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Electronic structure of a metal-insulator interface: Towards a theory of nonreactive adhesion
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With the aim of studying metal-insulator adhesion, we have performed an analytical description of the
electronic structure of a flat and defectless metal-insulator interface, for both rocksalt and zinc-blende
crystallographic structures of the insulator and, respectively, (100) and (110) orientations of the interface.
We model the metal by a jellium, and the 4B-type insulator by a tight-binding Hamiltonian with one
atomic orbital per site. A matching procedure involving a Green’s-function method yields the local den-
sity of states of the metal-induced gap states (MIGS), which are found to be in good agreement with pre-
vious numerical estimations on specific materials. By analytically solving the Poisson equation in a self-
consistent way, we are able to determine the position of the Fermi level of the whole system for any
value of the insulator ionicity. Our results depend upon the density of electrons in the metal, and upon
the penetration length and the density of MIGS at midgap. They do not depend much upon the crystal-
lographic structure and orientation of the interface. The two relevant parameters are the Fermi energy
of the metal and a ratio that represents the ionocovalent character of the insulator. This latter quantity
can be allowed to vary from zero to infinity, thus describing the whole range of compounds from co-
valent semiconductors to highly insulating materials. We produce an analytical expression of the
Schottky-barrier height and of the index of interface behavior, S, valid in the whole range of ionicity. S
is found to fit well the available experimental data. We demonstrate that the capacitor model to estimate
S is restricted to strongly ionic insulators, while it was generally used in the opposite limit. We suggest
finally that the above electronic parameters also drive the strength of adhesion and wetting in nonreac-
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tive metal-insulator systems.

I. INTRODUCTION

The understanding of adhesion or wetting of a liquid
metal on an insulating material is of crucial interest in a
number of technological applications. These include the
confinement of liquid metals, which requires highly re-
fractory as well as nonreactive containers: Insulators, or
insulating coatings, may be interesting solutions for most
of the cases. Moreover, even when noninsulating sup-
ports are chosen, their surfaces are generally oxidized at
the contact of ambiant atmosphere, and become insulat-
ing.

It is possible to distinguish two types of adhesion, de-
pending upon the chemical reactivity between the liquid
metal and the insulator. Most contacts between metals
and very stable oxides with strongly negative free ener-
gies of formation (e.g., of alumina, yttria, etc.) are non-
reactive or metastable, with very slow rates of reaction.
In other cases, a true chemical reaction occurs, and the
resulting decrease of interfacial free energy usually yields
strong adhesion and a good wetting.! Such strong
adhesion is sought after in the elaboration of metal-
matrix composites’ or ceramics brazing alloys, for in-
stance. When the reaction is completed, and thermo-
dynamic equilibrium is reached, the metal is modified by
the diffusion of reaction products, and the substrate be-
comes either the initial insulator covered with adsorbed
species, or even a coating of an insulating solid phase pro-
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duced by the reaction. However, the new contact is once
again nonreactive.

Thus in most instances both types of adhesion merge
into the nonreactive one at long times. We focus our at-
tention on this case, for which it is worth noting that im-
portant efforts have been made to supply reliable experi-
mental data of wetting angles and adhesion energies,
especially on oxides like Al,05,> MgO, and SiO,, or car-
bides! like WC, TaC, SiC, or B,C. These two quantities
are related via the Dupré relation, which states that large
wetting angles correspond to small adhesion energies. It
is possible to sort out the pertinent parameters whose
variations are then related to a systematic variation of the
adhesion energy: Among these are the value of the Fermi
level of the metal, or its electronegativity, and the ionoco-
valent character of the insulator.*>

Yet, from a theoretical point of view, most calculations
of the adhesion energy W,; are phenomenological.
They use either macroscopic thermodynamic quantities
to represent the interactions>® without really explaining
the microscopic origin of adhesion, or privilege particular
electrostatic interactions like van der Waals forces,! im-
age forces’ or surface plasmons.® With one exception,’
these models do not rely on a true microscopic quantum-
mechanical description of the metal-insulator interface.
Finally, no real attempt was made, to our knowledge, to
include all energetic contributions in calculating W, :
the kinetic surface energy, the electrostatic energy of the
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interface dipole, the exchange and correlation contribu-
tions, and the short-range core-core repulsion at the
solid-liquid interface.

