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Electronic properties of surfaces of disordered alloys
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An approach to the electronic properties of surfaces of disordered metals is developed that combines
the tight-binding linear-muffin-tin-orbital method with the surface Green s-function formalism and the
coherent-potential approximation. The actual composition in the top surface layers can di6'er from that
in the bulk layers. The method is applied to evaluate component- and layer-projected densities of states
for the Ag50Pd50(001) surface, assuming both uniform and nonuniform concentration profiles in the sam-

ple surface.

I. INTR&)DUCTION

Surfaces of bulk alloys are of great interest from both
the theoretical point of view and the standpoint of prob-
able technical applications such as, e.g. , catalysis or mul-
tilayered metallic structures. One of the most interesting
features of such systems is the segregation behavior at
surfaces or interfaces. The oscillatory behavior of the
concentration in the top alloy surface layers is, e.g.,
characteristic for low-index faces of Ni/Pt alloys. In or-
der to explain such behavior, an empirical tight-binding
Ising model coupled with a mean-field approximation
was developed and used successfully for a qualitative un-
derstanding of this phenomenon.

The detailed knowledge of the underlying electronic
structure is a necessary first step in any such study. Until
now, however, only oversimplified models have been used
to describe the underlying electronic structure of imper-
fect alloy surfaces. Also, the true semi-infinite geometry
is usually only modeled by a cluster of atoms and recur-
sion methods are then used to evaluate the corresponding
Green's functions. The only paper which properly takes
into account the semi-infinite geometry of the system and
also possible concentration variations at the surface is
that of Berk. The simpler but physically relevant case of
a disordered overlayer on an otherwise perfect substrate
was studied in Ref. 3. In both papers, however, a
simplified band-structure model was adopted, namely the
theoretical s-cubium model. The present authors
developed recently an approach that allows one to study
the electronic structure of disordered overlayers with the
accuracy common to contemporary first-principles alloy
theories. This approach describes the underlying band
structure from first principles within the local-density ap-
proximation using the tight-binding (TB) linear-muffin-
tin-orbital (LMTO) method by taking into account the
effect of the surface via the surface Green's-function ap-
proach ' and by describing the disorder within the
framework of the coherent-potential approximation
(CPA). The main purpose of this paper is to extend this
approach to alloy systems with concentration oscillations

in the vicinity of the surface. As will become clear later,
our method is not limited to low-Miller-index faces as is
the case in some of the contemporary first-principles
electronic-structure theories for surfaces.

II. FORMALISM

Let HRL R.L. be the Hamiltonian in the orthogonal
muffin-tin orbital (MTO) representation written usually
as

whose elements PRL (z) are proportional, for 5=0, to the
cotangents of the phase shifts at the Wigner-Seitz sphere
centered at site the R. The canonical structure constants
S in (l) are represented by a matrix of elements

SRL R,L ~ =SLL (R —R'), which depend only on the lattice
structure of the system and hence are nonrandom.

By switching from the orthogonal MTO representation
to the so-called most-localized MTO representation '

characterized by a nonrandom site and angular momen-
tum diagonal matrix P (PRL =Pi, VR), the Green's func-
tion (GF) in the original representation

G(z) =(z 0)—
is related to the Green's function g(z) in the new repre-
sentation p by a simple scaling transformation ' '

G(z) =k(z)+p(z)g(z)p(z),

g(z) = [P(z)—S]
(4)

~RL, R'L' CRL ~RR'~LL'

+~RL [ ( ) S ) ]RL,R'L'~R'L'

where R denotes atomic sites and L =(1,m ) the angular
momenta. The quantities X=C,A, y are the so-called
potential parameters, which are diagonal matrices with
elements XRL. The potential parameters can be com-
bined into matrices of potential functions of the complex
energyz=c+i6, 6&0,

P (z)=(z —C)[b, +y(z —C)]
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P(z)=P (z)[1 P—P (z)] ', S=S (1 P—S )

The matrices A.(z) and p, (z) are site and angular momen-
tum diagonal:

A,(z) =b, ' (y —P)p(z),
p(z) = [dP(z) ldz ]'i

It should be noted, that because of P(z), now only site di-
agonal disorder is present in g(z), allowing, therefore, a
direct application of the CPA.

