
PHYSICAL REVIE%" B VOLUME 44, NUMBER 12 15 SEPTEMBER 1991-II

Validity of the dielectric approximation in describing electron-energy-loss spectra
of surface and interface phonons in thin films of ionic crystals
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The dielectric approximation has proven useful in interpreting experimental data obtained by
electron-energy-loss spectroscopy (EELS) in specular geometry at the surface of a large variety of materi-
als, including artificial (multi)layered systems. This approximation can no longer be applied to very thin
films as the concept of a bulk dielectric function —the only input required in this approach —breaks
down when used for a slab of a few atomic planes. In this paper, a formalism is developed allowing mi-
croscopic calculations of the phonon surface response function relevant to specular EELS in the case of
thin films of ionic materials. Two test cases are analyzed in some detail: CaF2(111) isolated films and
RbF(001) layers on a thick Cxe substrate. EELS spectra are obtained from shell-model, lattice-dynamical
calculations for relaxed films and compared with the predictions of the dielectric approximation. It is
shown that the dielectric approximation reproduces the essential features of the phonon response when

0
the layer thickness exceeds 20—30 A. However, even for films having that thickness, small contributions
of microscopic surface phonons survive and these may not be negligible. It is shown, in particular, that
the S2 surface microscopic phonon of RbF(001) is responsible for doubling the intensity of the loss struc-
ture in the region of the "interface" macroscopic Fuchs-Kliewer phonon predicted by the dielectric ap-
proximation in RbF/Ge.

I. INTRODUCTIQN

The technique of making artificial materials having a
layered structure has progressed considerably during the
past several decades to the point where such multilayered
systems are now produced routinely for (opto)electronic
applications. ' From a fundamental point of view, pro-
ducing epitaxial growth of a film on various crystalline
substr ates in well-controlled experimental conditions
offers the opportunity to investigate interfacial properties
of the coexisting materials. Among these properties, the
phonon structure of an interface is of great current in-
terest. ' High-resolution electron-energy-loss spectrosco-
py (HREELS) is one of several techniques available today
for such investigations. Although primarily a surface-
sensitive technique, HREELS in specular geometry pro-
vides information about the interfacial region when the
thickness of the topmost layer does not exceed the prob-
ing depth, typically 10—50 nm in low-energy experi-
ments.

Coulomb interactions between the impinging electrons
and macroscopic charge oscillations that develop at the
surface of the target are responsible for the so-called di-
polar scattering regime that dominates the EELS spec-
trum in specular geometry. From the theory side, the
quantitative understanding of the dipolar-scattering
mechanism has been available for a long time. ' Within
a purely classical description of the charge oscillations
that develop at the surface or interface, it is found that
the probability for an electron to be inelastically back-
scattered by emission of an excitation of frequency co and
wave vector Q parallel to the surface is proportional to
the imaginary part of the so-called surface dielectric

response function g(Q, co) of the medium. The com-
plete expression of the inelastic cross section also involves
a kinematic prefactor that only depends on experimental
parameters and which presents a sharp maximum at a
wave vector Q =co/v, where v is the electron velocity.
For phonon spectroscopy in low-energy EELS, ~/v is 0.1

nm ' typically, a quantity small compared to the exten-
sion of the first Brillouin zone.

For quantitative comparisons with experimental data,
the classical theory of EELS must be complemented by a
suitable quantum statistical treatment of the surface exci-
tations, which are viewed as quantum-mechanical har-
monic oscillators driven by the Coulomb force exerted by
the probing electrons. ' In the harmonic approximation,
application of the theory for an arbitrary target tempera-
ture only demands the 0-K response function g(Q, co) of
the medium to an external electric field having the form
of a plane wave e'~'~ '"' in directions p parallel to the
surface. Since Q is small, electrostatics is generally
sufticient for providing the target response required for
applications to near-specular EELS. This approach is
known as the dielectric approximation. Expressions of g
deduced from electrostatics are available for a large
variety of systems, including arbitrary plane-stratified
materials. ' Such expressions, which demand the long-
wavelength bulk dielectric functions of the successive lay-
ers, are certainly valid at small Q's when the layer
thicknesses are large on the atomic scale. By contrast,
very thin layers require a microscopic treatment, " since
the use of a bulk dielectric function for the response of a
film composed of a few atomic planes is highly question-
able.

Owing to the relation of the surface dielectric response
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function g to many physical phenomena, ' the determina-
tion of g from microscopic calculations has been the sub-
ject of an already vast theoretical effort. ' How this
problem can be tackled strongly depends upon the kind
of material under investigation and the frequency range
of interest. In the infrared domain, information about
the surface response of phonons to long-wavelength exci-
tations can be gained by evaluating the macroscopic po-
larization they produce. ' An advantage of this ap-
proach is that the macroscopic polarization is a quantity
directly accessible to electronic self-consistent calcula-
tions. ' ' This ab initio technique is particularly well
adapted to elemental semiconductors, III-V compounds,
or s-p bonded metals where pseudopotentials and plane-
wave expressions make the computation feasible.

The phonon structure of ionic insulators can be accu-
rately described by a standard lattice-dynamical model
with parameters fitted to experimental data. In the in-
frared domain, g can be obtained by solving lattice-
dynamical equations in the presence of an external elec-
tric field, ' a point of view that was used in the early
1970s by Jones and Fuchs, who developed a microscopic
theory of the reAection and transmission coef5cients of a
slab using the rigid-ion approximation. ' The present pa-
per is based on a version of the theory of Jones and Fuchs
generalized to a shell model ' but excluding retardation
efFects (negligible in low-energy EELS). The central ques-
tion that is addressed here concerns the minimum layer
thickness required to validate the use of the dielectric ap-
proximation in the interpretation of EELS for phonon ex-
citations and to assess the importance of microscopic
modes for thinner films. The main motivation for this
work is the experimental finding that the dielectric ap-
proximation fails in describing accurately EELS data for
very thin films of CaF2 on Si(111). Let us immediately
note that we are not able to apply our formalism directly
to such an overlayer system for reasons that will be made
clear in Sec II. Nevertheless, the results of microscopic
calculations performed for both CaF2 isolated films and
for a simplified model of an insulating overlayer, namely
RbF(001)Ge, allow us to present a possible interpretation
of the experimental EELS spectra of CaF2/Si(111).