It is our aim to propose a simplified (mostly) analytical
microscopic model leading to a realistic evaluation of the
adhesion energy. This paper represents the first step in
that direction. It describes the modifications of the elec-
tronic states at the interface that we think are relevant
for understanding W,y. We calculate the electronic
structure of a compound insulator of the AB type by a
Green’s-function method associated with a tight-binding
approach. Two possible structures (NaCl rock salt and
ZnS zinc blende) are considered, and the ionocovalent
character of the insulator is included in a single parame-
ter equal to the ratio of the gap over a hopping energy.
Special emphasis is put on the complex dispersion rela-
tion at energies in the gap. The insulator electronic states
are then matched with metallic free-electron waves at the
(100) and (110) surfaces, respectively, for the NaCl and
ZnS structures. The density and penetration length of
the metallic states induced in the gap (MIGS) of the insu-
lator are calculated, and their dependence upon the metal
Fermi energy and the ionocovalent character of the insu-
lator is discussed. This goes beyond previous studies of
MIGS proposed in the literature which either were ap-
plied to specific metal-semiconductor systems (Al/GaAs,
Al/ZnS, and Al/ZnSe by the numerical methods in Refs.
10-12), or made use of a nearly-free-electron picture for
small-band-gap semiconductors.'>* Here we are able to
calculate the MIGS characteristics for realistic band
structures of insulators with various crystal structures.
We can also vary the ionocovalent character of the insu-
lator, ranging from covalent semiconductors to highly in-
sulating materials.

We self-consistently determine the Fermi level of the
total system by direct and analytical resolution of the
Poisson equation. We think that this part represents the
most original contribution of our work, compared to pre-
vious attempts, performed in the context of metal-
semiconductor interfaces. We also give an analytical ex-
pression of the Schottky-barrier height and its depen-
dence upon the metal electronegativity, valid in the
whole range of ionicity of the insulator, which fits satis-
factorily experimental determinations of these quantities.
A partial account of this work was already presented in
Ref. 15.

We describe in Sec. II the modifications of the elec-
tronic structure of an insulator at an interface with a
metal. Section III contains the self-consistent determina-
tion of the Fermi energy, while Sec. IV deals with a dis-
cussion of the Schottky-barrier height.

II. ELECTRONIC STRUCTURE
AT THE METAL-INSULATOR INTERFACE

A. Electronic structure of the insulator

We construct in this section a model of the electronic
structure of an insulator of the 4B type, crystallized in a
rock-salt or a zinc-blende structure. We will restrict our-
selves to a one-electron Hamiltonian involving a single
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orbital per site of energy € , for the anions (assumed to lie
at Bravais lattice points R) and € for the cations (locat-
ed at positions Y deduced from R by a translation v), and
a hopping term S for the electrons between neighboring
sites:

H=B 3 (|Ag){Cyl+|Cy){A4xD
(R,Y)

+5AZIAR>(AR|+8c2|CY)(Cy| . (2.1)
R Y

We wish to express the two-dimensional Fourier trans-
form of the Green’s function of the insulator
Gg(K,z;K,z"), suited to a later study of, respectively, a
(100) or a (110) surface. These surfaces have been chosen
for their high stability. In this notation of the Green’s
function, z and z' are the normal components of r and r’,
and K, is a two-dimensional (2D) wave vector parallel to
the interface. We make use of Bloch theorem to write the
wave functions in each energy band € under the form

Yi(r)=e*Tui(r), (2.2)

so that GE(K",Z;K”,z’) can be expressed as a function of
the projections G of the reciprocal lattice vectors on the
interface and as a function of the group velocity of the
electrons at an energy E, under the following form:

Gp(K,z;K,z")

ikS(K, —Gy)lz —z'|
e' 2 T2 [ui(G“,Z< )]*ui(G",Z>)

dE*/dk,(K,—G,kf(K,—G,))

“« 3

Gy kE(K ~G,e

’

(2.3)

with z, =max{z,z'}, z . =min{z,z'},
k=(K,—G,k;(K,—G,)). The kf(K,—G,) are the
poles of the Green’s function with a positive imaginary
part (i denotes the pole index).