The main problem in treating theoretically surfaces of
disordered alloys is of course the simultaneous oc-
currence of a surface and disorder. The effect of the sur-
face can be formalized by using the surface Green's-
function (SGF) technique, ' while the configurational
averaging can be performed using a properly modified
CPA method. Note that there is a crucial difference be-
tween the case of an infinite bulk alloy and the case of a
semi-infinite alloy, since, in the latter case, applying the
CPA condition to each layer gives rise to an infinite sys-
tem of coupled CPA equations to be solved self-
consistently. The problem is made tractable, however,
by assuming that, from a certain layer on, the (electronic)
properties of all subsequent layers are those for the
infinite system. Note also that the related case of a disor-
dered overlayer on a nonrandom substrate allows one to
solve the CPA equations without any additional approxi-
mation. '

Let L, = [a„,la„, =n, ai+n2a2] be the two-dimensional
lattice spanned by primitive two-dimensional lattice vec-
tors a, and a2. Then, quite clearly, each atomic position
vector R„can be expressed in terms of a vector c„and a
lattice vector a„,HI, :

R„=c„+a„,.

these matrices are tridiagonal supermatrices with rows
and columns labeled by d;, d;+1, etc., where

0 S;
S= 0 0

0 0

—l, l
S-

i + 1, /
S

0

0
S ~—i, l +1

—i+ 1,i+1S.
S—i +2,i +1

0
0

—i+ l, i+2S.

0
0

0

Si +2, r'+2 Si+2, t'+3

0
0

0

0 0 0 0 0

Each element S; is a matrix with rows and columns la-
beled by atomic layers, i.e., by c„,c„+1,c„+2,etc,

S; S; S

S; = S;

S.
S; j
S.

'M J2

(12)

Sij Sp1 5j i+ 1 +Sip5 1 p S Spp (13)

The potential functions can be written as PL-diagonal su-
per matrices

where the terminating index M is defined by (10). The
semi-infinite crystal can therefore be partioned into prin-
cipal layers (PL's) such that only nearest-neighboring
PL's are coupled by the structure constants [see Eq. (11)].
In principle, of course, these PL's can comprise also the
situation for complex lattices, namely if also nonprimitive
translations characterize the two-dimensional periodicity.
By using bulk-derived structure constants the form of
(11) is even simpler, namely,

By neglecting surface relaxations effects these c„are
nothing but multiples of a generating vector cp, which
connects two neighboring atomic layers, P (z)=

P; (z)

0 P +, (z)

0

0
+=A, B, orc

cn ncp (9) 0 Pa'b(z)

SLL.(R —R„)=0, V IR R, I
& Idol =~ lcol, (10)

In binary disordered alloys of components A and B the
potential parameters are given randomly by XI '" and
XI '" with probabilities c '" and c '"=1—c "'",where the
superscript n refers to (different) atomic layers parallel to
the surface, labeled by c„. The X& '", o.= 3 or B, are in
general different from the corresponding bulk values XI '

or XI ', whose probabilities are given by the (macroscopi-
cal) bulk concentrations c "' and c ' = 1 —c ' . Practi-
cally, however, the layer-dependent potential parameters
and concentrations deviate from the bulk ones only in the
first X top layers, where N typically is about 2 or 3. The
set [c„l

n =1,2, . . . , N; a= A, B] characterizes, there-
fore, the surface concentration profile.

Because of the two-dimensional periodicity all quanti-
ties related to the Green's function can be viewed as ma-
trices with rows and columns labeled in terms of c„,Eqs.
(8) and (9). Depending on the actual "screening length"
of the screened structure constants

(14)

whose elements are also diagonal with respect to atomic
layers,

pa 0

P; (z)= 0 P; (z) 0 (15)

0 0 P; (z)

and where the suffix a=c denotes the (nonrandom and
complex) coherent potential functions.

The above setup can be viewed in the following way:
starting with an arbitrary PL i inside the semi-infinite

system, "epitaxially" further PL's are added until the PL
in the surface of the system (i =1) is reached. Similarly
in the opposite direction PL's are added until that PL is
reached, whose properties (potential parameters or layer
concentrations) still differ from the bulk ones. Finally,
the remainder of the semi-infinite system with bulk
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characteristics in all layers ("ideal" substrate) is attached.
This procedure is easily formalized using partitioning
technique ' and is a direct consequence of the tridiago-
nal structure of S. Due to the inhomogeneity of the
problem, the P (z) differ from each other in the first N
atomic layers, while for all others they are identical to the
infinite bulk coherent potential functions P'"(z) deter-
mined within the standard TB-LMTO-CPA method. It
should be noted that, while for cubic lattices and I ~ 2 the
bulk P' (z) are diagonal matrices with respect to L,L',
due to the lowering of the symmetry close to the surface,
this in general is not the case for the surface-related
coherent potential functions P (z).