The paper is organized as follows. In Sec. II, a metho-
dology is developed for treating the interactions of a film
with a thick substrate. For the long-wavelength optical
excitations of interest in EELS, the substrate is viewed as
a continuous dielectric medium, whereas the dynamics of
the overlayer is treated using the microscopic approach.
This model, fully consistent with electrostatics in the
treatment of the substrate response, allows us to focus on
layer-thickness effects in the surface dielectric function.
How to deduce the surface dielectric function from either
electrostatics or the microscopic phonon structure of the
film is briefly summarized in Sec. III, technical details be-
ing provided in the Appendix. The results of test calcula-
tions are illustrated and analyzed in Secs. IV and V. We
first consider a self-supported geometry by investigating
the response function of isolated CaF2(111) films. As pre-
viously illustrated' for NaF(001) slabs described within a
rigid-ion approximation (an approach much simpler than
the shell model considered here), the case of an isolated

film already provides an answer to the question we have
raised about the layer thickness. Specific thickness effects
for an overlayer geometry will be examined in Sec. V
where we investigate the surface response function of
RbF(001) films on Ge. Discussion of the results obtained
and conclusions are presented in Sec. VI.

II. SLAB DYNAMICS IN THK OVERLAYER
GEOMETRY

The surface dielectric response of a film on a thick sub-
strate could in principle be obtained by lattice-dynamics
calculations if information were available about the atom-
ic structure and the force constants at the interface be-
tween the two materials. As far as macroscopic optical
phonons are concerned, the intrinsic difFiculty of treating
the perturbation brought about by a surface or an inter-
face on the long-range Coulomb fields introduces a fur-
ther complication that renders Green's-function tech-
niques inadequate in reproducing the long-wavelength
Fuchs-Kliewer surface and interface phonons. ' As
another alternative, representing the substrate by a slab
of finite thickness would require, in principle, a substrate
thickness of the order of the wavelength of the modes of
interest (100—500 A, typically), making the size of the
dynamical matrix exceedingly large.

In view of these difhculties and of our desire to charac-
terize properly the long-wavelength optical response of
the system, we decided not to treat the substrate at the
atomic level but rather consider it as a semi-infinite
dielectric medium. In this semimicroscopic model, there
is no need for a bulk dielectric function of the film: the
surface response of the system is obtained by solving the
dynamical equations for the ions of the film, including the
interactions with their image charges symmetrically lo-
cated with respect to the interface and following instan-
taneously the positions of the source charges. The image
approximation is fully consistent with the macroscopic
approach that works remarkably well when the overlayer
is large enough to validate the use of its bulk dielectric
function. This point of view is also the one adopted in
treating EELS spectroscopy of isolated molecules ab-
sorbed at the surface of a metal. ' In the present prob-
lem we have a crystalline film instead of isolated species,
with strong interactions between the ions in the over-
layer.

Figure I illustrates the positions of the ions and their
images for a film having the NaCl structure with a (001)
interface visualized by the dot-dashed line. The image
charges are screened by the factor P=(e2 —1)/(ez+1)
where e2 denotes the bulk dielectric function of the sub-
strate, which could in principle be frequency dependent.
When we investigate below the static properties of the
model, the static dielectric constant e2(0) will be used.
However, in order to simplify the formulation of the
dynamical properties of the film, P will be assumed con-
stant in the frequency interval of the optical modes. This
approximation is justified for the case of ionic films on in-
trinsic silicon or germanium or on a free-electron metallic
substrate. Notice that several systems of the kind con-
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Fs(I)=P e, ,
4~@0(2ro )

(2.1)

where e, denotes the unit vector along the z direction
normal to the interface and B is the bulk transverse force
constant of the film. The total static force on ion I at the
interface is now

FIG. 1. Static positions of the ions and their images for a film

having the NaC1(001) structure on a semi-infinite dielectric sub-
strate. In this model, the interface with the substrate (dot-
dashed line) acts as a mirror plane. Short-range interactions be-
tween neighboring atoms in the film are schematized by the
solid lines ("bonds" ) in the figure. The dashed lines represent
the "broken bonds" at the interface.

sidered below, namely, insulating layers on Si or Ge, have
a number of potential applications in semiconductor tech-
nology.

Let us first analyze the model displayed in Fig. 1 from
a static point of view and consider a thick film (ideally a
semi-infinite one) on a perfect conductor (/3= 1). Assum-
ing that the image plane (the interface) is located 5/2
below the lowest atomic layer of the semi-infinite crystal,
where 5 is the interplane distance, and ignoring for the
moment any atomic relaxation, the static images for the
particular geometry of Fig. 1 match, both in charges and
in equilibrium position, the charges one would have in
the nonterminated crystal. As a consequence of this
property of the NaC1(001) interface model, the static
Coulomb force on any ion of the film in the presence of
their images is exactly zero as it is in the bulk crystal.
This would no longer be true for another interface orien-
tation in the NaC1 structure nor for, e.g. , a CaF2 lattice
with a (111)interface.

On any bulk NaC1 lattice site, short-range repulsive in-
teraction forces originating from the neighboring ions
also cancel. Restricting for the moment the discussion to
first-neighbor anion-cation short-range interactions, the
repulsive forces in the bulk crystal all have the same am-
plitude, generally expressed in terms of a dimensionless
negative constant B, the so-called transverse force con-
stant, through the expression Be /[4n. EO(2ro) —],
where e is the electron charge, eo is the permittivity of
vacuum, and ro is the equilibrium distance. Close to the
interface, the short-range interactions on the ion I locat-
ed at the lowest atomic layer of Fig. 1 will not compen-
sate each other unless one invokes some repulsive forces
F& with the substrate which exactly restore local equilib-
rium.