It is proved in the Appendix that, provided that the
atomic orbitals are not too much localized on the ions
and that energy E under consideration does not approach
€4 or ¢ too closely, Gz(K,z;K,z’) may be approxi-
mated by the following expression:

eikz“(K")]z —2z'|

Gg(K,z;K,z')=N 3 - .
ekfUK)) dE*®/dk, (K, k;(K))
2.4)

The proportionality coefficient N is determined by using
the quantized value of the derivative discontinuity of G
as z approaches z'.!3

Of course, the space dependence of Gy is not fully
reproduced by such an expression, but nevertheless an
important part of the electronic structure is still included
in it through the group velocity and the k, wave vector.
This latter is of special importance at energies in the gap
of the insulator, since it accounts for the penetration
length of electrons.

For both structures that we have chosen, it is straight-
forward to obtain explicitly the properties of the band
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structure, and the expressions of the poles and of the
group velocity. Let us just note the following: (1) In this
model there is only one conduction band (e=+1) and
one valence band (e=—1). (2) The bottom of the con-
duction band lies at €, and the top of the valence band
at € 4, so that the minimum value of the gap is (ec—€ )
in both cases. Nevertheless, the gap width depends upon
K, (e 4+€c)/2 being always at the center of the total
gap. (3) When E lies in the upper half of the gap
[E>(ec+e,)/2], the poles are built from conduction-
band states (e=1), while in the lower half of the gap they
come from the valence-band states (e=—1). The center
of the gap thus represents a ‘“zero-charge point,” E,cp,
which means that the insulator bears a net charge as soon
as the Fermi level differs from E,cp. This concept was
introduced in the context of the Schottky barrier, first
thanks to a phase-shift approach,!® which is easy to per-
form in one-dimensional models. Later it was suggested!’
that this point could be determined by searching the
branch point of the complex band structure of the semi-
conductor for energies inside the gap. This is precisely
what we have done.

For the two structures that we have considered,
Gg(K,z;K,z’) takes a simple form as a function of the
interplane distance d parallel to the interface and of the
real and imaginary parts t+k, and k; of the pole (with
0<ky<m/d):

Gr(K,z;K,z')=(m /#)exp(—k,|z —2’|)

Xh(lz—2z']), 2.5)
where
h(Z)=[cos(kyZ)+cot(kyd)tanh(k d)sin(kyZ)]/X
(2.6)
and
X =kgycot(kyd)tanh(k,d)—k;=1/h(0) . (2.7)

The important point to note is that all electronic prop-
erties of the insulator at midgap can be expressed as a
function of only two parameters: one which scales the
energies with respect to a fixed one (e.g., the vacuum lev-
el), and the second which is the ratio (ec—€4)/B be-
tween the gap and the hopping energy. We are thus able
with this model to account for the properties of highly in-
sulating materials as well as covalent compound semicon-
ductors by simply letting this parameter vary from
infinity to zero. This is not possible when a nearly-free-
electron model is used. It will thus happen in the follow-
ing that we use the terms insulator or semiconductor
without distinction to refer to the part of the system that
presents a gap.

It is also interesting to compare our complex wave vec-
tor with the Franz interpolation'® used by Feuchtwang
et al.’? in the context of the Schottky barrier. The Franz
formula is an interpolation between the effective-mass ap-
proximations of the penetration length 1/k,; close to the
valence-band maximum and the conduction-band
minimum. At midgap, which represents the position of
the Fermi level in the insulator, we find for LiF and BaF,
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that 1/k, given by the Franz law is several times smaller
than the one deduced from our model. In our opinion,
the calculation of the midgap wave vector requires a
coherent description of the entire dispersion law, espe-
cially in the case of strongly ionic insulators. As the gap
becomes larger, Franz interpolation becomes more and
more inaccurate.

