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A method is proposed for computing material defect and surface properties accurately at the atomic
level. The method is both simple and accurate and treats both semiconductors and metals. Lattice de-

fect and surface energies are determined via perturbation theory on a crystal whose lattice constant is

chosen to minimize the perturbation. The energy of the equivalent crystal as a function of its lattice con-
stant is given by a universal energy relation. This simple method is tested via predictions of surface ener-

gies, surface reconstructions, and bulk distortions of metals and semiconductors. Good agreement is ob-
tained with the results of both experiment and first-principles calculations.

I. INTRODUCTION

This is an exciting period for the theory of solids, be-
cause physicists and materials scientists are developing
tools to treat real material surfaces and defects at the
atomic level, and are having some initial successes in a
variety of applications. A number of examples can be
found in Ref. 1. Perhaps the most widely used technique
is the embedded-atom method of Daw and Baskes. '

The goal is to go well beyond pair potentials and to in
fact obtain quantum-mechanical accuracy, and yet to
have a method that is simple enough to apply that phe-
nomena such as friction and wear and crack propagation
can be computed atomistically.

In the following we describe a method which is sim-
ple to apply and yet is accurate. It is based on an exact
relationship between the total energy and atomic loca-
tions and applies to surfaces and defects in both simple
and transition metals as well as in covalent solids. This is
the first time, to our knowledge, that a single method is
shown to treat both metals and covalent solids accurate-
ly. Not only does this have practical advantages because
many material combinations involve both types of solids,
but also the differences and similarities of the types of
materials are better understood when they are all treated
by a single method. The exact framework is also essential
in order to improve accuracy in a systematic fashion and
to know what kind of accuracies to expect in applica-
tions.

To exemplify the accuracy of the method we will show
that predicted surface energies of a variety of fcc and bcc
metal surfaces are found on average to be within 10%%uo of
first-principles values, yet they can easily be determined
with a hand calculator. Predicted changes in interlayer

spacings due to surface relaxation of the low index sur-
faces of Cu, Ni, Al, and Ag will be shown to be typically
within experimental error bars, often within 0.01 A. Pre-
dicted (1X1) to (2XI) reconstruction energies and in-
teratomic spacings for Si(100) are found to be in good
agreement with first-principles results and with available
experiments. While 14 independent atomic coordinates
per surface unit cell (spread over five atomic layers) were
varied simultaneously to minimize the total energy in the
reconstruction, the calculation was nevertheless con-
veniently carried out on a personal computer.

In this paper we consider only energies and atomic lo-
cations associated with surfaces and defects in elemental
solids. Work is in progress to extend the method to al-
loys and solids containing impurities.

In Secs. IIA —IID we give the basic idea of the
method, including the mathematical formulation. In
Secs. II E 1 —II E 3 we discuss approximations which sim-
plify the applications. We then give some numerical tips
in Sec. IIE4 on how to use the method most easily. In
Sec. II E 5 we provide analytical expressions for constants
of the method. To aid in applications of the method, we
gather the working equations together in Sec. II F. Sec-
tion III is devoted to results of applications to metals and
silicon. This not only exhibits accuracies, but also shows
what terms and physical effects are more important for
the different classes of solids. A summary of the method
can be found in Sec. IV.

II. EQUI VALKNT-CRYSTAL THEORY
A. Basic idea

Consider a localized structural defect in a solid such as
the vacancy shown in the upper diagram of Fig. 1. We
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FICi. 1. A vacancy in a two-dimensional square lattice as an
example crystal defect. A vacancy nearest neighbor is indicated
by an X. The local environment of the vacancy nearest neigh-
bor is indicated by the circular area. An equivalent-crystal rep-
resentation of that environment is depicted in the lower circular
diagram. The equivalent crystal has the same structure as the
crystal containing the vacancy, but the equivalent-crystal lattice
constant is somewhat larger since the atom indicated by the X
is missing a neighbor. The actual lattice constant is determined

by Eq. (3) so that perturbation series vanishes.

would like to compute the energy to form that defect in
the single crystal. There are many examples of localized
defects in solids. There are point defects like vacancies
and interstitials, line defects like dislocations, and planar
"defects" like surfaces and interfaces.

The local defect represents a substantial increase in
complexity relative to single crystals, and so theorists in
modeling surfaces and defects have attempted to retain
single-crystal simplicity on a local level. The local-
density approximation (LDA) of density-functional
theory has been valuable not only in carrying out calcula-
tions for crystalline solids, but also for local defects and
surfaces. In the LDA the electronic exchange-correlation
potential at a particular point in space is assumed to be
that of a uniform, free-electron gas whose electron densi-
ty is the same as the actual electron density evaluated at
the same point. The free-electron gas is the simplest sin-
gle crystal and, in a sense, the LDA assumes that each
point in space is represented by such a single crystal.
Each different point is represented by a different single
crystal, i.e., the constant electron density (or lattice con-
stant) of the single crystal is different for each point
represented. One might think this to be a drastic approx-
imation, but in fact the LDA has served well even for
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FIG. 2. Scaled cohesive energy E* per atom of a crystal plot-
ted against interatomic separation a* for representative solids.
The solid line is a plot of the Rydberg function. The sources of
the unscaled results are listed in Ref. 12.

solid-vacuum interfaces (see, e.g., Ref. 4), where the elec-
tron density variation deviates quite rapidly from that of
a uniform, free-electron gas. A second example of a
theory based on the framework of single-crystal simplici-
ty on a local level is found in effective-medium theory
(EMT). In EMT, the interaction energy of atoms in a
solid is found first by computing the electron density pro-
vided by atoms surrounding a given atom, and then tak-
ing the embedding energy of that atom in the actual solid
to be in lowest order the embedding energy in a uniform,
free-electron gas of that same electron density. Again,
the EMT has been successfully applied even at solid sur-
faces.

We also retain single-crystal simplicity on a local level
in modeling surfaces and defects, but since we are in-
terested in transition metals and covalent solids like semi-
conductors, which are not free-electron materials, we
choose not to rely on a free-electron gas. Rather, we in-
troduce an effective single crystal locally, which differs
from the actual ground-state single crystal only in that its
lattice constant may be different from the ground-state
value. Consider M atoms encompassing the range of the
local defect (indicated schematically by atoms within or
near the circular area in the upper diagram of Fig. I).
We first replace those M atoms with M atoms of an
effective crystal whose lattice constant a is yet to be
specified. Next we compute the energy to form the defect
or surface via perturbation theory, where the perturba-
tion arises from the difference in the ion core electronic
potentials of the actual defect solid or surface and those
of the effective bulk single crystal. Let c be the total en-

ergy to form the defect or surface, E,(a) the total energy
per atom of the effective bulk single crystal, and ME~(a)
the sum of the perturbation series:

e=M [E,(a)+E~(a) —E,(a )], (l)
where a is the equilibrium lattice constant (minimum in
Fig. 2).

0(
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The rate of convergence of the perturbation series is
important because typically it is difficult to evaluate
high-order perturbation terms. Thus it would be desir-
able to adjust the lattice constant a of the effective crystal
so that the perturbation is minimized and thereby hope-
fully the perturbation series is rapidly convergent. Now
if the crystal structure of the actual single crystal is that
of the lowest-energy phase, and if its lattice constant is at
the ground-state value a, then we know that forming
the defect or surface must raise the energy of the system
above the minimum in the cohesive energy curve. Thus
there must be a value a of the lattice constant of the
effective crystal such that

s=M [E,(a) E,(a—)],
so that

(2)

E~(a) =0 . (3)

Since the excitation energy of the effective crystal rela-
tive to the ground-state crystal is equal to the total ener-
gy to form the local defect or surface [Eq. (2)], we call the
crystal of lattice constant a an equivalent crystal. Note
that we have not only minimized the perturbation series,
we have been able to make it sum to zero. Further, while
a defect or surface in a solid is a complicated many-atom
and many-electron problem, it has now been reduced for-
mally to the solution of one equation, Eq. (3), for the one
unknown a. Once a is known, then the energy of the
solid containing a surface or defect can be immediately
found from Eq. (2), since E, (a) is known for many single
crystals.

Whether this is merely a formal simplification of the
defect problem or is in fact a simplification in practice
will depend on how diScult Eqs. (2) and (3) are to solve.
Let us first consider some practical matters associated
with Eqs. (2) and (3).

B. Practical matters

First, one can see from Fig. 2 that there can be two
values of a which satisfy Eq. (2) for a given E. The ap-
parent ambiguity is removed by Eq. (3), however. For
surfaces and defects involving missing atoms such as va-
cancies, the root for a )a satisfies Eq. (3). For defects
involving compressions like interstitials, the root for
a (a satisfies Eq. (3). This is perhaps more intuitively
obvious if one realizes that Eq. (3) requires the equivalent
crystal to mimic accurately the environment in the vicini-
ty of the surface or defect. Making a vacancy efFectively
lowers the atom density, hence a &a . Conversely, an
interstitial effectively increases the atom density, hence
a(a

Second, difference energy calculations are notoriously
dificult. If one were to attempt to evaluate Eq. (2)
straightforwardly, one would be trying to find a relatively
small difference between large numbers because M usual-
ly is taken to be a relatively large number. This can place
impractical requirements on the required accuracy of the
large numbers ME, (a) and ME, (a ) in order to obtain a
reasonably accurate c.. The change in energy of an atom

in the solid near the surface or defect due to surface or
defect formation can be a significant fraction of that
atom's contribution to the cohesive energy, however.
Thus one can circumvent this difficulty by finding the en-
ergy change on an atom-by-atom basis. That is, one can
find an equivalent-crystal lattice constant a (i) with corre-
sponding energy change e; by solving Eqs. (2) and (3) for
each atom i near the surface or defect. If

(4)

For an atom i close to the surface or defect, c,; can be a
significant fraction of both E, (a (i)) and E,(a ). Thus
forming an equivalent crystal for each atom can allow
one to extract an accurate energy c without the need for
extremely accurate total-energy calculations.

An equivalent crystal for a particular atom is
exemplified by Fig. 1. A nearest-neighbor atom to the va-
cancy is indicated by an x in both the upper and lower di-
agrams of Fig. 1. In the upper diagram of Fig. 1 we have
the actual atomic array, while in the lower diagram we
see the equivalent-crystal atoms associated with atom x.
Note that the lattice constant of the equivalent crystal is
a little larger than that of the actual crystal because atom
x is next to a vacancy, as discussed above.

Note also that the solution of Eqs. (2) and (3) for atom i
does not depend on the solution for any other atom j.
Thus computational time only depends linearly on N,
where X is the total number of atoms whose energy is
changed significantly by the introduction of the surface
or defect. This is a great simplification. Moreover, in
practice we have found for metals and covalent semicon-
ductors that only a few neighbors contribute significantly
to Eq. (5). For example, for metal surfaces, typically only
the surface atomic layer and the atomic layer beneath it
need be included. For Si(100) reconstruction we included
the top five atomic layers, still a relatively trivial compu-
tational requirement for this method.