For the case of a dielectric substrate with p(1, the
Coulomb image forces are reduced by the factor p. Simi-
larly, the short-range repulsion force F~ will be screened
by the same factor, taking for the ion I in Fig. 1

F(I)=(1—P)a' e, +(1 P)B— e, .(Ze) e

(4ireoro 4+co(2ro)

(2.2)

The first term in this expression is the Madelung contri-
bution, equal to the difference between the Coulomb
forces set up at site I by all the ions of the film and those
originating from the p-screened image in the substrate, a
in Eq. (2.1) being a dimensionless constant that can be
computed numerically with high precision and whose
value for NaC1(001) is a'=0. 29466. The second term in
Eq. (2.2) is the net short-range repulsive force including
the substrate contribution [Eq. (2.1)].

The bulk transverse force constant B can be expressed
in terms of the bulk Madelung constant a~ of the crystal
through the bulk equilibrium condition B+—3a~Z =0,
where Z is the absolute ionic charge in units of e. As a
result, Eq. (2.2) simplifies to

F(I)=(1—P)(a' —a~/6) e, .
(Ze )

4m.coro
(2.3)

This force vanishes identically for p= 1, as already point-
ed out previously for a perfectly conducting substrate.
When P is less than 1, there remains a residual force on
the ion I. This force is actually small because a' in the
present geometry is very close to a~/6=0. 291. Since
the prefactor 1 —p in Eq. (2.3) is smaller than 1, the resid-
ual force on the ions in contact with the substrate in the
present model is always smaller than that one which
would exist at a free surface (p=0). By optimizing the
geometry, such small residual static forces close to the in-
terface can be eliminated, following a relaxation pro-
cedure usually worked out at a free surface.

The static properties of a thin film, for which we are
still using the expression [Eq. (2.1)] for the substrate-
induced repulsive force, are essentially the same as those
derived here above for a thick film. Indeed, for instance,
a' for a three-layer NaC1(001) slab has already converged
up to the sixth decimal place to the value given above for
a semi-infinite film. Let us also point out that Eq. (2.3)
can be generalized to the case where second-neighbor
anion-anion and cation-cation short-range interactions B
and B"are required by the shell-model pararnetrization.

Performing lattice-dynamics calculations in the har-
monic approximation still demands expressions for the
dynamical force constants. The force constants are easy
to derive when expressions of the interaction pair poten-
tials are given in terms of separation distances. Besides,
relaxing the structure, as mentioned above, also requires
expressions of the potentials or the forces. For the
Coulomb contributions, the Coulomb potential is avail-
able. As for the repulsive ion-ion forces, we explicitly as-
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sume the existence of a central, short-range potential
V(r) between neighboring ions, restricting again the
present discussion to anion-cation first-neighbor pairs.
The hypothesis of a central potential is in fact a requisite
to establishing the aforementioned relation between the
transverse force constant 8 and the Madelung constant
aM. With this potential V(r) at hand, taken from the
bulk three-dimensional crystal, we introduce a short-
range repulsive potential with the substrate by consider-
ing that ion I at the interface, with instantaneous position
rz, is moving in the additional potential —,'PV(lrz —rzl)
where rz is the position of the image of I (Fig. 1). As a
justification for this choice, consider small displacements
uz and uz = 2uz of the ion and its image around their
equilibrium positions, where J is the "imaging" diagonal
matrix

&«—zz &+ &&zz )uz
2 J

(2.7)

ZJZze /(4zreorzz ) and the repulsive short-range interac-
tions, which need no longer be restricted to the sole first-
neighbor pairs. The potential energy [Eq. (2.6)], valid for
rigid ions, is easily generalized to deformable ions in a
shell-model description.

Within the usual harmonic approximation, developing
Eq. (2.6) to second order in the displacements u and 2u
of the ions and images, the substrate contribution to the
equations of motion is readily derived in the following
form:

aU, p &«zJ+&&Jz~) "z
UI 2 J

1 0 0
0 1 0
0 0 —1

(2.4)

with I and J=1, . . . , X, 1V being the number of ions in
the film. In Eq. (2.7), which represents the dynamical
force on the ion I mediated by the dielectric substrate un-
derneath Pzz denotes the force-constant symmetric tensor

The repulsive potential with the substrate developed to
first order in the displacements is then written as
2iPV(ro) Fs(I).u—z, where Fs(I) is precisely, by con-
struction, the static force introduced in Eq. (2.1), ac-
counting for

dp p= po

e=B
4meo(2ro )

(2.5)

U = ,'Py yV„-(lr ——r;I) . (2.6)

Equation (2.6) implies a sum over all the ions J of the film
and their images I in the substrate. VJz(zJz) now denotes
all the interactions that would exist across the interface
between the ions at sites J and I in the nonterminated
crystal, including both the Coulomb potential

which follows from the definition of the constant B.
It may be argued that one can construct infinitely

many potentials V(r) fulfilling the condition (2.5), but the
repulsive anion-cation potential taken from the bulk crys-
tal turned out to be the best in reproducing the dispersion
curve of the Fuchs-Kliewer interface phonon such as pre-
dicted by electrostatics close to the I point. In the ab-
sence of any other information, this choice is thus the
natural one, remembering that lattice dynamics for mac-
roscopic optical phonons must reproduce electrostatics
predictions, at least for reasonably thick films. In so do-
ing, the dynamics of the overlayer can be solved without
introducing any new parameters in addition to those
available for the bulk crystal and the P screening con-
stant, in keeping with the electrostatics point of view that
only demands the bulk dielectric functions of the indivi-
dual materials.