B. Electronic structure of the metal-insulator interface

In order to keep the lowest possible number of parame-
ters in our problem, we have chosen to describe the metal
by a jellium, whose eigenstates are plane waves. All the
metallic characteristics thus depend upon the usual quan-
tity », and the position of the bottom of the conduction
band E, with respect to the vacuum level. Let us assume
henceforth that the metal lies on the z <0 side of the in-
terface and the insulator lies on its z >0 side. In doing
so, we implicitly assume that the interface is abrupt,
which may be compatible with a nonreactive adhesion
process and possibly with a reactive one at thermo-
dynamical equilibrium. It is well recognized that a sim-
ple one-dimensional matching at a given K; may be
achieved, provided that the off-diagonal components
GE(K“,Z;K”+g,z') of the Green’s function can be
neglected with respect to the diagonal ones
Gyp(K,z;K|,z'). We prove in the Appendix that, under
the same assumptions as above, the terms
GE(K“,Z;K”+g,z’) indeed are small as soon as K does
not lie on a Brillouin-zone edge. Under such cir-
cumstances, the electronic wave function in the insulator
at a given K, and energy E is simply proportional to
Gg(K,z;K,0), given by Eq. (2.5) (this result can be de-
duced from a general theory of Green’s-function match-
ing!>?%). We restrict ourselves in the following to ener-
gies E lying in the gap, and calculate the amplitude and
penetration of a plane wave originating from the metal
and vanishing in the insulator.

The matching process involves reflection and transmis-
sion coefficients r and ¢ at the interface:

r=(K —X)/(X +iK) (2.8)

and

t =2iK /(X +iK) , (2.9

with X given by (2.7), and K, the z component of the wave
vector at a given K in the metal, given by

K*+K}=2m(E —E,)/# . (2.10)

The MIGS local density of states n (E,K,,z) at energy
E and parallel wave vector K per unit interface area is
proportional to the squared amplitude of the wave func-
tion. The local density of states n (E,z) per unit interface
area follows thanks to a summation over K, in the 2D
first Brillouin zone (BZ). We use the ‘“special points”
method first proposed by Chadi and Cohen?! for 3D in-
tegrals and developed in 2D geometry by Cunningham.22
Our numerical results show that the first- and second-
order approximations of this method are not accurate



6364

enough quantitatively and even qualitatively. This im-
plies that it is not possible to use a single special point,
which would have allowed us to achieve a complete
analytical analysis.

Once the density of states at a given K, is obtained, all
other integrated quantities follow, such as the total densi-
ty of states n (E), and the local density of states per unit
area n (E,z).

C. MIGS density of states

As is usual in these calculations,'®!31# the total density

of states n (E) in the insulator at energies in the gap has
flat minimum near the middle of the gap, and Van Hove
singularities at the gap edges. The type of divergence
differs for the NaCl and the ZnS structures. For NaCl,
the extrema of the conduction and valence bands are lo-
cated on a surface of two dimensions in the 2DBZ, and
the divergence is an inverse square root of the energy,
while for ZnS the same quantity is unidimensional, and
the divergence is logarithmic. It should be noticed that a
precise description of the band edges requires more spe-
cial points than anywhere else in the gap, and the validity
of the special-point method was checked there. At
midgap, we obtain typical values of 7.5X 1073
state/eV A? for the MIGS density of states n(E). This
value corresponds to € ,—E, =10 eV, ec.—¢,=4 eV,
B=1.5 eV, and a lattice parameter a =5.41 A, represen-
tative of the system Al/ZnS. It can be compared to the
results of Louie et al.'° obtained by a self-consistent
pseudopotential method on the same system. These au-

thors give a value of 1.4 X 102 state/eV A? for D, which
denotes the MIGS density of states at midgap
n[(ec+e,)/2]: yet, in their calculation, the minimum
of n(E) does not occur at midgap; the minimum density
of states is of the order of 1.1X 1072 state/eV A2, which
is rather close to our value.

