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High-temperature series for the +J random-bond Ising model
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High-temperature-series expansions for the magnetic and spin-glass susceptibilities are computed to
fifteenth order in tanh(J/T) for the +J random-bond Ising model on simple-cubic and hypercubic lat-
tices, as a function of the fraction of ferromagnetic bonds, p. The ferromagnet —spin-glass multicritical
point occurs for p =0.810+0.020 on the simple-cubic lattice for p =0.720+0.015 on the d =4 hypercu-
bic lattice, and for p =0.680+0.010 on the d = 5 hypercubic lattice.

I. RANDOM-BOND ISING MODEI.

High-temperature-series expansions for the magnetic
susceptibility y of various versions of the random-bond
Ising model have been computed for almost 20 years, go-
ing back to the work of Rapaport' on the quenched dilute

ferromagnet. A few years later, he also published series
for a model in which there is a random mixture of fer-
romagnetic bonds of strength +J and antiferromagnetic
bonds of strength —J, which we shall refer to as the +J
model. The Hamiltonian for this model is

H b= —QJ;SS

TABLE I. y series coefficients for the +J random-bond Ising model on a simple-cubic lattice, up to
n = 15. The c n coefficients are defined by Eq. {3),and those that are not listed are zero.
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where each spin S, is an Ising variable, which takes on
the values +1, and (ij ) indicates a sum over nearest
neighbors on some lattice. Each bond J, is an indepen-
dent random variable, whose value is chosen from the
probability distribution

P(J; )=p5(J; —J)+(I—p)5(J, +J), (2)

and then quenched, i.e., Axed for all time. The fraction of
ferromagnetic bonds, p, is a parameter of the model,
which can be varied between 0 and 1.

The calculations of Ref. 2 were done for a body-
centered-cubic (bcc) lattice, and presented g to 12th order
in w =tanh( J/T). Eighth-order series for d-dimensional
hypercubic lattices were given by Rajan and Risebor-
ough, and results to 10th order for the square and
simple-cubic lattices were calculated by Reger and Zip-
pelius. The series of these latter two groups were not
long enough for accurate quantitative analysis, as the re-
sults of this work will demonstrate.

The phase diagram is of the Sherrington-Kirkpatrick
type, which is why this model is considered to be one of
the standard Ising spin-glass models. For bipartite (two-
colorable) lattices, such as the simple-cubic (sc) lattice,
the phase diagram is symmetric about p =

—,'. It contains
the usual paramagnetic phase at high temperatures. At
low temperatures, there is a ferromagnetic phase near
p = 1, a spin-glass phase near p =

—,', and an antiferromag-
netic phase near p =0.

II. HIGH- TEMPERATURE SUSCEPTIBILITY SERIES

For a probability distribution of the form of Eq. (2),
computation of the high-temperature y series for Eq. (1)
is only slightly more difficult than the same calculation
for the standard Ising ferromagnet. For general probabil-
ity distributions, the bookkeeping becomes somewhat
more elaborate, and the number of coefficients which are
necessary to specify the series becomes unwieldy. For the
+Jmodel, the g series can be expressed in the form

TABLE II. g series coefFicients for the +J random-bond Ising model on a d =4 simple-hypercubic
lattice, up to n = 15. The c „coe%cients are defined by Eq. (3), and those which are not listed are zero.
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TABLE III. y series coefficients for the +J random-bond Ising model on a d = 5 simple-hypercubic
lattice, up to n = 15. The c „coefficients are defined by Eq. (3), and those which are not listed are zero.
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TABLE IV. y& series coefficients for the +J random-bond Ising model on a simple-cubic lattice, up
to n =14. The d „coefficients are defined by Eq. (5), and those which are not listed are zero.
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TABLE V. y& series coefficients for the +J random-bond Ising model on a d =4 simple-hypercubic
lattice, up to n = 14. The d „coefficients are defined by Eq. (5), and those which are not listed are zero.
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Ty=1+ g g c „(2p —I) to",
n=l m=1

where w =tanh( J/T). The series coefficients c „are in-

tegers, and if m+n is odd, then c „ is zero. These
coefficients were computed up to n =15, using the NFE
method of Harris and the d-dimensional hypercubic lat-
tice weak embedding constants of Harris and Meir. The
c „ for the sc and the d =4 and 5 simple-hypercubic
(shc) lattices are given in Tables I—III, respectively. For

the sc and d =4 shc lattices, it would be possible to add
additional terms to the series, by using the star graph
method. A series for the simple-cubic lattice of the
same length has also been calculated by Singh and Fish-
er. Singh has informed me that there is complete agree-
ment between their calculation and the series coefficients
given in Table I.

High-temperature series were also computed for the Q
susceptibility. ' For the random-bond Ising model, g&
can be defined as

TABLE VI. y& series coefficients for i,ne +J random-bond Ising model on a d =5 simple-hypercubic
lattice, up to n = 14. The d „coefficients are defined by Eq. (5), and those which are not listed are zero.
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where X is the number of spins. y& may be thought of as
the fourth derivative of the free energy with respect to a
random external field. It is nat the same as the fourth
derivative of the free energy with respect to a uniform
external field y' ' except for a P ( J, ) distribution which is
symmetric about 0, e.g. , for the special case p =

—,'.
The +Jmodel series coefficients for y& are defined by

Ty&=1+ g g d „(2p —1) w" .
n=1 m=0

All of the d, are integers, and for bipartite lattices they
vanish unless both m and n are even. The d,
coefficients for the sc and the d =4 and 5 shc lattices are
given in Tables IV—VI, respectively. Note that, in con-
trast to the c „, coefficients, do„ is nonzero for even n,
but d2„ is always zero.