The dynamical equations for the ions of the film in the
present NaC1(001) geometry can now be derived in a sim-
ple way. In the expression of the total potential energy U
of the film, in addition to the usual terms for a self-
supported film, the role of the substrate is taken into ac-
count via the following screened contribution:

VJJ
VJI

—
0
JI

0 0
JI JI

02
JI

(2.8)

III. SURFACE DIELECTRIC RESPQNSE

The phonon contribution to the surface dielectric
response of a film made from a polar crystal can be ob-
tained by solving lattice-dynamics equations in the pres-
ence of an external electric potential having the form of a
plane wave in directions p parallel to the surface and
satisfying Laplace's equation outside the sources. In the
material region, in particular, the excitation potential
takes the form

y, = we&'e'& & ' ' z (0 (3.1)

z =0 being the geometrical surface plane. Due to the ex-
citation electric field, forced oscillations of the ions
around their equilibrium positions take place, inducing
an electric field whose expression in the vacuum region
(z & 0) above the film and far away from its free surface
derives from the potential

p;„d= —g(Q, co) Ae ~'e'~'z' '"', z &&5, (3.2)

where 5 is a typical interatomic distance. This asymptot-

where the first and second derivative V' and V" of the
potentials are evaluated at the equilibrium distances re'
and E is the unit tensor. The Coulomb force-constant
tensors have the property that Jazz J=gzJ and, as a
consequence JPJz =Pzj J. As a final remark, let us point
out that the right-hand side of Eq. (2.7), when taking all
the displacements equal to a constant vector u along the z
direction, does not reduce to zero because the interface
with the massive, undeformable substrate is kept fixed in
space. This drawback of the model, which is not suitable
for including the elastic properties of the substrate,
should not much aftect the optical excitations of the sup-
ported film.
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ic expression of the induced potential is valid in the har-
monic approximation for small enough excitation fields. '

The prefactor g(Q, co) in Eq. (3.2) is the surface dielectric
response of the system.

For an ionic-crystal film on a thick substrate, lattice
dynamics for the semimicroscopic model of Sec. II leads
to the following expression of g:

p, (Q)~,'(Q)
g(Q, ~) =g(Q, ~ )+g

co (Q) —co
(3.3)

where the sum is over all the phonon branches of the
film, with dispersion relations co.(Q). The expression for
the weight factors p.(Q) valid in a shell-model descrip-
tion can be found in the Appendix, together with the
response g(Q, ~ ) set up at high frequency by the motion
of the zero-mass electronic shells. The formalism can be
particularized to rigid ions (see the Appendix). The for-
mulas then simplify in such a way that the following
selection rule can be deduced: p (Q) is zero for those
modes linearly polarized parallel to the surface along the
direction perpendicular to Q (SH polarization). The
strongest response occurs for optical modes with circular
polarization in the sagittal plane.

In a macroscopic picture, the surface dielectric
response function of a film with thickness d on a thick
substrate is easily derived from elementary electrostatics
considerations:

(e'i+ ~, )( ~, —I)—(e, —e, )(e, + 1)e
g(g, ~)=

(e, +e, )(e, +1)—(e, —e, )(e, —1)e

(3.4)

where e, (co) and ei(co) are the bulk dielectric functions of
the film and the substrate, respectively. The poles in this
expression correspond to the electrostatic eigenmodes of
the system, the so-called nonretarded, macroscopic
Fuchs-Kliewer (FK) modes. In the context of electro-
statics, the long-wavelength FK modes are associated
with charge-density oscillations of the form o.e'~~
that develop at both the free surface of the film and the
interface with the semi-infinite substrate. '

When the overlayer is made from an ionic crystal and
for a constant ez, there are two branches of FK phonons,
FK+ and FK, whose dispersion relations co+(g) and
co (g) are solutions of e,(co+)= —[tanh[(gd+X)/2]] —'

with X=sinh '[Psinh(gd)], P denoting the screening
factor (e2 —I)/(@2+1) introduced previously. Except for
ez= 1 (isolated film), the FK and FK phonons can be
considered as surface and interface modes, respectively.
For g&0, the associated charge densities are predom-
inantly localized at the free surface of the film for the
former, and at the interface with the substrate for the
latter. More precisely stated, a marked surface or inter-
face character stands out when the parameter X intro-
duced above becomes of the order of 1, or larger: the ra-
tio of surface and interface charge densities can indeed be
written in the form o., /o. ; = —e + for FK+ and
o., /o. ;=+e for FK . For each of these modes, a
macroscopic electric field is set up in the vacuum region

above the system and the two FK phonons are thus able
to respond to an external electric excitation. As e2 ap-
proaches infinity (perfectly conducting substrate), howev-
er, only the surface mode can be excited by external
sources; its dispersion relation is the same as that of the
FK+ phonon for an isolated film with double thickness.

IV. CaF2{111)ISOLATED FILMS

Since an isolated film does not demand any of the un-
known quantities brought about by the interface with a
substrate, this geometry provides us with an ideal situa-
tion for testing the validity of the dielectric approxima-
tion from lattice-dynamics calculation of the surface
response g(Q, co). The formalism summarized in the Ap-
pendix is directly applicable to any isolated crystalline
film by setting P=O in the equations. The expression so
obtained for the weight factors p (Q) in Eq. (3.3) reduces
to a form close to, although not identical with that of
similar oscillator strengths evaluated a long time ago by
Evans and Mills for the silicon surface.

In a previous paper, ' we have already compared the
macroscopic and microscopic approaches for g using the
rigid-ion approximation. In this section, shell-model cal-
culations are performed for CaF2(111) isolated films.
The shell-model parameters are taken from the litera-
ture. The optical constants for the bulk dielectric func-
tion e, (ru) of CaFz have been deduced from these shell-
model parameters, allowing us to test the predictions of
the macroscopic approach. Electron-energy-loss spectra
are computed from the microscopic theory of g (Q, co) and
compared with the predictions of the dielectric approxi-
mation.

As schematized in Fig. 2, the crystalline structure of an
ideal CaF2(111) film can be viewed as a stacking of CaF2
layers, each of them consisting of three charged planes
with hexagonal arrangements of F, Ca, and F ions, suc-

z=O

Ca

FIG. 2. Crystallographic structure of an ideal CaF&(111) film.
The solid lines represent two-dimensional hexagonal lattices of
F or Ca ions. The Ca planes define the usua1 ABC stacking of
the face-centered-cubic lattice whose tetrahedral holes are occu-
pied by the F ions. The dashed lines indicate the positions of
the geometrical surfaces of the Nm (see text).
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e Q (2Z) +2 Z cosh(2Q5')
eo 0 Mc, MF

2QN

X 1 —e
2 sinh(Q5)

(4.1)

where 0 is the area of the primitive cell of the film. In
this expression, Mc, and MF are the mass of the Ca and
F ions, with charges 2Z and —Z, respectively. For small
Q's, Eq. (4.1) reduces to

—2QNL 6

gp, (Q)co (Q)= [col+0[(Q5) ]] (4.2)

where coI is the ionic plasma frequency defined by
col=(e /eo)[(2Z) /Mc, +2Z /M„]/(05). Within the
dielectric approximation, on the other hand, Eq. (3.4)
with e2=1 and e, (co)=(coLo—co )/(ro~o —co ) compatible
with the rigid-ion approximation, yields

oo 1 —e
Im[g (Q, co) ]co dc@= (coLo —coro)

0

(4.3)

Identifying d with NL5 and noticing that coLO
—~zo =col

in the present model, Eqs. (4.1) and (4.3) coincide
within terms proportional to (Q5), for an arbitrary num-
ber of layers. For deformable ions, the sum rule in the
microscopic theory can no longer be expressed in an
analytical form. However, we have checked numerically
that the first moment of Im(g) for small wave vectors ob-
tained with the shell model still lies close to its macro-
scopic counterpart.