The space dependence of the MIGS density of states is
represented in Fig. 1 for a ZnS type of interface, and for
two typical energy values, one near a band edge and one
at the center of the gap. In the first case the oscillating
behavior of n(E,z) is weakly damped, and it is clear that
the MIGS are gradually transforming into the propaga-
ting states expected in the valence or conduction bands.
On the opposite, at midgap, the amplitude of the oscilla-
tions is small, and the damping of the MIGS is max-
imum, typically of the order of the interplanar distance in
the insulator. It is interesting to note that the overall
space dependence of the MIGS density that we find is in
agreement with that obtained by Louie et al.!® numeri-
cally. This suggests that the simplification of the Green’s
function that we have made [Sec. II, Eq. (2.4)] preserves
the essential characteristics of the local density of states,
and it justifies a posteriori the use of this approximation.

With the idea of proceeding with analytical calcula-
tions in our study of the adhesion energy, we noticed that
the dominant feature of # (E,z) at midgap is its exponen-
tial decrease; on the opposite, the smallness of the oscilla-
tion amplitude makes this latter only a secondary feature,
and the simple exponential character is more and more
pronounced as (ec—e 4)/fB increases. For this reason,
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FIG. 1. MIGS local density of states n (E,z) at the interface
between a metal and a (110) surface of a semiconductor with a
zinc-blende structure using the following set of parameters:
e,—E,=10eV,ec—¢c =4 eV, =3 eV, and the lattice param-
eter a =5 A. n(E,z) was calculated for E =0.1 eV above the
valence-band maximum (solid line) and at midgap (dashed line).

we performed an exponential fit of n (E,z) at midgap:

n((e 4 +ec)/2,z)=ngpexp(—z/1,), (2.11)

with two parameters: the MIGS density at the interface
no=n((e 4 +€c)/2,z=0) and the penetration length /,.
Since in our approach the insulator is completely charac-
terized by the ratio (ec—¢ 4)/B, we find the important
result that n, and /, depend only on the ionocovalent
character of the insulator, and on the metal density of
states at midgap.

Figures (2a) and (2b) display the variations of n, and /,
with (ec—e,)/B. It is found that n, does not vary
strongly with (e —¢€ 4)/pB, in contrast with the penetra-
tion length, which decreases rapidly with increasing ioni-
city. This can be easily understood because as the gap in-
creases, the electronic waves at midgap lose the propaga-
tive character of the conduction and valence states, and
thus become more and more damped (1//, is roughly
proportional to an average value of the imaginary part of
the pole wave vector k; over the 2DBZ).

On the other hand, n, is strongly dependent on the
metal density of states because variations of the latter in-
duce large variations of the transmission coefficient ¢ at
the interface: n, is roughly proportional to K /(K2+X?),
and thus presents a maximum at K=X and a 1/K de-
crease at large-K values. This behavior appears in Fig. 3,
which displays the variations of n, versus € , —E, (in-
creasing values of this energy shift imply increasing metal
density of states at midgap). By contrast, the dependence
of [, upon £ , —E_ is very weak, and would be completely
vanishing if /, were calculated with a single special point.

Before concluding this section, it is worth stressing
that on the insulating side of the interface, the MIGS
represent new available states, compared to those of the
isolated insulator. Their appearance is accompanied by a
decrease in the number of states in the conduction and
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valence bands.!®? When the electrons fill these states, it
is found that charge neutrality occurs only if the MIGS
are filled up to the zero-charge point discussed previous-
ly, which in our model coincides with midgap.

III. SELF-CONSISTENT DETERMINATION
OF THE FERMI ENERGY

In order to fully characterize the electronic structure
at the metal-insulator interface, it is necessary to self-
consistently account for the electric field created by the
dipole induced by the electron transfer subsequent to the
mismatch between the metal Fermi energy and the zero-
charge point of the insulator. To perform this self-
consistent procedure, we are helped by the simple analyt-
ical form of the local densities of states on both sides of
the interface, and we will use a Thomas-Fermi approxi-
mation for the screening effects.