C. Universal energy relation

Let us first consider the function E,(a). There is a sim-

ple, universal form for E, (a ). In fact it has been
discoveredio

—i2 that total energies as a function of intera-
tomic spacings have a single, universal form for bimetal-
lic adhesion, for cohesion in metals, for metallic and co-
valent bonds in chemisorption, for many diatomic mole-
cules, and even nuclear matter. This is exemplified in
Figs. 2 and 3. In Fig. 2 we find cohesion results for a
variety of metals, and in Fig. 3 typical curves for
cohesion, adhesion, chemisorption, and diatomic energet-
ics. All of these curves are scaled on to one universal
form. The universal form can be obtained by a simple
scaling of the total energy:

E' =E (a)/bE,
where

a =(a —a )/1,
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and AE is the minimum value of the total energy, i.e., the
equilibrium binding energy. The scaling length I is
defined for convenience so that [d E'(a')/ da* ]0=1 for
all scaled curves:

I=+6E/[d E (a)/da ], (8)

For the cohesion curves E,(a) [which we need for Eqs. (2)
and (3)], we take a = rws, where rws is the Wigner-Seitz
radius of equilibrium value I"~sE, so that

SCALED SEPARATION a*

FIG. 3. Scaled binding energy E* plotted against the scaled
separation a* for representative cases of cohesion, bimetallic
adhesion, chemisorption, and a diatomic molecule. The solid
line is a plot of the Rydberg function. The sources of the un-

scaled results are listed in Ref. 12.

Knowing that there is a universal energy relation and be-
ing able to represent it by a simple, analytic form gives us
a good start on the surface or defect problem.

In fact, a number of other methods also rely on the
universal nature" of the cohesive energy relation in
different ways. For metals Daw and Baskes ' employ
the universal energy relation in their widely-used
embedded-atom method (see also Ref. 14). The universal
energy relation is also found in the semiconductor
methods of Tersoff, ' Baskes, Nelson, and Wright, ' and
Dodson. '

D. Forrnal perturbation series

Next we concentrate on the sum of the perturbation
series, E~(a(i) ), associated with the equivalent crystal for
atom i [see Eq. (1) and the discussion associated with Eq.
(5}]. First we will display it formally, and then we will
seek accurate approximations to it consistent with our
goal of providing a method for treating real material sur-
faces and defects at the atomic level. Figure 1 may be
helpful in visualizing the equivalent crystal and actual en-
vironments for atom i. In that example, atom i is taken
to be a nearest neighbor to a vacancy indicated by an x in
both the upper and lower diagrams as mentioned earlier.
For a general local defect or surface we have

E [a (i)]=f dr 5u(r)[n(r) —Z5(r —R,')]
l

+E2+E3+. . . (15)

5u(r)= g [u(r —R' ) —u(r —R )], (16)

Here V, is the unit-cell volume containing atom i in the
equivalent crystal, n (r) is the valence-electron electron
density distribution in the equivalent crystal, Z is the
valence, 5u(r) is the change in ion-core potential when
the actual solid is replaced by the equivalent crystal;

and

(rws wsE )/I

l = '1/ 5E /1 2wBrwsE

(9)

(10)

R is a set of position vectors of the equivalent crysta1,
R' that of the actual solid containing a local defect
(R; =R,'. ), the first-order perturbation term is

E, = f dr5u(r)[n(r) —Z5(r —R,')], (17)
l

for cohesion, where B is the equilibrium bulk modulus
and hE is the cohesive energy. There is in fact a simple
analytic form which accurately represents the universal
energy relation:

E'(a')= —(I+a*)e
This analytic form is the solid line plotted in Figs. 2 and
3. We And then that

and Ez is second order in the perturbation 5v(R);

E2= —,
' f dr 5n(r)5v(r),

where

5n(r)= f dr'L(r, r')5u(r')

(18)

(19)

and

E,(a) = EE(1+a )e—
E; = b,E F [a'(i)], —

where

F'[a '(i}]= I +E*[a *(i)]

= 1 —[1+a*(i)]e

(12)

(13)

(14)

and L, (r, r') is the linear-response function of the
equivalent crystal.

Equations (15)—(19) call for a few comments. First,
one can see from Eq. (16) that 5u(r) derives from a neu-

tral charge distribution, as does the quantity in square
brackets in Eq. (15) and 5n(r) in Eqs. (18) and (19). This
limits the range required to only a few neighbors of atom
i, thereby simplifying the evaluation of E~(a (i) ). Second,
note that in general 5n(r) has the effect of screening
5u(r). This is a nontrivial effect which we will want to in-
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elude in our calculations. Finally, an exact evaluation of
the perturbation series would be too time consuming for
our goal of treating real material surfaces and defects.
Thus we look for accurate approximations in the next
section.

ground state
a =0)z= 1 --- 4t

(b)
aigO a2QO,
a3 =a4 —Q

K. Approximations to the perturbation series

1. Derivations and discussion of the standard form

The formal perturbation series is instructive as to the
form and type of approximations needed. For ease of cal-
culation we have approximated it by simple, analytic
forms which contain a few parameters. These parameters
can be evaluated from experimental results or from the
results of first-principles calculations. We follow the spir-
it of pseudopotential perturbation techniques in simple
metals' and transition metals. ' ' Those methods yield-
ed a perturbative series, the first term of which has been
called a "volume" term, i.e., a term which is a function of
the number of atoms per unit volume. Successively-
higher-order perturbation terms contain successively-
higher-order many-atom interactions. Our perturbation
series contains a term analogous to the volume term, plus
two-, three-, and four-body terms. In this section we will
provide discussion and derivations of the standard form
of the method. In Secs. II E2 and II E3 we will present
simpler and more general forms of the method, respec-
tively. Later we will discuss some details of how best to
use the method, and finally we will present the results of a
number of applications.

Our simplified perturbation series for c; is of the form

e, =bE F*[a*,(i)]+ Q F*[a2 (i j)]
J

+yF" [a3 (i j,k)]+yF*[ag(i,p, q)]
j,k

is the simple analytic function discussed earlier:

(c)
ai QO, a2 QO,
as =O, a4 $0

g~ =O, a2=O,
as QO, a4 QO

FIG. 4. In this figure we use the diamond structure to illus-
trate the types of lattice distortions that might be encountered.
General distortions are a combination of those shown. In (a),
the ground-state structure is given, with all three equivalent-
crystal lattice constants being zero by definition. In (b), an iso-
tropic distortion is illustrated, where all nearest-neighbor bond
lengths have increased from Ro to R j. Since bond lengths have
increased, a&*)0. Since all bond lengths are equal, a2 =0,
since there is no bond-angle change, a3 =0, and since the face
diagonals are equal, a4 =0. In (c) one bond length has de-
creased, while no bond-angle change occurs. Thus a &*, a2, and
a3 deviate from zero, while a,* remains zero. Finally, in (d) all
bond lengths remain equal to Ro (a I =0, a2 =0), but bond an-
gles and face diagonals distort (a 3 %0 and a4 %0).

F*[a']=1—(1+a*)e (21)

and the scaled lattice constants a* are given in terms of
the equivalent-crystal nearest-neighbor distances R„as
[see Eq. (9)]

a*=(R„/c rwsE)/l, (22)

where c=&2(2n/3)' for fcc, c=(&3~)'~ for bcc, and
c=(v'3vr/2)'~ for diamond structures.

The first term in Eq. (20), F*[a i (i)], contributes when
average neighbor distances are altered via defect or sur-
face formation. It can be thought of as representing local
atom density changes. There is some similarity between
this term and a localized version of the "volume" term
found in perturbation theory of nearly free electron and
transition metals. ' For an isotropic volume deforma-
tion, as exemplified in Fig. 4(b) for the diamond structure
(see Fig. 5 for other structures), the only term contribut-
ing in Eq. (20) to E; is F*[a,* (i)]. In fact, in that case this

term gives c; to the accuracy of the universal energy rela-
tion [see Eq. (14)].

For anisotropic deformations, however, c; clearly will
depend on more than a term like F*[a', (i)] which is a
functional of only average distances. The three other
terms in Eq. (20) contribute for anisotropic distortions.
They are obtained, as described below [following Eq.
(27)], by the consideration of anisotropy energies ar-
ranged in the order of numbers of atoms involved.
F*[a2 (i,j)] is a two-atom term, F*[a3 (i,j,k) ] is a
three-atom term, and F [a4 (i,p, q)] is a four-atom term.
We found that one did not need to go beyond the four-
atom term to obtain accurate results.

We treat the several different terms in the perturbation
series as linearly independent, so that each term satisfies



EQUIVALENT-CRYSTAL THEORY OF METAL AND. . .

fcc

c43,xDQIld

the right-hand side of Eq. (15). Its variations with R, the
variation of interest, is determined primarily by the be-
havior in the overlap region. This is the region in which
the electron density of an atom overlaps the potential
U(r —R) of a neighboring atom. Strictly speaking, the
unperturbed electron density we should be talking about
is the electron density n(r) of the equivalent-crystal unit
cell, rather than an atomic density. One can always
represent a crystalline electron density n(r) as a sum of
identical, overlapping functions n „(r —R ), localized
about the equivalent-crystal lattice sites R

bcc
n(r)= g n~(r —R ) . (23)

FIG. 5. Crystal structures for face-centered, body-centered,
and diamond structures.

Eq. (3) for the corresponding equivalent-crystal lattice
constant. Linear independence is consistent with the lirn-
it of small perturbations, which in turn is consistent with
the spirit in which we present equivalent-crystal theory.
We will see that we can successfully apply it to surfaces
where the perturbation wou. ld seem not to be small. This
is due in part because we choose the equivalent-crystal
lattice constant to make the perturbation equal to zero in
every case.

Equation (20) appears to be more complicated than Eq.
(2) because there are now several terms and several
equivalent-crystal lattice constants, while Eq. (2) has only
one. We will see however that solving for the
equivalent-crystal lattice constants a i (i), a 2 (i),
a3 (i,j,k), and a4 (i,p, q) is relatively trivial, and they are
all we need to know to simply evaluate the total energy
via Eqs. (20) and (21). This is an enormous simplification
over attempting a frontal assault on Eqs. (3) and (15).