We now analyze with some details the results of calcu-
lations performed for a CaF2(111) isolated film composed
of NI =6 layers (d =18.9 A). The structure of the film
has been relaxed by adjusting the vertical spacings be-
tween successive atomic planes so as to minimize the to-
tal potential energy of the film. In this simple procedure,
there is no core-shell relaxation. It has been found that
the static forces computed at the various sites of the re-
laxed film are virtually zero, in any case considerably
smaller than for the nonrelaxed geometry, indicating that
indeed the ions are close to equilibrium positions. Relax-

cessively. In the bulk, the spacing 5' between the ionic
planes in a layer is one-fourth the interlayer distance 5
equal to a /v'3=3. 154 A in terms of the parameter a of
the conventional cubic lattice. For a film composed of
NL CaF2 layers, the thickness d required by the dielectric
approximation [Eq. (3 4)] is defined as d =Nl 5. In other
words, the surfaces of the filrn are geometrical planes lo-
cated 5/2 —5'=5'=0. 79 A above and below the top and
bottom F planes (see Fig. 2). A justification for this can
be found in a sum rule satisfied by the oscillator strengths
in the expression (3.3) of g(Q, co). In the rigid-ion ap-
proximation for which an analytical expression of the
sum rule can be derived, one finds for the nonrelaxed
structure of Fig. 2

gp (Q)co (Q) =—J Im[g(Q, co)]co dao

450—

CaF, t'111) 6 l
I I I

FK'

400—
E

350— ~ ~ ~ ~ ~ tl

300—

250
0.00 0.05 0.10 0.15

g (nm ')

I

0.20

I I ~

0.25 0.30

FIG. 3. Optical-phonon dispersion curves (dots) close to the
center of the two-dimensional first Brillouin zone for a relaxed
CaF (111) isolated film composed of six CaF2 layers (18 atoms
per primitive cell). The areas of the dots are proportional to the
weight factors p, (Q) in the surface dielectric response of the
film [Eq. (3.3)]. Those points with negligible weights have been
discarded from the drawing. The solid lines represent the
dispersion curves of the two macroscopic surface (FK and
FK+) phonons deduced from electrostatics [Eq. (3.4)].

ations in CaF2(111) film have been found much larger
than for a NaC1(001) structure. The largest modification
in the interplane distances is realized between the F plane
at a free surface and the next Ca plane, accounting for a
reduction of 17%%uo of the bulk value 5'. The value calcu-
lated here for Nl =6 does not change anymore on in-
creasing the number of layers and is consistent with in-
dependent theoretical predictions for (111)surfaces of ox-
ides having the antiAuorine structure.

Figure 3 illustrates the dispersion relations of optical
phonons close to the center of the surface first Brillouin
zone in the CaFz relaxed (111) film with NI =6. For
selected wave numbers Q, the phonon frequencies co~(Q)
of the slab have been represented with dots whose areas
are proportional to the relative weight factors
pj(Q)/gj pj'(Q) in the expression (3.3) of the surface
dielectric response. The solid lines are the dispersion
curves of the two macroscopic Fuchs-Kliewer (FK) sur-
face phonons deduced from electrostatics for the same
system (see Sec. III). As shown in Fig. 3, the weights of
the two FK modes of the macroscopic approach are dis-
tributed over several branches in the microscopic theory.
This implies some interaction between the highly
dispersed FK modes and other optical phonons' '

which would otherwise present Hat dispersion curves in
the small domain of wave vectors considered here. The
intense phonons around the FK and FK+ curves are
linearly polarized normal to the surface (SPi) close to
Q =0. They acquire elliptical polarization in the sagittal
plane for larger Q's. Very close to the I point, these pho-
nons present small vibration amplitudes at the surface.
By increasing Q, the surface amplitude increases. Away
from the FK curves, some phonons still present non-
negligible weights in the dielectric response. This is the
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FIG. 6. Static (co=0) and high-frequency (m= 00) surface
dielectric response function g(Q, co) of a ten-layer RbF(001) re-
laxed film onto a dielectric Ge substrate as obtained from elec-
trostatics (solid curves) or lattice-dynamical calculations within
the semimicroscopic model described in Sec. II (dashed curves).
The two curves for co= ~ are hardly distinguishable at the scale
of the drawing. The dot-dashed curve shows the dielectric
response Pe ~ of the Ge dielectric substrate alone {see the Ap-
pendix).

films on Si, although the deviation of the experimental
points with respect to the electrostatics predictions are
larger than what we find theoretically for self-supported
61rns. With more than six CaF2 layers in the present cal-
culations, there is no appreciable difference in both the
position and the intensity of the peaks in the EELS spec-
tra deduced from the microscopic or the macroscopic
theories of the surface dielectric response.

pared with the predictions of electrostatics using ez= 16
for the dielectric constant of the Ge substrate. The thick-
ness of a film composed of XL atomic planes is here again
defined as d =XL 5, ' with 5 the interlayer spacing (see
Fig. 1). As an example of comparison between the
(semi)microscopic and macroscopic approaches, Fig. 6
represents the static and high-frequency response func-
tions g(Q, O) and g(Q, ae ) versus the wave number Q for
a ten-layer film (d =28 A). In both macroscopic and mi-
croscopic models, g(O, co) =P for Q =0 (see the Appen-
dix), irrespective of co, where P= —,", is the image screening
factor of the Ge substrate. It immediately appears from
Fig. 6 that lattice-dynamical determination of the high-
frequency response of the present system is nicely repro-
duced by the much simpler dielectric approximation.
For the static response and for the small wave vectors
predominantly probed in specular EELS (Q =0. 1 nm '),
the deviation observed between the two approaches, al-
though small, is significant. Remark that g(Q, ~ ) does
not inAuence the computation of the EELS spectra that
only demands the imaginary part of the surface dielectric
response. By contrast, the di8'erence g(Q, O) —g(Q, ae ),
being related to the total loss intensity, is an important
quantity. As discussed below, the difference between the
two determinations of g(Q, O) —g(Q, ao ) is mainly the
consequence of the response of surface microscopic RbF
phonons that electrostatics is unable to account for.