By defining in formal analogy to (14) and (15) diagonal
matrices for the concentration profiles of 3 and B atoms

0 0 0 0

0 c;+ 0 0 0

0 c+, 0 0
a=A or 8,

0 0 0 cab

+ [P (z) —P'(z)]F(z)[P (z) —P'(z)], (17)

where the supermatirix F(z) is diagonal with respect to
atomic layers. The nonvanishing subblocks are defined
by

(18)

(g(kll'z) )" [P (z) —S (kll) I "(kll'z) —I;;(kll' )]

(19)

where c ' refers to the corresponding bulk concentra-
tions, the CPA condition is given by the following set of
equations:

P'(z) =C "P"(z)+C P (z)

potential parameters or concentrations are difFerent from
vac

the bulk ones. In (23) I (kll, z ) characterizes the surface
boundary condition. Its specific form depends on the sur-
face barrier in the vacuum. '" In the simplest case of the
so-called natural boundary condition (no electrons out-

vac
side the system) I (kll, z)=0, &kll& SBZ.

The quantity g' (kll, z) in (22) is the GF of a semi-
infinite system with the bulk coherent potential functions
P'"(z) on each site. Due to the tridiagonal structure of
the structure constants (11),g' (kll, z) can be determined
directly ' by means of the following self-consistent con-
dition:

g' (kll, z) = [P ' (z) Spp(kll)

II
~g ( II' —» (24)

Finally, the configurationally averaged physical GF
( G(z) ) corresponding to (3) has to be expressed in terms
of (g(z) ) (19). Since, in principle, three random quanti-
ties [see Eq. (4)] are involved, this is a nontrivial step.
The method developed in Ref. 8 is used here according to
which for the pth atomic layer in the ith principle layer
( G(z) ) is given by

(25)

(G(kll, z));; =A; (z)+M, (z)(g(kll, z));; M; (z),

(26)
where A; (z) and M, (z) are site diagonal matrices related

P Ji

to P; (z). Dropping the indices i, their explicit forms
P

are given by

A( )=(&( ))+[@"( ) —p ( )]'

&& [(P(z) ) —P'(z)]/[P "(z)—P (z)]',
(27)

I "(kll Z)=Spi(kll)[P +i(Z) Spp(kll)

—I;+i,;+i«ll»)] Sip(kll»

I,, (kll, z)=Sip(kll)[P, i(z) —Spp(kll)

(20)

M(z)= [p (z)[P (z) —P'(z)]

p(z)[P (z) ——P'(z)]J/[P (z) —P (z)] .

(28)

I i
. i(kll z)] Spi(kll) (21)

vacI pp(kll, z ) = I (kll, z ) (23)

where the subscript k refers to the last PL in which the

It should be noted that (17) represents a set of CPA equa-
tions for individual layers of an inhomogenous system.
All equations are mutually coupled via F(z) because, as
follows from (19)—(21), F(z) depends on the whole super-
matrix P'(z).

In (18)—(21) ( ) denotes a configurational average and
kll a vector in the surface Brillouin zone (SBZ). The set of
above recursive equations is terminated by the following
"boundary" conditions:

I ik(kll, z) =Spi(kll)g (kll, z)Sip(kll),

Quite clearly any one-electron property of interest related
to the surface of a disordered alloy can be determined
now from (G(z) ). The atomic layer-projected density of
states n; ( E ) is, for example, given by the corresponding

P

concentration weighted component densities of states
n; (s),

n;(E)= g c;n; (e),
P a=~,a '

n; (s)= rr '[dP; (E)/de]—
P

(29)

XImI [P (e)—P'(E)+F(E+i0) '],. ', j, (30)
P' P

which, because of the properties of the potential func-
tions (2), can be further decomposed into l-like layer-
projected component densities of states
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n, (s)= g n, &(E) .
P

(31) Ag Pd (00'1) aLloy

It should be noted that (i) in principle, surface relaxation
effects can be included by allowing a few atomic layers
for which the layer vectors c„are not multiples of the
generating vector co; (ii) the formulation leading to (24) is
quite general and applicable therefore also to high-
Miller-index surfaces; and (iii) the same formal structure
retains in principle a fully relativistic description.

tot

III. NUMERICAL ILLUSTRATION AND DISCUSSION

The above formalism is applied in the present paper to
evaluate the electronic structure of the (001) face of fcc
Ag5opd5o random alloy. Despite the fact that this system
is not known to exhibit a pronounced nonuniform layer
composition near the surface, it is an excellent test of our
theory since the bulk behavior of the Ag/Pd system is
well known (see Ref. 8, and references therein).