The energy terms of Eq. (20) are based on the frame-
work provided by the formal perturbation series and a
physically intuitive division of the defect or surface for-
mation energy into three categories or terms. The first
term is a many-atom term which is insensitive to bond-
angle or bond-length anisotropies. The form of the per-
turbation terms leading to F*[a i (i) ] is based on the first-
and second-order perturbation terms of Eqs. (15)—(19).
The perturbation, as mentioned earlier, is due to the
difference in potentials between a solid containing a de-
fect or a surface and the bulk ground-state single crystal.
Consider the first-order term, which is the first term on

In the overlap region, we encounter the tails of the func-
tions nz(r —R ). Let us approximate the functions in
this overlap region as having the form of the electron
density of the highest partially occupied atomic level of
the atoms making up the crystal. We know that in the
atom, this is the level which will dominate the long-range
behavior, and so may be representative of the tail region.
Further, one might presume that the atomic core is rela-
tively small, and hence that v(r —R) is relatively well lo-
calized about R. Then the dependence of E, +E2 [Eqs.
(17) and (18)], on R would mimic the form of the electron
density of the highest partially occupied atomic level, i.e.,

E, +E oc R~e (24)

for nearest neighbors, where p =2n —2 and n is the atom
principal quantum number. We must keep in mind that
the second-order perturbation is the first term in the
series to involve electronic screening, 5n(r). This points
out that the electron density to be used is not the unper-
turbed equivalent-crystal electron density, but it must in-
clude screening effects as well. In particular, second
neighbors have a cage of nearest neighbors screening
their movements (see, e.g., Fig. 1 of Ref. 21). Thus for
second neighbors,

(25)

where the stronger screening of second neighbors is in-
cluded via the screening function e

Actually, I" [a
&
(i)] is to represent a distance-

dependent component of the perturbation to all orders.
For finite-sized perturbations, one must take into account
not only electrostatic energies, but changes in kinetic, ex-
change, and correlation energies due to the perturbation.
In other words, we have nonlinear or higher-order effects
involved, which are not generally well represented by the
two lowest-order perturbation terms on the ground-state
single crystal. Going to higher order would severely
complicate the calculation, however. Thus we attempt to
make the perturbation as small as possible. We accom-
plish this by carrying out the perturbation not on the
ground-state crystal, but rather on an equivalent crystal.
We, in fact, can adjust the lattice constant of the
equivalent crystal until the perturbation integral is zero.
Combining Eqs. (3), (24), and (25), we have for metals and
semiconductors
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0
TABLE I. Computed constants. The constant p is 2n —2, where n is the atomic principal quantum number, l (in A) is computed

from Eq. (10), A, (in A) from Eq. (45), A, from Eqs. (48), (50), or (54), A~ from Eqs. (49), (51), or (55), and D from Eq. (35). Note there
is no constant A& defined, and A2 can be found in Eqs. (34), (37), and (38). D, aA&, and A3 are dimensionless, where a is the crystal

0
lattice constant. For metals, a (in A ) is computed by requiring agreement with the experimental vacancy formation energy (Table
II). For Si, Ge, and diamond, a is determined from the requirement that the computed vacancy formation energy of a frozen lattice
(without relaxation of the vacancy neighbors) be equal to the cohesive energy, i.e., by assumption of bond additivity (Refs. 24 and 25).

Element

Al
CU

Ag
Au
Ni
Pd
Pt
Fe
W
C
Si
Ge

4
6
8
10
6
8
10
6
10
2
4
6

0.336
0.272
0.269
0.236
0.270
0.237
0.237
0.277
0.274
0.253
0.344
0.348

2.105
2.935
3.337
4.339
3.015
3.612
4.535
3.124
4.232
2.017
2.177
2.857

0.944
0.765
0.756
0.663
0.759
0.666
0.666
0.770
0.770
0.711
0.967
0.978

10 A 3/D

7.822
5.784
5.390
4.047
7.382
5.242
5.789
9.183

12.03
24.50
16.96
17.22

10 ' A4/D

2.104
2.530
2.285
1.673
2.793
2.012
1.727
1.887
1.497
1.511
1.059
1.360

10 4D

591.4
99.74
12.90

1.127
100.1
11.25

1.071
60.62

1 ~ 179
1979.0
267.8
36.48

where

defect NN defect NNN

(26)

(27)

p=2n 2, (28)

N, and N2 are the number of equivalent-crystal nearest
and next-nearest neighbors, respectively, R

„

is the
equivalent-crystal nearest-neighbor distance we are solv-
ing for, c2 is the ratio between the next-nearest-neighbor
distance and the nearest-neighbor distance in the undis-
torted crystal, A, is the electronic screening length [see
Eq. (45)],

and n is the atom principal quantum number. The sums
are over the actual defect crystal, the first over nearest
neighbors and the second over next-nearest neighbors to
atom i. Values of l, A, , p, -and a and, indeed, all the other
parameters in the following equations can be found in
Table I. They are computed from the input data listed in
Table II for a series of metals and covalent solids. One
solves Eq. (26) for R„,obtains a*, (i) from Eq. (22), and
then obtains F*[a

&
(i) ] via Eq. (21).

For anisotropic deformations, there are an infinity of
neighbor distance distributions for each average neighbor
distance. In general, each of these distance distributions
could be expected to have a different total energy even if
they all have the same average distance. Further, bond
angles can be altered via anisotropic deformations.
Bond-angle effects involve three- and higher-atom clus-
ters, as will be seen below.

Let us first consider a two-atom anisotropic effect.
Suppose, e.g. , that some neighbors are missing so that the

TABLE II. Experimental input. Cohesive energies {in eV} are from Ref. 32, elastic constants (in 10'
dyn/cm ) are from Ref. 33, and metal vacancy formation energies (in eV) are from Ref. 22.

Element

Al
CU

Ag
Au
Ni
Pd
Pt
Fe
W
C
Si
Ge

Cohesive
energy

3.34
3.50
2.96
3.78
4.44
3.94
5.85
4.29
8.66
7.37
4.64
3.87

Lattice
constant

4.04
3.61
4.08
4.07
3.51
3.89
3.92
2.86
3.16
3.57
5.43
5.66

Vacancy
formation

energy

0.66
1.30
1.19
0.96
1.60
1.4
1.3
1.60
4.00

C11

1.143
1.762
1.314
2.016
2.612
2.341
3.580
2.360
5.326

10.79
1.677
1.3111

0.619
1.249
0.973
1.697
1.508
1.761
2.536
1.340
2.050
1.24
0.6498
0.4923

C44

0.316
0.818
0.511
0.454
1.317
0.712
0.77.4
1.190
1.631
5.78
0.8036
0.6817
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average neighbor distance is larger than Ro. The average
neighbor distance can be lowered by decreasing the
neighbor distances of the remaining atoms. This may
cause some of the neighbor distances to become less than
Rp, even while the average distance is greater than Rp.
Compressing bonds below Rp should contribute to an in-
crease in the energy, which would oppose a decrease due
to F*[a*,(i)]. Thus clearly there is a two-atom aniso-
tropic term, F'[a2 (i,j)], which is nonzero when
nearest-neighbor bond lengths are anisotropic, i.e., when
R PRO, where Ro is the bulk nearest-neighbor distance.
Here we take the origin at atom i, so that the bond length
to atom j is R:—~R ~. This is depicted in Fig. 4(c) for the
diamond structure. As discussed above, one can treat
semiconductor bonds as independent ' for purposes of
computing bond-length anisotropy energies. This means
that one can obtain an anisotropy term F'[az(i, j)] for
each neighbor j. The E (az (i,j))=0 equation for semi-
conductors is

+ A2R0(R) —Ro)e ' 0 =0, (29)

where in this case R
„

is the nearest-neighbor distance for
the equivalent crystal associated with the deviation of
nearest-neighbor bond length R from Ro, and Rp is the
bulk nearest-neighbor distance at whatever pressure the
solid is maintained at (see Fig. 4). Generally Ro can be
taken to be the ground-state, zero-pressure value since
most experiments are done at atmospheric pressure.
While F'[a& (i)] is a many-atom term for metals and
semiconductors which depends on average neighbor dis-
tances, for semiconductors F*[a2 (i,j)] is a two-atom
term. The procedure for obtaining the associated energy
is analogous to that for Eq. (26), namely one solves Eq.
(29) for R„,obtains a2 (i,j) from Eq. (22), and then finds

F*[a2(i,j)] from Eq. (21). Finally, F*[az(i)] is ob-
tained from Eq. (28). Note that R„=ROif the deforma-
tion is isotropic, so, that in that case a2 (i,j)=0 and
F'[a& (i,j)]=0. Thus Eq. (29) is a bond-length anisotro-

py term, as discussed above.
For metals, it is well known that multiple-atom terms

would be more important than they are for semiconduc-
tors. Bond-angle anisotropies will be included via three-
and four-atom terms subsequently [Eqs. (39) and (40)].
Multiple-atom terms in bond-length anisotropies should
also be expected to be important for metals, however. In-
cluding several of these higher-order bond-length terms
for metals could complicate the method. There is a
simpler approach, however. Equation (29) can be
transformed into a many-atom term for metals by sum-
ming over all nearest neighbors:

a = (R —Ro )/lc, (32)

according to Eq. (22). Let us assume that the energy in-
crease due to the change of a single bond length by
R —Ro is the energy increase per bond of the isotropic
distortion:

5s, =(bE/N, )F*[a'], (33}

where again a' is given by Eq. (32). We are now ready to
find A2. A2 is determined such that (8 5e;/BR )0 from
Eqs. (32) and (33) agrees with that obtained from Eqs.
(28) and (29). The result for cubic semiconductors is

a A z/D =2/&3, (34)

where D is given by
—aRO

D =N, e '(aRO —p), (35)

and a is the lattice constant.
For metals, where bonds cannot be treated indepen-

dently, we vary all neighbor bond lengths to atom i by
R Ro- Then

F'[a2 (i)] is a many-atom term which replaces

Q~F*[az(i,j)] in Eq. (20}. In this way semiconductor
bond lengths are treated as independent in Eq. (29), while
for metals multiple-atom effects are explicitly included in
Eq. (30), consistent with the known fundamental nature
of the two classes of materials.

As shown in the Appendix, the force corresponding to
the bond-length anisotropy term is zero when Rj R p as
one would expect. Because of the exponentials, the per-
turbation of Eqs. (29) and (30} tends to die away rapidly
for R &Rp, and rise rapidly for R &Ro. This is con-
sistent with the well-known physical property that it is
diScult to compress bonds below the bulk nearest-
neighbor distance, while bond-length anisotropies be-
come less important at larger bond lengths because in-
teractions decay exponentially with distance. These be-
haviors tend to be exponential because of wave-function
overlap.

The constant A z in those equations has yet to be deter-
mined. Its computation is also helpful in understanding
the form of the equations. Let us start with an unper-
turbed semiconductor crystal. Next change the bond
length to one of the nearest neighbors to atom i by
R Rp ~ We look now for an approximate expression for
the energy increase 5c.

&
due to this anisotropic deforma-

tion. For an isotropic change by the same distance, the
energy increase would be

c, =bEF'[a*],
where

5E, =bEF*[a*], (36)

—p(z. —z, i
+AqRgQ(R —R )e 0' ' =0, (30)

where P=4a for the metals listed in Table II. For met-
als, one solves Eq. (30) for R„,obtains a2 (i} from Eq.
(22), and hence F'[az(i)] from Eq. (21). For metals, aAz/D =1/6&2 (37)

where a' is again given by Eq. (32). A2 is again deter-
mined by requiring that (8 5e,;/BR 2)0 from Eqs. (32) and

(36) agrees with that obtained from Eqs. (30) and (14).
The result is
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for fcc metals, and

a Az/D = I/4v'3

for bcc metals.
Several comments are in order here. First, in combin-

ing Eqs. (36) and (30), we are in essence requiring an an-
isotropic expression [Eq. (30)] to agree with the result of
an isotropic deformation. This is important because we
would not want anisotropic energetics to be inconsistent
with isotropic energetics. Remember also that the aniso-
tropic expressions in Eqs. (29) and (30) are zero for isotro-
pic deformations [see discussion below Eq. (29)]. Second,
we deal with the second derivation. rather than the first,
because the latter is zero at equilibrium. Finally, the
form of Eqs. (29) and (30) is designed so that energy
second derivatives can be equal at equilibrium as in the
above analysis.