Figure 7 shows dispersion relations of optical phonons
in RbF(001)/Ge with Xl =10 using the same representa-
tion as in Fig. 3. The solid curves are the electrostatics
Fuchs-Kliewer modes. For increasing wave numbers Q,
FK+ and FK acquire more and more pronounced sur-
face and interface characters, respectively, as explained in
Sec. III. In contrast with the case of an isolated film,
most of the spectral weight is now distributed around the

V. RbF(001)/Ge

We now turn our attention to an overlayer geometry
by considering the case of RbF(001) films on a thick Ge
substrate, a system that can actually be made epitaxic
and for which the concepts developed in Sec. II apply
directly. Lattice-dynamical calculations for RbF are
based on a shell model. Assuming central forces for the
anion-cation repulsive interactions, we have adjusted the
second-neighbor cation-cation and anion-anion trans-
verse force constants B++ and B by identifying them
through the equilibrium condition of the bulk lattice,
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where aM is the bulk Madelung constant and /3+ is the
nearest-neighbor cation-anion transverse force constant.
This procedure does not affect the long-wavelength bulk
dielectric properties of the crystal and enables us to relax
the films. Still neglecting core-shell relaxations, the
structural relaxations were found to be small in
RbF(001)/Ge, as already suggested by Eq. (2.3) and the
discussion that immediately follows.

The surface dielectric response of RbF(001) relaxed
films has been computed for short wave vectors and com-
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FIG. 7. Same representation as in Fig. 3 of optical-phonon
branches around the 1 point for RbF(001)/Ge with XL =10.
The dispersion curves of the two Fuchs-Kliewer modes of the
macroscopic approach are represented by solid lines. The struc-
ture of the film has been relaxed for the semirnicroscopic
lattice-dynamics calculations of the surface dielectric response
(dots).
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FK+ (surface) mode. The intense phonons in this region
have elliptical polarization in the sagittal plane with
dominant SP~ character, as previously. The phonons
having the highest response around FK are also polar-
ized in the sagittal plane but this time with a dominant
SP~~ character. The corresponding eigenvectors are found
to have small amplitudes at the interface or at the free
surface close to Q =0. On increasing Q, there remain ap-
preciable amplitudes in the interior of the film; the inter-
face components of the eigenvectors increase with respect
to the surface components, however, conferring to these
phonons a macroscopic interface character in complete
agreement with electrostatic predictions.

As for the case of isolated films, several microscopic
phonons participate in the surface dielectric response.
The branch with little dispersion just below 180 cm ' in
Fig. 7 is an S2 surface microscopic phonon localized at
the free surface of the RbF(001) film. In a self-supported
film, there would be two such phonons, S2 with even and
odd parities with respect to the symmetry plane at half
thickness and nearly degenerate frequencies at about 177
cm '. With the Ge substrate, the symmetry is broken
and the S2 pair splits into two modes predominantly lo-
calized either at the surface or at the interface. The
upper S2 mode in Fig. 7 is the surface phonon whose fre-
quency is only weakly affected by the substrate. Its
weight at small Q's is of the same magnitude as, or larger
than, that of the FK macroscopic mode (see Fig. 7).

N„=20

10

The lower S2 microscopic phonon found at 119 cm ' is
the interface mode. Similarly, the branch around 156
cm with little response close to the I point is an S4
surface microscopic mode; its interface partner has a
negligible weight in the surface dielectric response. It is
worth remembering that interface microscopic phonons
are only approximately reproduced by the present calcu-
lations due to the continuous-medium approximation
used in treating the substrate. In fact, the dielectric
response set up by these modes is weak, as it can be in-
ferred from the weights representing the S2 interface
phonons in Fig. 7. So g(g, co), being mostly dominated
by the FK+ mode and to a lesser extent by other surface
optical phonons, should essentially be correct.

EELS room-temperature spectra have been computed
for RbF(001) films on Ge from both the microscopic and
macroscopic determinations of g(Q, co). The results are
shown in Fig. 8. For very thin films, the FK loss peaks
are hardly visible when using the dielectric theory (solid
curves). With the semimicroscopic approach (dotted
curves), by contrast, a two- or three-peak structure is
clearly resolved within the 150—300-cm ' single-loss
range for XL =2 or 3, respectively. For a larger thick-
ness, phonons in the FK regions (160—180 cm ') con-
tribute to the spectrum in the form of a weak structure in
the low-frequency wing of the dominant FK+ peak
whose intensity grows as NL increases. With ten layers
or more, the positions of the loss peaks determined by the
microscopic and macroscopic approaches agree quite
well. Discrepancies remain between the loss intensities,
even when XL =20 (d =56 A). The deviation between
the two EELS spectra for the 20-layer RbF film is never-
theless small on the absolute scale, even if the intensity of
the FK loss peak predicted by the dielectric theory is
roughly one-half' the one obtained from the semimicro-
scopic model. This discrepancy chiefly results from the
non-negligible response of the S2 surface microscopic
phonon, as explained above.

VI. DISCUSSION

-300 -$00 f00 300 500

Emerge t oss hu t'cm

FIG. 8. Theoretical EELS spectra of RbF(001)/Ge deduced
from the macroscopic theory (solid curves) or the semimicro-
scopic lattice-dynamics calculations (dotted curves) of the sur-
face dielectric function for relaxed films composed of 2, 3, 4, 6,
10, and 20 layers. The electron kinetic energy and incidence an-
gle are 5 eV and 45, respectively. The spectra have been convo-
luted with a typical instrumental broadening function (30-cm
resolution).