III. ANALYSIS OF THE SERIES

The usual procedure" for analyzing a series expansion
such as Eq. (3) or (5) is to assume that near the critical
point the behavior is dominated by a power-law singulari-
ty. Thus we make the ansatz

y(w, p)-C(p)[w, (p) —w] (6)

as w approaches w, from below (i.e., as T~T,+). One
then uses ratio or Pade methods to find the "best" values
of w, and y. The criteria for choosing the best values are
somewhat subjective, especially if an attempt is made to
allow for corrections to the simple scaling form [Eq. (6)].

When this recipe is followed for the +J model, it turns
out' that the apparent value of y, which we will refer to
as p ff depends on p. It is generally believed, however,
that y should be "universal, " i.e., that the critical behav-
ior of this model is controlled by a renormalization-group
fixed point' which does not depend on the details of
P(J;~ ). Therefore, we anticipate that the true value of y'

is the same for all values of p in the range p, (p &1.
(The subscript "mc" denotes the ferromagnet —spin-glass
multicritical point. ) y might be obtained, in principle, by
calculating a large number of terms of the series. In
practice, we have not actually calculated enough terms in
the series to see the true value of y. The slow approach
of this series to its true asymptotic form is argued to be a
consequence of the known fact that the specific-heat ex-
ponent 0. is close to zero. ' The scenario is thus self-
consistent.

Assuming that the Sherrington-Kirkpatrick phase dia-
gram remains qualitatively correct for d (6, we can use
the standard methods of series analysis to estimate the lo-
cation of the ferromagnetic —spin-glass rnulticritical point.
This gives the results p, =0.810+0.020 on the simple
cubic lattice, p, =0.720+0.015 on the d =4 hypercubic
lattice, and p, 0.680+0.010 on the d =5 hypercubic lat-
tice.

It must be said, however, that the existence of simple
scaling and a single critical point for H,b has not been
proven. It is conceivable, for instance, that the phase
transition actually occurs at a higher temperature than
one would expect based on the examination of the high-
temperature series. This can be tested by comparing the
series-analysis predictions with the results of computer
simulations. The estimates of T, from the g series agree
precisely with the Monte Carlo renormalization-group re-
sults of Ozeki and Nishimori' ' for p =0.83 and 0.90.
Their estimate ofp, =0.767+0.004 is too low to be con-
sistent with the series analysis. However, their phase dia-
grarn does not satisfy the condition' that the slope of the
critical line become infinite at p, . This should hold if
the multicritical point lies on Nishimori's line, ' as they
have assumed in their calculation. Therefore, the p, es-
timate of Ozeki and Nishimori appears to be internally
inconsistent. '

Although the values of p, given here for the d =4
and 5 shc lattices differ somewhat from those of Rajan
and Riseborough, these differences can be easily under-
stood as resulting from the substantially longer series
used in the current work. The difference between the
value of p, given here for the sc lattice and that of
Reger and Zippelius has another origin. Those authors
chose p, based on an esthetic criterion: They required
that the Nishimori line' be at the midpoint of their esti-
mates of the divergences of the series for y and y' '. This
was not a wise choice, since the y' ' series is not well
behaved. If one looks at their phase diagram and places
p, at the point where the ferromagnetic transition line
intersects the Nishimori line, the agreement with the esti-
mate given here is much improved.

IV. GAUGE SYMMETRY

Using rather general gauge-invariance arguments, Le
Doussal and Harris' have argued that the multicritical
point for a random-bond Ising model should lie on
Nishimori's line. ' For the +J model, this line obeys the
relation

w =2p

If one is prepared to assume that there is a unique mul-
ticritical point, then it necessarily follows from the gauge
symmetry that this point must lie on Nishimori's line.
The reader can easily check that substituting Eq. (7) into
Eqs. (3) and (5) gives series for y and y& which are identi-
cal, term by term, as is required by the gauge invariance.
This, of course, means that the nature of the divergences
of y and g& must be identical at the multicritical point.
Unfortunately, it also means that if one approaches the
multicritical point along Nishimori s line, then all of the
odd coefficients of the y series vanish. The number of
nonzero coefficients in the resulting series is therefore
rather small, and this makes a convincing series analysis
dificult to perform along Nishimori's line.

The difficulty is compounded by the fact that for d & 6
the slope of the critical line should be infinite' at p, . It
turns out, therefore, that the values of T, given by a
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series analysis at fixed p for d &6 are systematically
larger than predicted by Eq. (7), with the discrepancy in-
creasing as d decreases. This is the natural consequence
of trying to approximate the infinite slope of the critical
line at p, by a series of finite length. We can, however,
use these facts to advantage, by locating p, at the p for
which the apparent value of T, drops most rapidly as the
number of terms which are used in the series analysis is
increased.

ticritical point. We have also found that the p-dependent
corrections to scaling do not become small as d is in-
creased above 4. It seens reasonable that these correc-
tions to simple scaling can be associated with the cross-
over from the multicritical point to the ferromagnetic
critical point. A quantitative calculation which proceeds
along this line would be a useful contribution to our un-
derstanding.
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