Of course we might not only have anisotropic bond
lengths, but also bond angles might deviate from that of
the undistorted single crystal. The first bond-angle effect
involves three atoms, which is accounted for by the third
term F*[ai (i,j,k)] This te.rm is nonzero when the angle
0.k included between R - and Rk deviates from the undis-
torted single-crystal value. This is depicted for the dia-
mond structure in Fig. 4(d). The F~(a3 (i j,k))=0 equa-
tion is for both metals and semiconductors:

(39)

where R„is for the equivalent crystal associated with an-
isotropic distortion due to a difference between the
nearest-neighbor bond angle 0; and the ground-state
crystal bond angle 0 and A3 can be written in terms of
the elastic constants as shown in Sec. IIE6. Here 0jk is
the bond angle included between bond lengths Rz and Rk
and 0=70.5' for bcc, 0=90 for fcc, and 0=109.5' for
the diamond structure —see Fig. 5. Clearly if 0.k=0,

I

R„=Raand F'[a3 (i,j,k)]=0, so Eq. (39) contributes
only when there is bond-angle anisotropy, as discussed
above. We know that angular effects should become rela-
tively less important as bond lengths become large. This
is the reason there is an exponential function of bond
lengths multiplying sin~8jk —8~. In complete analogy
with the solutions of Eqs. (26), (29), and (30), one solves
Eq. (39) for R„,obtains a 3 (i,j,k) from Eq. (22), and then
F'[a 3 (ij,k)] from Eq. (21). It is shown in the Appendix
that the associated force is zero when 0 k

=0, as expected
intuitively. The magnitude of the angle is used as a
matter of convenience so that ai (i,j,k) ~0. The bond
angles are described in Figs. 4 and 5. For the applica-
tions of Sec. III, we found it made little difference wheth-
er sin~8Jk —8~ or just ~8Jk

—8~ were used, because bond-
angle distortions were relatively small.

The first three terms on the right-hand side of Eq. (20)
are in principle sufhcient for a simple description of solid
surface or defect energetics when bonds can be con-
sidered as nearly independent, as in semiconductors.
For metals, however, electrons are relatively mobile and
therefore bonds cannot be considered to be independent.
We will see that in that case F [a 2 (i) ] does not contrib-
ute to the shear elastic constants c44 and c» —

c][2 for cu-
bic metals because az (i) depends only on average neigh-
bor distances. Because F [a i (i) ] also only depends on
average neighbor distances, it also does not contribute to
either shear elastic constant in both cubic semiconduc-
tors and metals. Further, if e is the strain associated with
e44 shear, it turns out that (B8/Be')0=0 for fcc metals.
Thus F'[ai (i,j,k)] does not contribute to c„~for the fcc
structure, and so none of first three terms do.

This suggests that a four-atom term can make an im-
portant contribution to c.;. This fourth and final pertur-
bation term we call F*[a4(i,p, q)]. It depends on the
difference of the face diagonals, d~

—
d~ (see Fig. 5). For

example, the fcc face diagonals are not equal in c44 shear,
d +d, so c~ depends solely on F'[a4(i,p, q)] The.
E~(a4 (i,p, q))=0 equation for both metals and semicon-
ductors is

(40)

where the four distances in the exponential multiplying
~d~

—
d~~ are the nearest-neighbor distances to atoms at

the ends of the face diagonals, R
„

is for the equivalent
crystal associated with anisotropic distortion due to a
difference in lengths of face diagonals, d„—d %0, d is the
face diagonal of the undistorted cube, and A4 can be
written in terms of the shear elastic constants as shown in
Sec. II E6. Because this anisotropy term should become
small as bond lengths become large, we have the ex-
ponential function of bond lengths multiplying the

~ d~
—

dq ~. Equation (40) leads to an R„ARo when
d~Wd~, and thus F"[a~ (i,p, q)]%0. As with the other
energy terms, the associated force is zero when dz =d~,
as expected. This is shown in the Appendix. Note that
the face diagonal distances do not depend directly on the

coordinates of atom i, even though this four-atom energy
is attributed to atom i. The only requirement is that the
atoms at the corners of the faces be nearest neighbors to
atom i. The thinking behind attributing this energy to
atom i is based on a local energy density picture and the
fact that atom i is located roughly at the center of the
volume enclosed by the cube faces.

Since dz =d~ in e» —
c&2 shear for all cubic metals and

semiconductors, F*[a4(i,p, q)] does not contribute to
c» —c,2 for any of those solids. Further, F*[az] also
does not contribute to c» —c,2 for any of those solids.
Thus c» —c,z depends only on F*[a3(ij,k) ] for all cubic
metals and semiconductors.

Next let us consider some of the geometrical aspects of
computing bond-length, bond-angle, and face diagonal
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anisotropy energies. Consider an atom in the fcc struc-
ture. There are three (100) planes intersecting this atom
in the bulk single crystal. There are four nearest-
neighbor atoms in each of these three planes. Each (100)
plane contains four bond angles 0 included between four
corresponding pairs of nearest-neighbor position vectors
and one pair of diagonal distances d and d . Thus there
are twelve bond angles, twelve bond lengths, and three di-
agonal distance pairs all together. Consider now an atom
in the bcc structure. There are twelve bond angles and
eight bond lengths all together, involving the atom's eight
nearest neighbors. There are six diagonal distance pairs
associated with the six faces of the cube which has the
eight nearest neighbors at its corners. For an atom in the
diamond structure, there are six bond angles, four bond
lengths, and three pairs of diagonal distances all together,
involving the atom's four nearest neighbors. There is one
bond angle and one diagonal distance for each cube face.

Because the total energy is written as an analytic ex-
pression, one can straightforwardly evaluate its gradient
and determine the total force on each atom in the surface
or bulk defect. The Appendix contains an analytic ex-
pression for the force, which can be useful for molecular-
dynamics calculations or for locating energy minima in
static calculations.

2. Simplest case

Consider a rigid defect such as a vacancy or a rigid
solid surface where atoms are not allowed to relax around
the surface or defect. In that case, bond lengths are ei-
ther equal to Ro or are infinite (the latter corresponding
to atoms that are removed). Thus Eqs. (21), (22), (29),
and (30) yield F*[az (i)] =0. Similarly, all bond angles
8 k

=0, so Eqs. (21), (22), and (39) yield
F*[a3 (i,j,k)]=0. Also d =d so Eqs. (21), (22), and
(40) yield F*[a4 (i,p, q)]=0. Thus only F*[ai (i)]%0 in
this case. The solution of Eq. (26) is particularly simple,
since all nearest-neighbor distances =Rp and all next-
nearest-neighbor distances =c2Rp ~ Typically, one can
obtain such energies with a hand calculator.

An example would be the surface energies computed
for the "rigid" configuration listed in Table III or "ideal"
configuration of Table X. In this case rigid and ideal
mean the same thing, i.e., unrelaxed. One can see that
there is excellent agreement with first-principles calcula-
tions, despite the simplicity of the equivalent-crystal-
theory calculation. One can also see from Table III that
the relaxation energies at metal surfaces are quite small.
The results listed in Tables III and X will be more fully
discussed in Sec. III.

3. Whistles and bells

For some problems, neighbor distances may not fall in
neat nearest-neighbor and next-nearest-neighbor
categories. This introduces a problem in defining next-
nearest neighbors for screening purposes. Two examples
are surface reconstruction, as we will consider in Sec. III
for Si(100), and slip. This is not a problem for the com-
putation of a 2 (i,j ) for semiconductors or a@ (i) for met-

als, or for a3 (i,j,k) and a4 (i,p, q) for metals and semi-
conductors, because the exponential prefactors provide a
gradual damping as RJ increases [see Eqs. (29), (30), (39),
and (40)]. It is a consideration for the computation of
a, (i), however, where second neighbors and beyond are
screened more strongly than nearest neighbors [see Eq.
(26)]. Thus we treat this ambiguity via an interpolation
formula S (R ) for the screening length I /1, for both met-
als and semiconductors:

—[a+5(R . )]8
JR~e

defect

where the sum over the defect crystal or surface is over
all neighbors, and for R ~Rp,

S(R)=0, (42)

for Rp ~R ~c2Rp,

S(R)=( I/2A, ) I 1 —cos[m(R —Ro)/(c2RO —Ro)]], (43)

and for R c2Rp,

S(R)=1/A, . (44)

The differences between Eqs. (26) and (41) are unimpor-
tant for most calculations. Also, for most calculations
the exponential multiplying the sin term in Eq. (39) and
that multiplying ~d~

—
d~ ~

in Eq. (40) can be taken to be
equal to 1. For example, this is true for the surface relax-
ation calculations on metals to be presented in Sec. III
because nearest- and next-nearest-neighbor distances are
typically within 0.1 A of the bulk, ground-state values.

4. How to useii

As mentioned earlier, the method has very modest nu-
merical requirements, which is important for its intended
application to low-symmetry-materials phenomena. The
only equations that need to be solved are Eqs. (26), (39),
(40), and either (29) or (30). Note that these equations are
independent, and so one only has to solve one algebraic
equation for one unknown at a time. There are, e.g., for
the diamond structure a maximum of 14 independent
algebraic equations in one unknown to solve [one from
Eq. (26), four from Eq. (29), six from Eq. (39), and three
from Eq. (40)]. The effort required for the solution truly
is trivial. Once one knows the R„values from Eqs. (26),
(29), (39), and (40), the total energy is obtained immedi-
ately via Eqs. (20)—(22). So the rate-limiting step of the
method is the solution of the perturbation Eqs. (26), (39),
and (40), and either (29) or (30). Equations (29), (30), (39),
and (40) involve only nearest neighbors, while Eq. (26) is
summed to second neighbors. It is shown in Sec. III (see,
e.g., Table V), that second neighbors make quite small
contributions because of screening. Thus the long-range
sums that one often has to deal with in pair-potential ap-
proaches are not found here. One should remember that
many-atom effects are contained in the universal energy
relation, Eq. (12), but the relation does not involve long-
range sums for its computation. Rather, it is represented
by a simple analytic form. Each of the perturbation
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equations is not coupled to the others, and involves only
one unknown, R„.So the basic problem of the method is
the solution of one equation at a time for one unknown.
This is done only for those atoms in the solid whose
neighbors are significantly perturbed from their equilibri-
um positions, because all other atoms have s;=0 [see
Eqs. (20) and (21)].

Each equation to be solved is nonlinear. There are
many methods available for solving nonlinear equations
in one unknown. All of these methods are aided by the
choice of good starting values. As we will see in Sec. III,
the dominant defect or surface energy is often coming
from the rigid defect or surface formation energy, for
which the only nonzero term is F*[a&(i)]. This is the
"simplest case" discussed in Sec. IIE2, and indeed can
often be solved with a hand calculator. Thus it is a good
starting point. For that starting point, the R„=Rpfor
Eqs. (29), (30), (39), and (40). Also from that starting
point it is straightforward to associate neighbors with
particular positions in the cubic unit cell, as shown in
Figs. 4 and 5. This allows the angles 0 and diagonal dis-
tances d„to be identified with crystalline starting values
and followed as reconstruction or other distortions occur.
From those starting values, one can then allow the atom-
ic positions to relax or reconstruct to lower the total de-
fect or surface formation energy c..