The calculations presented in this paper were aimed at
investigating the effects of the thickness in the applica-
tion of the dielectric approximation for determining the
long-wavelength surface dielectric function of a thin film.
The semimicroscopic model of Sec. II, by eliminating all
the microscopic details about the interface, was designed
for that purpose. It appears from Figs. 5 and 8 that Alms

composed of less than (say) five "molecular" layers are
definitively below the applicability domain of electrostat-
ics. Even for thicker films, obvious characteristics of the
optical-phonon structure are missing in the macroscopic
determination of g(g, co), at least in that the Fuchs-
Kliewer macroscopic modes hybridize with several pho-
nons in the lattice dynamics (Figs. 3 and 7). Detecting
such effects is, however, crucially dependent upon the fre-
quency resolution of the spectrometer used to analyze the
response to long-wavelength excitations. Nevertheless,
the EELS spectra calculated for RbF(001) /Ge clearly in-
dicate a contribution of the S2 microscopic phonon local-
ized at the free surface of RbF: for a 20-layer film, this
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phonon participates for half the intensity of the loss peak
in the region of the FK mode.

Such a signature of a surface microscopic phonon
should not be specific to the particular RbF(001)/Ge sys-
tern. It is believed that a similar situation might be real-
ized for CaF2(111) overlayers. Figure 3, which is for an
isolated film, clearly indicates a nonvanishing dielectric
response of the transverse-optical surface microscopic
phonon at 290 cm '. The contribution of this mode (in
fact, a pair of quasidegenerate microscopic S2 modes) to
the EELS spectrum is hidden by the intense FK phonon
(Fig. 4). This would no longer be true with a Si substrate,
due to the dramatic screening the substrate would pro-
duce on the weight of the FK mode. Besides, the pres-
ence of the substrate should not affect strongly the fre-
quency of the surface partner of this pair of microscopic
phonons when Xt ~ 6 (as indeed observed for the
RbF/Ge system) and the contribution of this surface mi-
croscopic phonon to the EELS spectrum of CaFz/Si
might now well become comparable to that predicted for
the FK macroscopic mode (as it was indeed the case in
Figs. 7 and 8). In connection with this discussion, it is in-
teresting to mention that the frequency of the FK peak
in the experimental loss spectra of CaF2Si(111) shows lit-
tle dispersion, precisely around 290 cm ', when plotted
against the overlayer thickness in the 10—50-A range.
By contrast, EELS calculations performed within the
dielectric approximation predict a monotonous shift of
the FK loss peak from 265 (d =10 A) to 285 cm
(d =50 A). A possible explanation of the experimental
EELS observations is therefore that for thin overlayers,
the optical-transverse microscopic phonon localized at
the free surface of CaF2(111) contributes substantially to
the loss structure found around 290 cm ', which can no
longer be attributed solely to the "interface" FK mode.
The fact that the intensity of the loss peak in this region
is about twice that predicted by the dielectric theory, as
found in recent experimental EELS measurements on
CaF2/Si(111), ' corroborates the above interpretation.

Apart from such relatively small effects, one can con-
clude from Figs. 4 and 8 that the dielectric approxima-
tion works reasonably well for films made of ionic crys-
tals of more than 6—10 layers: with the limited energy-
loss resolution in specular EELS, a bulk dielectric func-
tion makes sense when applied to overlayers whose thick-

0
ness exceeds 20—30 A. For thicker continuous films,
failure of the dielectric theory in reproducing at least the
positions of the phonon loss peaks in experimental EELS
data should not question the applicability of electrostatics
concepts. This would rather indicate that the structure
of the film differs from that of the bulk to such an extent
that the dielectric function of the bulk crystal is no longer
representative of the material in its layered form. Such
an explanation has indeed been invoked to explain the ob-
served failure of the dielectric approximation in describ-
ing EELS spectra of CaFz layers on Si(111) for thickness
above 100 A, the argument being that the lattice
mismatch between Auorine and silicon at growth temper-
ature introduces strains that can affect the dielectric func-
tion.
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APPENDIX

We consider a film with n ions per primitive cell of the
surface Bravais lattice on a thick dielectric substrate with
dielectric constant e2. The free surface of the film is
defined as the z =0 plane and the interface with the sub-
strate is located at z = —d. In the presence of an external
potential P, of the form given by Eq. (3.1), the potential

P, actually applied to an ion at location r =p+ z e, in the
film is the sum of P, plus the potential induced by the
substrate

P (r t)= A(1 —Pe ~'+"')e~'e'

where p=(e2 —1)/(ez+1) is the screening factor intro-
duced previously. The electric field applied to an ion la-
beled ~ at its equilibrium position v(~) in the primitive
cell at the origin is, therefore,

—2Q[~ (~)+d]E,(~ t)= i A(y —Pe — ' y*)
~g 6&)—idol'Xe (A2)

where we have introduced the three-dimensional complex
wave vector y=Q —ige„Q being the modulus of the
surface wave vector Q, and y' denotes the complex con-
jugate of y. In the harmonic approximation, the electric
field E, is responsible for plane-wave oscillations of the
ions around their equilibrium positions, which in turn in-
duce a response potential whose asymptotic expression at
a large distance from the free surface of the film will now
be evaluated.

