+ —,'Mp6, [s(s+ 1)—1 —76) ]——,'G~s (s + 1)+—,'G, G~ .

(B3)

(B4)

(B5)

(B6)

(B7)

Notice that each expectation value vanishes at T*=0.

S d F
N dT* NzJ

(Cl)

are continuous at the Curie temperature. The 1/z expan-
sion of the entropy is formally given by

S =Sp(T*)+—S,(T*)+ S2(T*)+z' (C2)

where the components of the entropy are related to the
free energy corrections by

APPENDIX C

In this appendix, we show that the free energy and en-
tropy

5S= lim IS(TC+e) —S(Tc—e)]
e—+0+

= lim [S(Tp+(1/z)T, + . +e)
@~0+

—S(Tp+ (1/z) Ti + —e) ] .

We expand 5S in powers of 1/z as

1 15S =5so+ —5s& + 5s2+z'
Because the MF entropy is continuous at To

6sp = lim [Sp( Tp+ e ) —Sp( Tp —e) ]=0 .
e~O

To order 1/z,

dSO dSO
5s, = T, lim

E~O+ dT Tp + E' dT Tp

(C4)

(C5)

(C6)

S„
1V

d F.
dT* NzJ

for a11 n.
The change in entropy at the Curie temperature is

(C3)
+ lim [S,(Tp+e) —S, (Tp —e)] . (C7)

Notice that the first-order change in the entropy at Tc
contains an extra term due to the shift in Tc from To.

In order to evaluate 5s&, we use the MF relation
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dSO
Cp= T*

dT
(C8)

because Fi is also continuous at Tp.
The second-order change in the free energy is given by

Hence,

dSO
llmX ~~0+ dT* Tp+& dT* Tp —~

= 1
lim

Tp e—+0+

Co(To+e) Co(TO —e)
N

15
2s(s+1)+1 (C9)

which uses the MF result for the specific heat jump at Tp.
Since the first-order correction to Tp is

T, = —
—,'s(s+1)—

—,', (C10)

we are done with the first term in 6s&.
To obtain the second term, we must calculate the first-

order entropy S& above and below To. Therefore, we re-
quire the first-order free energy F, /NzJ near the MF Cu-
rie temperature. Using Eq. (Bl), we find

1
lim S,(To+e)= —

—,',N~ o+

1 . 7s(s+1)+6
0+ ' 4s (s + 1)+2

So the second term is given by

(Cl 1)

(C12)

—lim [S,(TO+e) —S, (TO —e)]=—1 . 20s (s + 1)+ 15
o+ 8s (s +1)+4

(C13)

dF0 dFO5f2= T2 lim
E 0+ dT Tp+E dT Tp

d Fp d Fo+—Ti lim
2 e~p+ dT* Tp+e dT2 Tp —e

dF, dFi+ T& lim
a~0+ dT Tp+e dT Tp —e

+ lim [F2(TO+e) F2(T—O
—e)]=0 .

@~0+
(C19)

Notice that the first term, proportional to T2, vanishes
because Sp is continuous at Tp. Hence, T2 does not enter
5f2. Using Eq. (C18) and the definition of the specific
heat in Eq. (C8), we find that

5f2 1 Ti . Co Cp= +— lim
XzJ 2 Tp e 0+ 1V Tp+~ 1V Tp E'

F+ lim
e~p+ NzJ Tp+ e NzJ Tp

(C20)

Since the MF specific heat jump is not zero, Eq. (C19) im-
plies that F2/NzJ must be discontinuous at To in order for
the total free energy to be continuous at Tc. Because the
RPA free energy is continuous at TO, it is inconsistent to
order 1/z .

To demonstrate the continuity of the free energy, we
use the limit

and the first-order change in entropy at T& is 5 [4s(s+1)+3]
48 2s(s+1)+1 (C21)

5s, =0, (C14)
as expected. The derivation of 6s2 would require T2,
which is not yet available.

It is also straightforward to show that the free energy
is continuous at the true, shifted Curie temperature. The
change in free energy at T& is

which is easy to derive from the definitions of M'i ' and f.
From Eq. (29), we find that the discontinuity in F2/NzJ
equals half of this result. Substituting in Eq. (C9) for the
MF jurnp in the specific heat, we finally obtain

5F= lim tF(TC+e) F(TC —e)I—
a~0+

= lim [F(TO+(1/z)T, + . +e)
@~0+

F(TO+(1/z)T,—+ . —e)] .

As usual, we expand 5F in powers of 1/z as

5F =5fo+ —5f, + 5f2+ .1 1

z'
Because the MF free energy is continuous at To,

5fo=lim[F0(TO+e) Fo(TO —e)]=—0 .
e~o

To order 1/z,

dFo dFO
5f, = T, lim

0+ dT* Tp+~ d T*

(C15)

(C16)

(C17)

5f~=0, (C22)

APPENDIX D

In this appendix, we show how the RPA can be derived
from an elementary treatment of the linear response
about the MF state. We introduce the Hamiltonian

H(A, ) =H, tt+H, +iLH2, (D 1)

which reduces to the Heisenberg ferromagnet when A, = 1

and to the MF Hamiltonian when X=O. According to
the Hellmann-Feynman theorem

as expected. Hence, the discontinuity in F2/NzJ is pre-
cisely the amount required to produce a continuous free
energy.

+ lim [ (FTi0+) eFi(TO —e)]=0, —
@'~0+

(C18)
dF(A, ) ( )2 A,

(D2)
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F=FO+ f dA, (H2)g, (D3)

where the average is taken in the canonical ensemble of
H(A, ).

Integrating Eq. (D2), we obtain the free energy at
A, =1: h' (q, co)=h (q, co)+AzJy S (q, co),

where

(D6)

S (q, co). The RPA assumes that the system responds
with the MF response function y (q, co) to an effective
field given by

or

bF= —J g g f dA, (S, S, )~
(ij) a

g f dA, Tr[y (q, to )]y
q, v

(D4)

S (q, co)=gy r(q, co)h (q, to)=gyo h'~(q, co)
r

is the self-consistent response at coupling constant X.
Finally, combining Eq. (D6) and (D7), we obtain

(D7)

Here we have used the well-known result of linear-
response theory,

y (q, to)=J (q, co)[I AzJ—y@ (q, ro)] (D8)

[L;,(r)j =(VP, (r)S, (0)) (D5) Putting this into Eq. (D4) and evaluating the A, integral,
we obtain

which is the time-ordered linear-response function at
coupling constant A, .

While Eq. (D4) is an exact expression for the fiuctua-
tion free energy, the RPA can be viewed as a simple ap-
proximation for E ( q, co ). Apply an external field
h (q, to), which couples linearly to the spin fiuctuations

b,F =—QTrln[I —zJy (q, co )],=T
q, v

which reduces to Eq. (61) in the text.

(D9)
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