It is typically easier to bend bond angles and alter face
diagonals when neighbors are missing, although it is
difticult to know quantitatively how much less energy is
required. Thus in applying Eqs. (39) and (40), we adopted
the convention that if an atom were missing one or more
nearest neighbors, then we took F*[a3(ij,k)]=0 and
F*[af(i,p, q)]=0 for that atom. Quantitatively this is a
small e6'ect for the applications of Sec. III.

There is a well-known problem of subsidiary minima
found in many methods in the search for the absolute en-
ergy minimum. We did not encounter such a problem in
all of the examples discussed in Sec. III. For example, in
the (2X1) reconstruction of Si(100), we varied 14 in-
dependent atomic coordinates simultaneously, and found
the same absolute minimum for a broad variety of start-
ing points. Incidentally, this problem was easily solved
on a personal computer.

5. E/ectronic screening

Some further comments about electronic screening are
in order at this point. First, we know of no other method
of this type in which electronic screening efFects are taken
into account. %'e will see in Sec. III that they are indeed
important (see, e.g., Table V). Second, while the screen-
ing length A, appears explicitly in the second-neighbor
terms of Eq. (26), there is screening even of nearest-
neighbor movements. This is reAected in a being
diIIFerent from the atomic value.

The value of u appropriate for solids is derived empiri-
cally as follows. For metals, a is varied until the comput-
ed vacancy formation energy is equal to the experimental
value listed in Table II. It is clear from the review by
Wollenberger that experimental values of the vacancy
formation energy for many metals have converged over

the years to a scatter of the order of 0.1 eV or less. Fur-
ther, calculations for bcc metals suggest that energies of
relaxation around the vacancy appear to be also 0.1 eV or
less. Thus a is determined for metals so that the energy
to form a rigid or unrelaxed vacancy is equal to the ex-
perimental value.

For metals, the electrons are very capable of
strengthening remaining bonds when some are broken.
For example, if there were no bond strengthening, the va-
cancy formation energy would be precisely equal to the
cohesive energy. Table II shows that for metals the va-
cancy formation energy is roughly in the range of —,

' ——,
' of

the cohesive energy. For semiconductors (see, e.g. , Ref.
24), and organic compounds, ' bond additivity can be
rather accurate if only one or perhaps two bonds per
atom are broken. This is fortunate because relaxation
around a vacancy in, say, Si or diamond, can be rather
complex, involving Jahn-Teller distortions, a significant
complication. Results of first-principles calculations of
vacancy-formation energies in Si cover the relatively
broad range of 3.6-S.O eV. Here we take advantage of
bond additivity and assume that the energy to form a rig-
id or unrelaxed vacancy in Si, Ge, or diamond is equal to
the respective cohesive energy. Since we then have a for-
mation energy associated with known atomic positions,
we can straightforwardly compute n for these materials
in a manner consistent with the way we determined a for
metals. The resultant a values are shown in Table I. We
will see in Sec. III that this approach leads to accurate re-
sults for Si.

The computation of the screening length A, is not neces-
sarily straightforward for anything but simple metals.
For the latter, Pines has found that A, =1.58 A for Na.
For transition metals or semiconductors the Bohm-Pines
free-electron picture is oversimplified, however. For
transition metals and semiconductors one can have direc-
tional electronic charge distributions which do not resem-
ble an isotropic free-electron picture. However, some of
us' have argued that energy curves ought to scale on to a
universal form if the length scale were taken to be pro-
portional to the electronic screening length. In fact, for
transition metals' the cohesive energy curves can be
scaled on to a universal form both via scaling lengths l
[see Eq. (8)], as in Fig. 2, and via screening lengths. The
screening lengths were computed via the Bohm-Pines ex-
pression, taking the free-electron density to be the corn-
puted interstitial electron density as suggested by Moruz-
zi, Janak, and Williams. Such screening lengths are at
best approximate for transition metals. Perhaps one can
obtain more accurate screening lengths by noting that if
both screening lengths A, and scaling lengths I can scale
the energy relation into a universal form, then A, and I
must be proportional. That is,

A, =A.N, (l/lN, ) =2.81/,

where we have taken the Bohm-Pines value for A,N, and
the computed value for lN, . Screening lengths A, from
Eq. (45) are tabulated for simple and transition metals as
well as semiconductors in Table I.

As stated above and shown in Eq. (26), atoms that are
at second-neighbor distances and further have their per-
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turbation terms multiplied by the screening factor
e' ' ' . This takes into account the enhanced screening
due to a full cage of nearest neighbors, which has been
seen in first-principles calculations (see Fig. 1, Ref. 21).
One could rightly argue that since the nearest-neighbor
movements are screened, the second-neighbor screening
enhancement factor would be too strong if it involved the
full screening length A, . However, since a is determined
empirically via Eq. (26) to give the experimental vacancy
formation energy, then presumably the resultant a will be
appropriately adjusted. The important point is that rela-
tive screening lengths of the different solids are correctly
represented by a combination of Eqs. (26) and (45).

Finally, while Eq. (26) has general applicability, one
can envision the possibility of enhanced screening for
some nearest neighbors as well. This is an exception
which generally one would not have to be concerned
with, but one must be aware of the possibility. Consider
a metal surface. There the screening tends to be planar
and surface eff'ects screen rapidly with depth into the
metal, with surface screening lengths of the order of 0.5
A. If a crystal were cleaved to produce a high-index
plane, it is possible for a plane of atoms deeper than the
surface plane to be missing nearest neighbors. In this
case even nearest-neighbor removal could be screened out
and should be treated in Eq. (26) with the enhanced
screening factor e' ' ' . The only example of this that
we found in Sec. III was for the fcc (110) surface. There
the second layer is missing a nearest neighbor, and so for
that layer the term N, R~ e " in Eq. (26) should be re-
placed by

(N, —1)R~ e "+R~ e ' +' 'R

This is a small change [8% decrease of the surface energy
of Cu(110)], but is technically more correct. For the
lower-index metal surfaces and the semiconductor (100)
or (111) surfaces, the second layer is not missing any
nearest neighbors, and so Eq. (26) applies as written.
Equation (26) is unaltered in application to point defects
as well, because there the screening charge decays essen-
tially radially, completely consistent with the form of the
equation.

age bond length does not change to first order in these de-
formations. For the same reason, Eq. (30) does not con-
tribute to these elastic constants for metals.

Thus for metals, from Eqs. (20) and (21),

c~= ( b E/Qo) g [Ba 3 (i j,k) /Be„~]z
j,k

+ g [Ba& (i,p, q)/Be„]o
p~q

(46)

where the subscript 0 refers to the ground-state crystal,
Qo is the volume per atom, and e„~is the strain associated
with c44. Similarly, for metals

c„—c,2=(bE/2Q0) g [Ba3 (i,j,k)/Bg]0
j,k

+ g [t}a4 (i,p, q)/Bg]o, (47)

where f is the strain associated with c» —c,z. Combin-
ing Eqs. (22), (39), (40), (46), and (47), we find for fcc met-
als,

A3/D =(1/6&3)Q(c, )
—c,2 )/8 (48)

A~/D = ,'Qc~/—8 (49)

A~/D =(1/3&2)+c~/8 —(c» —c&2)/98 (51)

For semiconductors, the bond-length anisotropy term can
be computed as if the bonds were independent, as dis-
cussed earlier. Thus that term can contribute to both
shear elastic constants in semiconductors:

Note that in the case of fcc metals, c44 is determined en-
tirely by the bond-angle term and c

&&

—c &z depends only
on the face diagonal term.

For bcc metals,

A3/D =( I/2&2)Q(c„—c,~)/98

6. Analytic determination of A3 and A4

It remains to specify the constants A3 and A4. This
will now be done. While equivalent-crystal theory is an
atomistic method which, as we will see later, can be ap-
plied to short-range, local defects, continuum elasticity
theory typically is limited to longer-range, more slowly
varying defects. It is valuable to make a quantitative
connection between the two theories, so that equivalent-
crystal results might be consistent with continuum results
in the appropriate limits. It is with this in mind that we
determine A3 and A4 so that there is exact agreement
with the experimental elastic constants c44 and c

&&

—c &2.

As noted above Eq. (26), F*[a
& (i)] makes no contribu-

tion to the shear elastic constants c~ and c» —
c&2 of

both cubic metals and semiconductors, because the aver-

c44 = (bE /Qo) g [Ba2 (i,j)/Be„]0

+ g[Ba3 (i j,k)/Be„]0
j,k

+ g[Ba~ (i,p, q)lr}e„~]z

Similarly,

c„—c,2=(bE/2QO) g [Ba2 (i,j)/Bg]0

+ g[Ba 3 (i,j,k)/Bg]0
j,k

+ g[Ba4 (i,p, q) lt}g]0

(52)

(53)
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The diamond structure is a bit more challenging, be-
cause of the possibility of internal strain. ' ' In the case
of c44 shear, the energy can be lowered by relieving
length anisotropy at the expense of bond-angle anisotro-
py. This is done by one fcc sublattice displacing relative
to the other in the z direction by ge ~a/4, where a is the
lattice constant. The internal displacement parameter g
is varied until the c44 strain energy is a minimum. The
results are

E;=hE F [a1(i)]+QF*[a2 (i j)]

+g F*[a3 (i j,k)]++F*[af (i,p, q)]

where [Eqs. (21) and (22)]

(57)

A 3 /D =
—,
' Q ( c 1 1

—c,2 ) /9B

A~/D = ,' [c«—/B—4( —,'+g) (c, 1
—c,2)/9B

(54)

and

F*[a']=1—(1+a*)e (58)

( 1 g)2]1/2 (55)
a*=(Rec/c "wsE)/i .

a1 is determined by Eq. (26):

(59)

g=(t2 —u')/(t'+2u'), (56)

F. Working equation summary

where t = (aA2/D—) /2 and u = —", (A3/D) .
Resultant values of A3 and A4 are listed in Table I for

the bcc, fcc, and diamond lattices. We will see in Sec. III
(Table VIII), that our computed values of g are in good
agreement with experiment.

N)R~ e
—aR —(a+1/A, )c&R

ec
—aR.

Rjt'e
defect NN

—(a+ irz)R.
R~e 1 —PJ

defect NNN

(60)

in combination with Eq. (59), where i, p, A, , and a can be
found in Table I [see also Eqs. (28) and (45)]. Similarly,
a2 is determined by Eq. (29):

It is important when a method is being introduced to
derive the working equations and to discuss the physics
behind the method, as we have attempted to provide in
the preceding sections. This can tend to obscure the ac-
tual working equations and perhaps make the method ap-
pear to be more cumbersome than it really is. Thus in
this section we gather together the equations one needs to
solve for a typical problem. Most of these equations are
written as they appeared in the preceding text, and hope-
fully it will be helpful to have them all together.