We first consider the response to a high-frequency field
in order to illustrate how the formalism works, the
present situation being simpler than that encountered for
a finite frequency. In a standard shell-model description,
the ion ~ in a primitive cell is composed of a massless,
spherical electronic shell that carries a charge Y in units
of e, harmonically bound to its core with mass M and
charge X„. As co approaches infinity, the ionic cores stay
at rest at their equilibrium positions whereas the zero-
mass electronic shells follow instantaneously the excita-
tion force. The displacement of the shells are plane
waves of the form w(a, t)e', with an amplitude w(a, t)
that represents the displacement of the shell ~ in the unit
cell at the origin and where T denotes a two-dimensional
Bravais translation. The electrical response of the film to
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the high-frequency limit of the potential (A 1) is defined as
the difference between the potential set up by the vibrat-
ing shells and the Coulomb potential of the shells at rest,
to which we add the corresponding contributions arising

from the images across a mirror plane at z= —d. Ac-
cordingly, the response potential at location r above the
film, developed to first order in the assumed-small dis-
placements, is written as

Pl ~iQ T i Q.T
P„,(r, t)= — V, g Y, w( i(, t)g, 13Y t—w()t, t)g

4~co =i y lr «T ~ r —r(i() —T
(A3)

where J is the imaging matrix [Eq. (2.4)] and rt(~) denotes the image of the equilibrium position of the shell attached to
the site a. The response potential (A3) is not the full potential induced by the complete system composed of the film
and the dielectric substrate; we still have to add the response of the substrate to the external potential (3.1). The latter
being the term proportional to P in Eq. (A 1), the complete expression of the induced potential is written as

(r t )
—

y (r t) Pge —g(2d+z)eiQ P iut—.

In this expression, as in Eqs. (A3) —(A6), P is the high-frequency surface screening factor of the substrate; with our as-
sumption of an co-independent dielectric constant e2, the substrate response does not depend on co and its contribution is
incorporated into the high-frequency limit of g(Q, co). This is so because g(Q, ao) is an additive constant in the
frequency-dependent part of the surface dielectric function (3.3).

As usual, the lattice sums in Eq. (A3) are best performed in Fourier space using Poisson s formula. The expressions
so obtained involve summations over all the two-dimensional reciprocal vectors Cx. However, as the distance z above
the surface increases, the sums in the reciprocal lattice are dominated by the sole G=0 terms defining the macroscopic
potential. After little algebraic manipulations, the induced potential so obtained takes the following asymptotic expres-
sion as z —+ ~.

p;„d(r, t) = —i. 2& 8 iI'. —2QI& (~)+d]
Y e ir R—~)(ye pe z y)'w(K t )eiQ Pe Qz pQe

—Q(2d+z)eiQ P irut—
QQ 4meo

(A4)

where Q is the area of the surface primitive cell.
Equation (A4) still demands the shell displacements w. These can be obtained by solving the equations of motion for

the zero-mass shells, the high-frequency limit of which simplifies into

g C (i(:,a';Q)w(~', t)=eY„E,(v, t), ~=1,2, . . . , n,
a'= 1

(AS)

where the right-hand side represents the driving force set up by the applied field [Eq. (A2)], whereas the left-hand side is
the restoring force acting on the shell at site v as the result of plane-wave displacements of all the shells. The so-called
dipole-dipole force constants @ "are 3 X 3 symmetric tensors representing Bloch sums of the force constants associated
with all the shell-shell interaction potentials, including the substrate contribution through the images of the shells, as
stated by Eq. (2.7). The elements 4&""(a,ic;Q) for ic'=a. also incorporate the force constants of the interaction that binds
the shell ~ to its core.

Solving the sets of equations (A5) for the shell displacements requires inverting the 3n X 3n dipole-dipole matrix. Ap-
plying the inverse dipole-dipole matrix on the left of Eq (A5) all.ows us to express the displacements as linear combina-
tions of the driving forces acting on the various shells. These forces, through the expression (A2) of the applied field,
are proportional to the amplitude A of the external potential [Eq. (3.1)]. Inserting the developments so obtained for
w(a. , t ) into the left-hand side of Eq. (A4) leads to an expression that can be identified with Eq. (3.2). This identification
yields the following formula for the high-frequency surface dielectric response:

—2 ( )+d —2 ( ')+d
(Q ~)=Pe ~"+ ~ yY e ir «)(&z— P.e ' y).D(~ z'Q). (y' —Pe ' *)eir &~)Y'"Q.. "' (A6)

where y=y/&2Q is the normalized three-dimensional
complex wave vector introduced above. In Eq. (A6), the
n inatrices D(~,x';Q) stand for 3X3 blocks of the in-
verse dipole-dipole matrix, i.e., their Cartesian com-
ponents D ~ are solutions of the set of equations

g @ ".(x,a.";Q)D .~ (~",~'&Q)=o 5~ (A7)

For finite frequencies, we have to include the contribu-
tions of the cores and their images. The derivation of the
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frequency-dependent part of the surface dielectric
response g(Q, co) for an isolated film has been the subject
of a previous work. How to account for the presence of a
dielectric substrate is a straightforward extension of that
work which will be detailed here. The expression of
g(Q, co) obtained is that given by Eq. (3.3), with reso-
nances at the 3n eigenfrequencies co (Q) of the slab and
oscillator strengths

2 n e ir.r(a)

p J. (Q )roJ.(Q ) = —g ej~ (~;Q ) [Z ( a; Q )f'
«=i V M~

(AS)

In this equation, e.(tr;Q) is the polarization vector (pro-
jection of the jth eigenvector of the dynamical matrix on
the side x. ) associated with the jth phonon branch;
Z(a-, Q) and Z'(tc;Q) are 3 X3 tensors that represent ap-
parent charges of the ion ~ and its image, respectively.
For nondeformable ions, both of them reduce to Z E,
with E the 3X3 unit tensor and where Z =X,+ Y is
the net charge of ion ic. Equation (A8) then reproduces
an expression we have already derived for rigid ions. '

The apparent charges for deformable ions and their im-
ages in the present slab geometry are defined by

Z(tr-, Q)=Z E —g 4' (tc, tc', Q)D( ', tr";Q)Y-
K ~K

(A9)

Z'(tr;Q)=Z, E—g4' (tr, a';Q)D(tr', tr", Q)Y„„
K, K

i y*.[gK" ) —g K) ]Xe (A9')

In these expressions, the D's are the matrices defined in
Eq. (A7) and P' is the analog of (b for the so-called
atom-dipole force constants, incorporating the core-shell
and shell-shell interactions and including the image
contributions. The expressions (A9) and (A9') of the ap-
parent charges differ from their form usually found in the
literature by the presence of the phase factors e'"
which explicitly account for the spatial variation of the
applied electric field (A2). At the I point these phase
factors disappear, the two expressions (A9) and (A9')
coincide and reproduce the usual definition of the ap-
parent charge.

For an isolated film (P=O) having the NaC1(001) struc-
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