For fcc lattice the use of the screened structure con-
stants S in (11) allows a restriction to first-nearest-
neighbor interactions. ' A principal layer consists there-
fore only of a single atomic layer (M= 1) and, conse-
quently, the above presented formalism simplifies
significantly. Consequently, for I,„~2 all occurring ma-
trices are of order 9.

In the present calculations we used the self-consistent
bulk potential parameters XP (a =Ag, Pd) evaluated at
their equilibrium Wigner-Seitz radii by the scalar-
relativistic LMTO method. As discussed in Ref. 8, for
bulk alloys this corresponds to an approximate treatment
of charge self-consistency and lattice relaxations due to
the different sizes of the constituent atoms. This is a
reasonable choice to illustrate the applicability of our ap-
proach. In the future, however, potential parameters de-
rived from charge-self-consistent film or supercell calcu-
lations will be used, since such calculations not only sup-
ply layer-dependent potential parameters, but also a more
realistic description of the boundary condition at the sur-
face [see Eq. (23)].

The equation for the k~~-projected SGF (24) was solved
self-consistently parallel to the real axis. For the integra-
tion in the irreducible part of the SBZ [see Eq. (18)] the
55 special k~~ points of Cunningham' were used. As it
turned out, essentially the same results were obtained also
with only 21 k~~ points or even with 10 k~~ points. Finally,
in order to evaluate the densities of states (DOS) F(z) (18)
is analytically continued to the real axis.

In the present calculations we allow the layer-
dependent concentrations to differ from the correspond-
ing bulk concentrations in the top two layers and the
coherent potential parameters to be different in the first
three layers (N =3). This approximation, for which
Berk introduced the term "surface-bulk approximation, "
was verified on the basis of test calculations (see also the
discussion corresponding below to Fig. 1).

In Fig. 1, in terms of the DOS for the top layer in
Ag~oPd5o the "surface bulk" approximation (N =3) is
compared with the so-called "homogeneous approxima-
tion" assuming uniform alloy composition. This homo-

Ag

Pd

-0.75 -0.5 -0.25

ENERGY (Ry)
FICx. 1. Total and componentlike densities of states for the

top surface layer Ag5pPd5p(100). Dashed lines correspond to
the (%=3) "surface-bulk approximation, " solid lines to the
"homogeneous approximation. " Both cases refer to the uni-
form bulk concentration. Long vertical lines denote the bulk-
alloy Fermi energy.

geneous approximation, which is defined by the condition
that P„'(z)=I" (z), is valid in each layer of the semi-
infinite system. The overall good agreement between
both approaches is quite obvious. This agreement
justifies in turn the contemporary use of first-principles
alloy theories in angle-resolved photoemission' in which
the validity of the homogeneous approximation is impli-
citly assumed. In other words, for the case of uniform al-
loy composition the coherent potential functions are not
strongly layer dependent.

The situation is, however, different in the case of
nonuniform alloy composition, i.e., in the case with con-
centration oscillations in surface near layers. The use of
bulk coherent potential functions of corresponding com-
positions in given layers seems. to be too speculative and
in fact even unnecessary from the computational point of
view.

In the following two cases of an oscillatory enrichment
of one of the components near the surface are considered
within the (N= 3) surface-bulk approximation, namely (i)

Pd-enriched surface: g
&

g = 1Q, g
&

=9Q; g2 g =75,
c z

=25; c 3
s =50, c 3

=50 and (ii) an Ag-enriched sur-
=90, "=10' =25, "=75 =50,

c 3
=50. Experimentally' both kinds of enrichment are

known to occur in Ni/Pt, although not for the same face.
In Fig. 2 the total and the componentlike layer-

projected DOS for these two concentration profiles are
shown together with the uniform concentration case
(cps=0. 5, cpd=0. 50, n =1,2, 3) and the corresponding
bulk DOS as obtained from a (bulk) TB-LMTO-CPA cal-



J. KUDRNOVSKY, P. WEINBERGER, AND V. DRCHAI

(a)

I
I
s

Ag Pd (OOP) alloy

(c

nII
I I
g 1

\ I \

sP

(s3) is already very similar to the corresponding bulk
DQS, but small deviations are still observable.