The example that we choose is cubic semiconductors
such as Si, Ge, or diamond. One should preferably call
diamond an insulator. We consider the common case
where neighbors fall neatly into nearest- and next-
nearest-neighbor categories. For the more general case,
see Sec. II E 3. Equations for fcc and bcc metals are very
similar to the following, and can be found in Sec. II E.

The defect or surface formation energy c& is given by
Eq. (20):

aA2!D =2/&3,
where D is given by Eq. (35):

D =N, e '(aRO —p),

(62)

(63)

and a is the lattice constant.
a 3 can be computed from Eq. (39):

(64)

and a4 from Eq. (40):

+ A2R~()(R —R(1)e ' ' =0, (61)

where A2 can be read from Table I or computed from
Eq. (34):

(65)

where A3 and A4 can be found in Table I or computed
from Eqs. (54)—(56):

l

(60), (61), (64), and (65) are decoupled. Thus one is solv-
ing one equation at a time in one unknown, as noted in
Sec. II E4.

A3/D =
—,'V (c„—c12)/9B (66)

A~/D = ,'+c«/B —4.24(c»——c12)/9B —0.221 . (67)

In Eq. (67) we have inserted the value for the internal dis-
placement parameter /=0. 53 (Table VIII) for Si.

It should be remembered that the working equations

III. RESULTS

In this section we predict a number of defect or surface
properties for metals and semiconductors. A comparison
of the predictions with the results of 6rst-principles cal-
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culations and with experimental results provides a
significant test of the method. We will see that generally
there is excellent agreement with both experimental and
first-principles results.

The experimental input to the method includes the
three bulk elastic constants, the bulk cohesive energy, the
bulk lattice constant, and the vacancy formation energy
(see Table II). No fitting is required to determine the
computed constants (Table I), because each of these
quantities can be predicted analytically by the method, as
shown in the preceding section.

Notice that there is no surface information in the in-
put. This makes the accuracy of predicted surface prop-
erties a good test of the method. There is another reason
why surface defect predictions are a particularly interest-
ing test of the method. The method is based on perturba-
tion theory, where the unperturbed system is a single
crystal. Cleaving a solid to form a surface is a very
strong perturbation indeed. Thus surface calculations
provide a particularly difBcult test for the method.

As the same formulation is used for both semiconduc-
tors and metals, it is of interest to carry out computations
for both classes of solids and compare the accuracy. We
begin with calculations for metal surfaces.

A. Metals

Recently, surface-energy values computed via first-
principles techniques have begun to appear in the litera-
ture and so we will compare our predictions with them.
The surface energy cr follows immediately from Eq. (20):

0 —0 )+02+03+04
where

(6&)

o.&=(bE/A) gF'[a
&
(i)], (69)

oz=(bE/A) QF*[a2(i)], (70)

o3=(bE/A) g F [a3(i,j,k)],
i,j,k

o4=(bE/A ) g F'[ a(4i,p, q)],

(71)

(72)

and A is the surface area. The sum over i includes only
one atom per atomic layer for a (1 X 1) surface structure,
and usually only two to three layers need be included for
metal low-index planes and five to six layers for semicon-
ductors. This makes for a relatively trivial surface-
energy computation.

Results for surface energies of selected fcc and bcc
metals are shown in Table III. Our predictions are
shown in the equivalent-crystal-theory (ECT) columns.
Results are given for rigid or ideal surfaces and, for the
fcc metals, (1X1) planar relaxed surfaces (see Fig. 6).
First note that the relaxation energies are small, typically
5% or less of the surface energy cr Second, the ag. ree-
ment with the first-principles calculations, done with the
local-density approximation (LDA), is good. On average
the ECT and LDA values are within 10%%uo. Predictions
from the embedded atom method for the fcc metals and

Vacuum

12

23

ds4

45

Bulk

FIG. 6. Schematic showing interplanar spacings near the sur-
face.

from the X-body potential method for bcc metals are
shown in the column labeled "other. " These two sem-
iempirical methods are about as simple to apply as ECT.
The predictions of these other methods are 45 —55%%uo

lower than the first-principles values. The reasons for
these relatively large discrepancies are not clear.

It is interesting to corn.pare the relative sizes of 0.
&, u2,

0 3 and 0 4. These are shown in Table IV. The energy 0.,
derives from Eq. (26), the perturbation which depends
only on average neighbor distances. One can see from
Table IV that this term dominates 0.. 0.

z derives from
Eq. (30), i.e., from bond-length anisotropy, o.

3 derives
from Eq. (39), i.e., from bond-angle anisotropy, and o&
derives from Eq. (40), i.e., from face diagonal anisotropy.
while 02& 0.

3 or cr4, none is more than a few percent of
0 i ~ This is the first indication of how small these anisot-
ropy terms can be for metals when there is not recon-
struction. Later we will see that these terms can be rela-
tively larger for reconstructed Si.

Next, we examine the effect of the enhanced second-
neighbor screening. Table V shows rigid surface energies
of Cu computed with A, values in Eq. (26) taken from Eq.
(45) ("screened"), with A, = Oo ("unscreened"), and in the
nearest-neighbor approximation. One can see that the
ordering according to crystal face of the unscreening sur-
face energies is different from that of the screened ener-
gies. In particular, the unscreened Cu(100) surface ener-

gy is 27% lower than the screened value. Thus enhanced
second-neighbor screening is certainly an important effect
here. Comparison with the nearest-neighbor results
shows that the latter are close to the screened results.
This is evidence that the second-neighbor screening
significantly weakens second-neighbor effects in defects
and surfaces.

Now let us consider a somewhat more dificult prob-
lem, the (1 X 1) or planar relaxation of the fcc metal sur-
faces of Cu, Ni, Ag, and Al. These metals are known to
relax in that fashion. In this calculation the movements
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Crystal
face

ECT
relaxed

ECT
r1gld

LDA
11gldElement Other

1170
128Ob

14OOb

(111)
(100)
(110)

2100'
2300'

1780
2320
2210

CU 1830
2380
2270

62ob

705
770

(111)
(1oo)
(110)

1230
1600
1510

Ag 1270
1630
1540

1650'

14SOb

1S8Ob

1730

(111)
(100)
(110)

2320
3040
2910

2400
3120
2980

3050'

(111)
(100)
(11o)

Al 860
1220
1230

920
1290
1310 11OO"

(110)
(100)

1820
3490

Fe
3100' 1693'

(110)
(100)

3330
5880 S2OO' 2926'

'Reference 35.
Reference 34.

'Reference 36.
Reference 37.

'Reference 3.
'Reference 38 ~

TABLE IV. Energy components of relaxed surface energies, in erg/cm, for some selected metals.
The components are defined in Eqs. (68)—(72), and correspond to successive terms in Eq. (20) as well.

Crystal
faceElement 03

CU (111)
(100)
(110)

1753.9
2297.1

2190.2

20.9
22.6
23.7

0.0
1.9
0.2

1.4
0.0
0.6

Ag (111)
(100)
(110)

1219.5
1581.1
1496.2

12.4
13.4
12.2

0.0
1.0
0.1

0.7
0.0
0.2

(111)
(100)
(110)

2293.0
3007.6
2875.0

26.9
28.9
28.9

0.0
4.1

0.3

2.2
0.0
0.9

Al (111)
(1oo)
(110)

841.2
1186.8
1201.3

20.6
26.1

28.3

0.0
3.9
0.3

1.0
0.0
0.5

TABLE III. Surface energies, in erg/cm, are computed for some selected metals. Energies are com-
puted in both a "rigid" configuration, in which the surface atoms are held in the same relative locations
they would have had in the bulk, and a "relaxed" configuration, in which the atoms are allowed to relax
to minimize the total energy. Equivalent-crystal-theory (ECT) predictions are compared with results of
first-principles calculations within the local-density approximation (LDA). ECT predictions are round-
ed to the nearest 10 erg/cm .
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Crystal
face

(111)
(100)
(110)

Screened

1830
2380
2270

Unscreened

1790
1740
2100

Nearest
neighbor

1820
2380
2270

TABLE V. Eftect of second-neighbor screening on rigid sur-
face energies of Cu. The results labeled "screened" are comput-
ed with X values in Eq. (26) taken from Eq. (45) (as listed in
Table I). Those labeled "unscreened" are computed with
1/A, =O. For comparison, nearest-neighbor-only results are list-
ed. Predictions are rounded to the nearest 10 erg/cm .

of the planes are coupled through the surface energy o.,
and the equilibrium interplanar separations are those
which minimize 0. See Fig. 6, where the interplanar
spacings are defined schematically. Results are shown in
Table VI. The changes of interplanar spacings are re-
ported as a percentage of the bulk interplanar spacing.
The absolute changes are quite small, being of order 0.1

A or less. The relaxation energies are also small, in the
range of 10—40 meV per surface atom. Thus this is a
difficult test of the theory. Fortunately, accurate experi-
mental results are available for these relaxation percen-
tages. One can see from Table VI that the low-energy

TABLE VI. Percentage changes in interlayer spacing due to relaxation. The embedded-atom-
method (EAM) results are from Ref. 34.

Element

CU(110)

Ad„„+i
Adi2

Ad23

ECT

—7.7%

+3.4%

EAM

—4.9%

+0.2%

Experiment

(—8.5+0.6)%
(—7.5+ 1.5)%%uo

(+2.3+0.8)%
(+2.5+1.5)%

Technique
(reference}

LEED(39)
Ion scattering(40)

LEED(39)
Ion scattering(40)

Cu(100) hd I2

Ad23

—3.7%

+ 1.9%

—1.4%%uo

—0.3%

( —2.1+1.7)%
( —1.1+0.4)%

(+0.45+1.7)%
{+1.7+0.6)%

LEED(41)
LEED(42)
LEED(41}
LEED(42)

Cu(111) hd)2
Ad23

—3.1%
+ 1.9%

—1.40%
—0.05%

( —0.7+0.5)% LEED(43)

Ag(110) Ad)2

hd23

—6.0%%uo

+2.8%

—5.7%

+0.3%

—5.7%%uo

( —7.8+2.5)%
+2.2%

(+4.3+2.5)%

LEED(42)
Ion scattering(44)

LEED(42)
Ion scattering(44)

Ag(100) hdi2
hd23

—3.0%
+ 1.7%

—1.90%
—0.05%

Ag(111) hd)2
Ad23

—2.5%%uo

+ 1.6%
—1.30%%uo

—0.04%

Ni(110)

Ni(100)

Ni(111)

Al{110)

hdi2

hd23

hd)2
hd23

Adi2
hd23

b,di2

hd23

—7.6%

+3.4%

—3.7%%uo

+2.0%

—3.1%
+ 1.9%

—10.4%

+4.7%

—4.87%

+0.57%

—0.002%
—0.001%

—0.05%
+0.00%

—10.4%

+ 3.1%

( —8.7+0.5)%
( —9.0+ 1.0)%
(+3.0+0.6)%%uo

(+3.5+1.5)%

( —3.2+0.5)%

( —1.2+ 1.2)%%uo

{—8.6+0.8)%
( —8.5+ 1.0)%
(+5.0+1.1)%
(+5.5+1.1)%

LEED{45)
Ion scattering(46)

LEED(45)
Ion scattering(46)

Ion scattering(47)

LEED(48)

LEED(49)
LEED(50)
LEED(49}
LEED(50)

Al(100)

Al(111)

Adi2
Ad23

Adi2
Ad23

—4.9%%uo

+ 1.8%%uo

—3.9%%uo

+2.5%%uo

{+0.9+0.7)% LEED(51)
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electron diffraction (LEED) and ion scattering results are
in good agreement with each other. Next compare the
ECT predictions with the experimental results. One can
see that the theoretical predictions are typically within
experimental error bars, often within 0.01 A of experi-
ment. This is surprisingly good accuracy. It would seem
to be as good or better as one should expect from first-
principles calculations, but the effort to perform the ECT
calculation is relatively trivial. Also included in Table VI
are embedded-atom-method (EAM) predictions. One can
see that the EAM predictions are substantially smaller
than experiment, particularly for Ad23 in every case and
for both Ad, 2 and Ad 23 for Ni. Reasons for such
differences are not evident.