Let us call ¥V (z) the electric potential, averaged over
the surface, created by a charge distribution p(z); V' (z) is
related to p(z) by the Poisson equation

n (states/eV 3\3)
0

0.02-
oo
i _____ ZnS (110)
.......... NaCl (100)
0.0 T T T T T T T ! :
o : 2 3 4 5 6 7 8 9 0
(a) (€c ~ €a) /B
1 al
o/
0.8
0.6 ___ NaCl (100)
.......... ZnS (10)
04y
024 ™
00 T T T T T T T T : '
o 1 2 3 4 5 8 7 8 9 1
(b) (€c — €a)/B

FIG. 2. MIGS local density of states n, at the interface (a)
and MIGS penetration length /, (b) at the midgap vs the ratio of
the gapwidth to the hopping energy of the insulator for both
types of insulator structures and surfaces; the parameter values
are € 4, —E,=6 eV and the lattice parameter ¢ =5 A.
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n (states/eV R°)
o ___ ZnS (10)
.......... NaCl (100)
0.015
0,0'I‘\
0.0054
0.0 T T T T T T J ! ' N
0 2 4 6 8 v 12 1% 1B 1B 20
€a — Ec¢ (eV)

FIG. 3. MIGS local density of states n, at the interface and
at midgap vs € , —E, for both types of insulator structures and
surfaces; the parameter values are ec—¢ =5 eV, f=1.5 eV,
and the lattice parameter a =5 A. The dependence of n, and ,
upon € 4, —E, mimics the role of the metal density of states.

d*v
dz?

€, is the dielectric constant, equal to €, in the metal
(z <0) and to €y¢; in the insulator (z >0). Let n,,(E)
denote the metal density of states, and E,cp the point of
charge neutrality of the insulator in the absence of any
dipole energy shift. In a Thomas-Fermi approximation,
the charge density on the metallic side of the interface
(z <0) reads

=—plz)/e, . (3.1)

p(z)=—en,,(Ep)[—eV(z)], (3.2)
while, on the insulator side (z > 0)
p(z)=—engexp(—z/l)[Ep—Ezcp+eV(z)] . (3.3)

Two points should be noted. First, it is not necessary
to know the modifications of the insulator valence- and
conduction-band density of states to calculate p(z). Only
the departure of the Fermi level from the zero-charge
point is relevant, and as a consequence, within a
Thomas-Fermi approximation, only the density of MIGS
at midgap is required. The second point concerns the
similarity in our way of treating the metal and the insula-
tor screening processes, which may seem surprising at
first sight. Actually, in a range of distances of the order
of IIJ from the interface, the MIGS confer a metallic be-
havior to the insulator, with the possibility of elementary
excitations of zero energy. In this space region, the insu-
lator thus possesses two kinds of polarizability: an ionic
one, which we account for in the dielectric constant ¢;,
and a metallic one, a function of the MIGS density.

Due to the simplicity of the space dependence of p(z),
it is possible to solve exactly the Poisson equation for this
system. We introduce /,, and [;, equal, respectively, to
the metal and insulator Thomas-Fermi lengths:
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1, =[ey/e*n,,(Ep)]'?, (3.4)
I;=(eqe; /e*ng)' % . (3.5)

Let a and o' denote two matching coefficients, and
Iy(x) and I,(x)=1y(x) the two first modified Bessel func-
tions;** the general solution for the potential on both
sides of the interface is the following:

V(z)=(Ezcp—Er)/e

+aly(2l,exp(—z/21,)/1;) , z>0, (3.6)
V(z)=a'exp(z/1,,), (z<0) (3.7
which straightforwardly yields for z >0
eV(z)=(Ezcp—Erp)

— Iy(2l,exp(—z/21,)/1;)
Iy(21, /1) + (1L, /1)e 1 (2L, /1) |

X

(3.8)