It should be noted that similarly as in bulk alloys, the
concept of energy bands has to be replaced by generalized
Bloch spectral functions A (k~~, E), related to a given
atomic layer p. Their shapes can vary in a complicated
manner. ' ' Their study, though possible, is beyond the
scope of the present work.

(I}

Cr}
nis

I
t

s3

-0.75 -0.5 -0.25 -0.75 -0.5 -O.Z5 -0.75 -0.5 -O.Z5

ElVERGY (Ry)

FICr. 2. Layer-resolved total (solid lines) as mell as Ag-like
(dashed lines) and Pd-like (dotted lines) component DOS for
Ag5pPd5p( 100). The bulk and first three top layers are denoted
by b, s1, s2, and s3, respectively. The compositions in the lay-
ers sl, s2, and s3 are (a) Ag5pPd5p, Ag5pPd&p, Ag5pPdsp, (b)
Ag]pPd9p~ Ag75Pd25~ Ag5pPdsp~ (c) Ag9pPd]p~ Ag25Pd75~ Ag5pPd5p.
In all cases the (%=3) surface-bulk approximation is used.
Long vertical lines denote the bulk-alloy Fermi energy.

culation. The peaks in the local bulk Ag and Pd DOS
are well separated from each other in energy, thus indi-
cating a strong local disorder in this alloy system. The
lower part of the total DOS is thus dominated by Ag d-
like states and the upper part by the PD d-like states.
The features characteristic of the pure crystals are
smeared out in the disordered phase. The Pd d-like states
are strongly suppressed in the energy region of the Ag d-
like states. Note also the Pd-induced Ag states in the
upper part of the total DOS.

This behavior is qualitatively preserved also in the case
of the alloy surface with uniform composition [Fig. 2(a)].
In comparison with the bulk we note a pronounced nar-
rowing of the component DOS at the surface due to the
reduced number of first neighbors (8 versus 12). The ra-
tio 5/iU (5-level separation, w-averaged bandwidth) in-
creases at the surface, thus leading to an additional
smearing and, at the same time, in comparison with the
bulk case to a better resolution of Ag- and Pd-related
features. Remarkable also is the fast convergence of the
layer DQS to the bulk values.

On the contrary, due to the varying component layer
concentrations in the top two layers, the total top-layer
DQS for the alloy surface with oscillatory enrichments
IFigs. 2(b) and 2(c)] is distinctly difFerent from the bulk
case. The local Ag DOS for the Pd-rich surface [Fig.
2(b)] and the Pd DOS for the Ag-rich surface [Fig. 2(c)]
behave like impurities. The enrichment of the surface by
one component is rejected in the corresponding DOS in
the layer beneath. Note that the second sublayer DOS

IV. CONCLUSIONS

We have presented a method of studying the electronic
structure of surfaces of substitutionally disordered alloys.
Our approach combines the linear-muon-tin-orbital
method, the coherent-potential approximation, and the
surface Green's function formalism. Qur method is able
to describe properly both nonuniform compositions at
the surface and the semi-infinite nature of the problem
within the framework of the density functional theory.
The formalism can easily be implemented numerically.
Its accuracy is comparable to that of contemporary bulk
alloy theories. It offers a number of interesting applica-
tions, such as the interpretation of experimental data of
surface sensitive spectroscopies, the study of heterojunc-
tions at crystall-alloy or grain boundaries, etc. Realistic
calculations of surface energies and interatomic effective
interactions are feasible, which, as parameters in effective
Ising Hamiltonians, are necessary for quantitative stud-
ies of surface compositional inhomogeneities, surface or-
dering, segregation, and related phenomena. Work in
this direction is now in progress. The theory can be im-
proved in some technical aspects, namely, by including
the effect of the top-layer relaxation, by considering a
more realistic boundary condition for the sample-vacuum
interface, by the use of layer-dependent potential parame-
ters, as obtained from slab or supercell calculations, or by
the inclusion of the relativistic effects, necessary for a
correct description of alloys containing heavy elements.
The theory is presently limited by the use of spherically
averaged muon-tin atomic potentials, and therefore it is
not suitable, for example, to calculate alloy work func-
tions. Although the main purpose of this paper was to
develop the formalism and to demonstrate its feasibility,
one interesting result should be mentioned here: for a
uniform alloy composition we have verified in the case of
a realistic system the validity of the so-called homo-
genous approximation, i.e., the use of the same effective
scattering potentials for sites within surface layers and in
the bulk. This approximation is commonly used in con-
temporary ab initio theories of photoemission.
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