It is interesting to examine the relative contributions of
0 $ 0 2 0 3 and o.

4 to final or equilibrium values of the
interplanar spacing. Values of Ad&2 are listed in Table
VII for inclusion of all four terms 0 i

o.
z and o.

3 only
( A 4 =0), cr „oz, and cr 4 only ( A 3

=0), and cr „o3 and cr4

only (32=0). Comparing the results using all terms
with those having 34=0 and 33=0 shows that angular
and face diagonal anisotropies play a very weak role in
planar relaxations on these metals. This is consistent
with the surface energy results of Table IV. The results
listed in Table VII for 32=0 tell quite a different story
from the corresponding results of Table IV, however.
While the bond-length anisotropy term makes only a
small contribution to the surface energy, it is very impor-
tant to the equilibrium interatomic distances. Surface re-
laxations are, after all, highly anisotropic. Since a surface
atom is missing nearest neighbors, its a, (i) &0. That is,
the equivalent-crystal lattice constant of the lowest-order
perturbation term lies to the right of the minimum of the
universal energy relation, Fig. 2. Since F*[a& (i)] de-
pends only on average neighbor distances through Eq.

(26), it is as if a surface atom were seeing a lowered neigh-
bor density. To lower the energy via this first term, the
system wants a& (i) to decrease toward 0, i.e., to move
left toward the minimum in Fig. 2. This is accomplished
by the surface layer moving toward the second layer, so
that the neighbor density around the surface atoms is in-
creased. In the process, however, some nearest-neighbor
distances become &Ro, even while the average nearest-
neighbor distance is & Ro. This is how the bond-length
anisotropy is manifested. The reason I'"*ra& (i,j,k)] con-
tributes so little to the energy and yet so strongly to the
spacing can be found in the form of Eq. (30). The form in
that equation causes the bond-length anisotropy energy
to rise rapidly with a decrease in R for R (Ro. Physical-
ly this is due to the large forces required to compress
solid bonds below bulk nearest-neighbor distances. These
large forces do not allow the interatomic distances to
change very much (see Table VI), and so the associated
energy change is very small. If one were to ignore these
large forces, Table VII shows that the spacing changes
would be much too large.

8. Semiconductors

In many ways, semiconductors with their more direc-
tional bonds and filled bands are quite different form met-
als. Despite that, we are attempting to have a single
method which applies to both classes of materials. The
presumptions are at least twofold. First, it is presumed
that many properties of metals and semiconductors are
similar. Second, it is hoped that differences will be mani-
fested in different relative contributions of the four terms
of Eq. (20).

One of the clear differences between, say, fcc or bcc
metals and diamond structure semiconductors is found in

TABLE VII. Energy component eFects on relaxation of interlayer spacings. The energy is relaxed
by varying Ad» and hd» simultaneously with A& =0, A3 =0, and 32 =0, respectively, and with the
other A values taken from Table I. Equilibrium results for Ad» are listed. The hd, ~ listed under
"All" are computed with all of the energy components included, i.e., with all 32, A3, and 24. values
taken from Table I.

Element
Crystal

face

(111)
(100)
(110)

All

—3.1%
—3.7%
—7.7%

—3.1%
—3.7%%uo

—7.7%

—3.1%
—4.0%%uo

—7.7%

—24.0%
—22.0%
—60.0%

(111)
(100)
(110)

—2.5%
—3.0%
—6.0%

—2.5%
—3.0%
—6.1%

—1.6%
—3.0%
—6.1%

—27.0%
—19.0%
—53.0%%uo

(111)
(100)
(110)

—3.1%
—3.7%
—7.6%

—3.1%
—3.7%
—7.6%

—3.1%
—4.0%
—7.6%%uo

—23.0%%uo

—17.0%%uo

—58.0%

(111)
(100)
(110)

—3.9%
—4.9%

—10.4%

—4.0%
—4.9%

—10.4%%uo

—3.9%%uo—5.0%
—10.6%

—39.0%
—22.0%
—89.0%
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TABLE VIII. Internal displacement parameter g. Experi-
mental values were taken from Refs. 52 and 53. The first-
principles values (labeled LDA) were taken from Ref. 54.

Element

C
Si
Ge

ECT

0.27
0.53
0.52

LDA

0.53
0.44

Experiment

0.74
0.72

c«shear, as discussed below Eq. (53) in Sec. II. In that
shear mode, diamond structure crystals can partly relieve
the strain by displacernent of one fcc sublattice relative to
the other in the z direction by ge„a/4, where e,~a /4 is
the usual shear strain. As discussed in Sec. II, we com-
puted the internal strain parameter g from the require-
rnent that it minimize the shear strain energy. An analyt-
ic expression for g resulted, which is given in Eq. (56).
We found (=0.27 for diamond, (=0.53 for Si, and
/=0. 52 for Ge. The internal strain parameter g can be
measured via x-ray di6'raction ' for two of the three
nonmetallic materials treated here, Si and Ge. There is
as yet no experimental value for diamond because, as ex-
plained in Ref. 52, reAection intensities are weak. The
experimental results are compared with our predictions
in Table VIII. One can see that the agreement is good.
A first-principles calculation has yielded (=0.53 for Si
and (=0.44 for Ge, somewhat lower than the experimen-
tal values. That our predicted value for diamond is
significantly smaller than those for Si and Ge is consistent
with earlier predictions. The semiernpirical approach
of Ref. 16 yielded /=0. 74 for Si and (=0.71 for Ge, in
good agreement with experiment.

Next let us consider the Si(100) surface. Although this
surface is known to reconstruct, it is nevertheless of in-
terest to first compute changes in interlayer spacings for
(1 X 1) relaxations because there are first-principles re-
sults to compare with. Predicted percentage changes in
interlayer spacings are presented in Table IX. For
Si(100), the ECT value of b.d, z compares well with the
first-principles result of Ref. 24. However, the latter au-
thors show a small compression of d23 while we find a
small expansion. Next we present results for surface en-
ergies of ideal (rigid) and (1 X 1) relaxed Si(100). Results
of our predictions can be found in Table X. One can see
there is close agreement between the ECT predictions
and the first-principles values from Ref. 24. On the other
hand, the predicted values from Ref. 16 are substantially
too low. Also the ideal (1 X 1) relaxation energy is an or-

TABLE IX. Calculated percentage changes in interlayer
spacings for (1 X 1) relaxations of Si(100).

Surface

Si(100)

Ad„„+,
Ad(2
Ad»

ECT

—5 ~ 1%
+0.2%

Ref. 24

—5.0%
—2.0%%uo

der of magnitude larger than computed here or in Ref.
24.

There have been many investigations of Si(100) recon-
struction. ' While a number of models have been pro-
posed, recent scanning tunneling microscopy (STM) mea-
surements have made a definitive identification of the
surface structure. The STM images revealed a dimer
type of reconstruction. The authors concluded that at
room temperature the time-averaged configuration for
the dimers is symmetric, although the dimers may be
dynamically buckling about this equilibrium
configuration on a time scale which is short compared to
the STM measurement time. The symmetric dimer
configuration is consistent with the first-principles results
of Pandey. As shown in Figs. 7 and 8, the symmetric
dimer reconstruction involves substantial atomic dis-
placements as deep as five atomic layers from the surface.
We will see that the corresponding surface energy change
is also large.

Qur ECT calculation of the Si(100) dimer reconstruc-
tion required that 14 atomic coordinates be varied in-
dependently to minimize the total energy. This neverthe-
less was a fairly modest calculation which was easily car-
ried out on a personal computer. Consistent with recent
experimental and theoretical results, we find the sym-
metric dimer to have a lower energy than the asymmetric
dimer, at least for a (2X 1) configuration. The total ener-

gy versus syrnrnetric dimer atomic spacing is shown in
Fig. 7. The surface energy of the ideal (rigid) surface is
indicated by the triangle, while that of the relaxed (1 X 1)
surface is given by the circle. The energy of the (2X1)
reconstructed surface is denoted by the square. These en-
ergies are also listed in Table X in the column under
ECT. Figure 7 shows graphically that most of the energy
drop is due to the reconstruction as opposed to the
(1X1) relaxation, consistent with the first-principles re-
sults. ' ' The dimer spacing at the minimum is 2.31
A, slightly smaller than the bulk nearest-neighbor dis-
tance of 2.35 A. At each spacing, the total energy is min-
irnized by relaxing atomic positions in the top five atomic
layers. One can see that the energy curve basically con-

TABLE X. Si(100) surface energies in erg/cm . The values in parentheses are in eV per surface
atom. The (2X 1) values are for symmetric dimer formation. For Refs. 58 and 59, they are computed
by subtracting the relaxation energies reported in those references from the ideal surface energy of Ref.
24 (shown below). The ideal surface energy means the same thing as the rigid surface energy of Table I,
i.e., unrelaxed.

Surface

Ideal
{1X1)
(2X1)

ECT

2850(2.63)
2820(2.59)
1550(1.42)

Ref. 24

2740(2.50)
2690(2.47)

Ref. 58

1590(1.47)

Ref. 59

1610(1.49)

Ref. 16

2390(2.21)
1970(1.81)
1910(1.76)
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FIG. 8. Side view of atomic displacements for (2X 1) recon-

struction of Si(100). The displacements are in A.

FIG. 7. Total energy vs symmetric-dimer-atomic spacing.
For each spacing, the total energy is minimized by relaxing
atomic positions in the top 6ve atomic layers. The triangle indi-
cates the surface energy of the (1 X 1) unrelaxed surface, which
is 2850 erg/cm2 (2.63 eV/atom). The open circle shows the sur-
face energy of the planar-relaxed {1 X 1) surface, which is 2820
erg/cm (2.59 eV/atom). The minimum in the energy curve is
indicated by the open box, which is the (2 X 1) relaxed surface at
a surface energy of 1550 erg/cm (1.42 eV/atom). The dimer in-

0
teratomic separation at the minimum is 2.31 A, slightly smaller
than the bulk nearest-neighbor distance of 2.35 A. We found
that if we removed the symmetric dimer constraint the equilibri-
urn (2X 1) energy and spacing was unchanged.

tains one relatively deep well.
The energy of the (2X1) reconstructed surface com-

puted via ECT is compared with the results of other cal-
culations in Table X. The surface energies from Refs. 58
and S9 were obtained by subtracting the dimer recon-
struction energies reported in those references from the
ideal surface energy reported in Ref. 24. One can see that
there is good agreement between the ECT energy for the
(2X1) surface and the first-principles values of Ref. 58
and 59. Again the equivalent-crystal method. exhibits rel-
atively high accuracy, despite being considerably simpler
than the 6rst-principles methods. As mentioned earlier,

the method of Ref. 16 has an ease of application similar
to ECT. The (2X1) energy prediction from Ref. 16
shown in Table X is somewhat larger than all of the other
predictions.

Next let us examine the relative contributions of o.
&,

o.z, o.3, and o4 to the surface energy o. of reconstructed
Si(100). The results are listed in Table XI. These can be
compared with the planar relaxation results for metals
listed in Table IV. In the cases of planar relaxations of
metals discussed earlier, we found that contributions to
the surface energy due to bond-length, face diagonal, and
bond-angle anisotropies were quite small, although
bond-length anisotropy contributed importantly to equi-
librium interplanar spacings. We found in the case of Si
reconstruction that bond-length anisotropy was again im-
portant to the computation of equilibrium interatomic
separations, even though o.

2 was relatively small. This, as
in metals, is primarily due to a large force contribution in
compression from bond-length anisotropy, which keeps
equilibrium bond lengths close to bulk nearest-neighbor
distances and thereby keeps o.

2 relatively small. Also as
in the case of metals, o

&
provides the largest component

of the surface energy. One obvious difFerence between
Tables IV and XI is the much larger contribution of the
bond-angle anisotropy term o.

3 and the face diagonal
term o& in the case of Si. Generally bond-angle effects
are thought to be more important in semiconductors than

TABLE XI. Surface energy components of Si(100) after reconstruction in erg/cm . The values in

parentheses are in eV per surface atom. Layer 1 is the surface atomic layer.

Layer

1125.1(1.035)
0.16(0.0)
14.9(0.0137)
5.8(0.005)

0.11(0.0)
0.0(0.0)
o.o(o.o)

13.0(O.O12)
13.9(0.013)
7.8(0.0073)
5.8(0.005)

8.35(0.008)
0.0(0.0)
0.0(0.0)

03

0.0(0.0)
282.1(0.260)

24.3(0.023)
6.1(0.006)

0.23(0.0)
o.o(o.o)
0.0(0.0)

0.0(0.0)
36.6(0.034)

1.9(0.0018)
0.013(0.0)
0.57(0.0)
0.0(0.0)
0.0(0.0)

Layer
sum

1138.2{1.045)
332.8(0.306)
49.1{0.046)
17.7(0.016)
9.3(0.009)

0.08(0.0)
0.0(0.0)

Totals 1146.2(1.05) 49.0(0.045) 311.8(0.287) 38.9(0.036) 1545.8(1.422)
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TABLE XII. Calculated atomic displacements for recon-
struction of Si(100). The ideal Si(100) surface undergoes a
symmetric-dimer reconstruction to form the (2X1) surface.

0
Displacements are in A. See Fig. 8 for a plot of displacements.

Layer ECT Ref. 60

+0.763
+0.105
+0.0
+0.0
+0.0
+0.0
—0.006
—0.006

—0.225
+0.074
+0.092
—0.091
+0.059
—0.053
—0.002
—0.002

+0.695
+0.119
+0.0
+0.0
+0.0
+0.0
—0.033

—0.092
+0.005
+0.130
—0.130
+0.076
—0.076
+0.0

in metals, so this is not surprising. After all, the diamond
structure of these semiconductors is due in part to direc-
tional bonding. As there are —,

' as many nearest neighbors
in the diamond structure as in the fcc structure, in a
sense there is more room in the diamond structure for
reconstructions that could involve relatively larger
changes in bond angles, leading to relatively larger o.

3

and o.4 contributions. One must reserve judgment on
comparisons of metal and semiconductor surface energet-
ics until similar calculations have been carried out for a
metal where there is surface reconstruction. For such
metallic reconstructions, o.

3 may be significant.
Another potential diff'erence between Si(100) recon-

struction and the planar relaxations of metals is seen by
comparing Tables XI and VI. In Table VI only hd &z and
Ad23 values are listed because movements of deeper lay-
ers are much smaller. It is clear from Table XI, however,
that the surface disturbance runs somewhat deeper for
Si(100) reconstruction. Table XII exhibits computed
atomic displacements for Si(100). The same displace-
ments are plotted in Fig. 8. The coordinate z is taken
perpendicular to the surface. These are compared in
Table XII with the first-principles computations of Ref.
27. The agreement is reasonable, despite the relative sim-
plicity of our method.

IV. SUMMARY

Our goal has been to provide a method with which
physicists and materials scientists might treat real materi-
al defects and surfaces accurately at the atomic level.
The method has to be sufticiently simple to apply that
surfaces and other low-symmetry defects often encoun-
tered can be treated with modern computers. The simpli-
city offers the advantage that the physics becomes trans-
parent, but it is dificult to have both simplicity and accu-
racy. We also would like to have a method which treats
both semiconductors and metals on the same footing, so
that differences in properties of these classes of materials
are not method dependent.

Our approach has been to treat the solid defect as a
perturbation on a single crystal. This provides us with an
exact framework to guide our approximations. To mini-
mize the size of the perturbation and hence the number

The authors would like to acknowledge with thanks
useful conversations with Dr. Jan Herbst, Dr. John Lar-
son, Dr. Walter Kohn, Dr. Stephen Harris, Dr. David
Srolovitz, and Dr. Tao Hong.

APPENDIX

It is useful to have an analytic expression for the force
on an atom as a function of the coordinates of its neigh-
bors. This facilitates molecular-dynamics calculations
and also can guide the search for energy minima in static
applications. The force F on atom I is

F = —V c, (A1)

where E is given by Eqs. (5) and (20). In the following, we
provide the x component of the force, F". F~ and F'
are obtained by replacing x with y or z, respectively,

+ g Bf (i,j,k)/Bx
j, k

+ g Bf4(i,p, q)/Bx (A2)

where

of terms in the perturbation series required, we carry out
the perturbation on a crystal whose lattice constant is
different from that of the ground-state crystal. In fact we
adjust that lattice constant until the perturbation sums to
zero. In that case the energy of an atom in the crystal is
equal to the energy of the defect atom it represents. We
call the crystal at that lattice constant an equivalent crys-
tal. The energy of the crystal as a function of lattice con-
stant is analytically represented by the universal energy
relation. This leads to a particularly simple method, in-
volving one equation and one unknown. The one un-
known is the equivalent-crystal lattice constant and the
one equation is the perturbation sum equal to zero.

The exact perturbation sum is in fact quite complicat-
ed, however. We simplify it into four types of terms.
The first term depends only on average neighbor dis-
tances, and so is akin to a "volume" term. The second
term depends on bond-length anisotropies, while the
third term is a function of bond-angle anisotropies. The
fourth term is a function of face diagonal anisotropies.
These four types of terms are simple and they display the
physics readily.

We carried out a number of applications of the method
to metallic and semiconductor surfaces and defects. Sur-
faces are a severe test of a method based on perturbation
of a single crystal. Surface and defect formation energies
and atomic locations are predicted accurately on compar-
ison with first-principles and experimental results.

Thus this method appears to be quite promising. A
number of other applications are in progress, including
extensions of the method to treat both alloys and impuri-
ties.
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Bf, (i)IBx =a*, (i)e ' t)a f (i)/t)x

Bfz(i)/t)x =a2 (i)e ' t)az (i)/Bx

Bf3(i,j,k)/Bx =a3 (i,j,k)e

(A3)

(A4)

For i =m,

c)az (m)/Bx =[A2R~~/cN&lg(R„)]

X gh(R, )(x —x, ),
J

(A12)

and

X Ba * (i,j,k) /Bx (A5)
where

h(R)=e ' [1—13(R —R, )]/R .

For i W m, but m a nearest neighbor to i,

(A13)

Bf&(i,p, q)/dx =a 4 (i,p, q)e

Xt)a~ (i,p, q)!dx (A6)
t)az (i)/tlx =[A 2Rg/ cN, lg(R„)]h(R )(x —x;) .

(A14)
Equations (A3) —(A6) follow immediately from Eq. (21).
We are assuming a metal for the bond-length anisotropy
term, Eq. (A4). The result for a semiconductor follows
similarly. Note that each force term is zero at equilibri-
um [a ~

(i)=0, a2 (i)=0, a3 (i,j,k)=0, and
a4 (i,p, q)=0]. It remains to specify the partial deriva-
tives on the right-hand side of Eqs. (A3) —(A6). These fol-
low from Eq. (22),

Ba*/Bx =(1/cl)M„/t)x, (A7)

and Eqs. (26), (30), (39), and (40). First, we compute
t)a &* (i ) /Bx from Eq. (26).

For i =m,

aa *, (i) Iax = (1/clN, )

X g [g(Rk)/g(R„)](x, xk )/Rk, —
k

(A8)

and for imam (but a nearest neighbor),

t) cos8iI, /Bx = (1/R Rk )[2x, —(x~ +xk ) ]

+[(xk —x;)/Rk+(x —x, )/R ]

For j =m,

X cosO~k (A16)

c) cos8 k /Bx = (1/R Rk )( k
—x; )

For Eqs. (A12) and (A14), R„is the solution of Eq. (30).
Next, we compute t)a3 (i,p, q)/dx from Eq. (39):

Ba 3 ( i,j,k) /Bx = —[ A 3R ~~ /cN, lg (R„)]
X (d, cot8.k —d2)t) cos8J„/Bx

(A15)

where d „d2are —
—,', —2v'2/3 for bcc; 0, —1 for fcc; and

—,', —2&2/3 for diamond structures, and R„is the solu-
tion of Eq. (39).

For i =m,

c)a*, (i)Idx =(1/clN, )[g(R )/g(R„)] +[(x;—x )/R~ ]cos8ik, (A17)

where

X(x —x;)/R (A9) and similarly for k =m.
If m Wi, j, or k, then

g(R) =R~ 'e (p —aR ), (A10)
t)a3 (i,j,k)/Bx =0 . (A18)

and R„is the solution of Eq. (26) for atom i. Equations
(A8) and (A9) follow from differentiating Eq. (26) with
respect to x, keeping only nearest neighbors in this ap-
proximation.

If m Qi or a nearest neighbor to i, then
X(x —xk )/~R —Rk ~, (A19)

Finally, we compute Ba4 (i,p, q) IBx from Eq. (40). This
force is nonzero only when m is nearest neighbor to atom
i. Thus, e.g. , it is zero when m =i:

Ba4 (i,p, q)/t)x = —[A4R~o/dcNtlg(R„)]

aa*(i)/ax =0.
Next, we compute Ba2 (i)/t)x from Eq. (30).

(A 1 1)
where atom k is at an opposite corner of a cube face from
atom m and R„is a solution of Eq. (40).
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