The potential ¥V (z) is induced by the perturbing poten-
tial (E,-p — E) via screening effects. A quick inspection
of the results shows that the two limiting cases where the
MIGS density n,, is either very large or very small indeed
have the expected behavior: in the first case, achieved for
covalent semiconductors, lp /l; goes to + o, and the
screening processes are very efficient; the induced poten-
tial is equal to the external one. The Fermi level is
pinned at the position of the zero-charge point of the in-
sulator. In the other limit where few MIGS are available,
the screening is inefficient: the induced potential is close
to zero. The Fermi level of the system is imposed by the
metal, and can lie anywhere in the insulator gap. Equa-
tion (3.8) provides an analytical expression for the poten-
tial valid for any value of the MIGS density lying be-
tween these two limits (Fig. 4). It should be noted, that,
up to now, no such analytical self-consistent determina-
tion of the Fermi level has been proposed in the litera-
ture, to our knowledge. There exist numerical resolu-
tions, by means of the self-consistent pseudopotential
method, for instance.!”!2 There exists also a model in
which the dipole is approximated by a planar capacitor,
the positive charge and the negative charge being local-
ized at a distance from the interface of the order of
screening length.?> We will come back to this point in
the following section.

Moreover, it appears in our calculation that a precise
determination of Ej relies on a good knowledge of 1/k;,
at midgap. For such an energy, we have proved in Sec.
II A that the effective-mass approximation involved in
the Franz formula'® is increasingly inaccurate as the gap
increases. It was thus important to make a realistic mod-
el of the dispersion relation of the insulator.

Up to this point, we have made a thorough description
of the metal-insulator interface, with special emphasis on
the metallic states induced in the gap of the insulator,
and on the location of the Fermi energy. This represents
the first step in our study of the adhesion energy of liquid
metals on insulators. The calculation of the various ener-
gy contributions is postponed to a following paper. Yet,
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FIG. 4. Local distortions of the metal and insulator band
structures induced by the interface dipole potential. The Fermi
level remains constant in all space.

since our model of the insulator allows us to consider the
whole range of ionicity, we have reconsidered the prob-
lem of the Schottky-barrier height, popular in the field of
metal semiconductor junctions. It is presented in the
next section.

IV. THE SCHOTTKY-BARRIER HEIGHT

The first model accounting for the barrier height ®p
between a metal and a semiconductor goes back to
Schottky,?® who proposed that the energy necessary to
excite an electron from the metal Fermi level E; to the
bottom of the semiconductor conduction band is simply
equal to the difference between the metal work function
®,, and the semiconductor affinity (Fig. 4). Later experi-
ments proved that this law was not obeyed for most of
the existing contacts, and this led Bardeen?’ to propose
that intrinsic surface states of the semiconductor provid-
ed a large density of state in the gap, which pinned the
Fermi level at the surface states energy: under such cir-
cumstances, ®; becomes independent of the metal elec-
tronegativity, as observed in a number of systems. The
Schottky and Bardeen models represent two extreme situ-
ations, which apply, respectively, to highly insulating and
very covalent semiconductor-metal junctions. They were
later developed and gave birth to the two families of ap-
proached now existing in this field, namely the induced
density of interface states model and the defect model (for
a review, see, e.g., Refs. 28—-31). Considering our model
of the interface, we will be only able here to compare our
results with the first family, which suits to a perfect and
abrupt contact between a thick metallic overlayer and a
semiconductor.

The induced density of interface states model stresses
the importance of the MIGS in fixing the barrier height
®p. With our notations (cf. Fig. 4), ®p is simply related
to the Fermi energy, the bottom of the conduction-band
energy €. (in the absence of any dipole shift), and the
electrical potential V' (z)
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Cp=¢—Ep—eV(+w), 4.1)

which assumes that deep inside the metal there is no mac-
roscopic charge [V (— o )=0].

When a covalent semiconductor is involved in the junc-
tion, the density of MIGS is large, so that
Ep=E;cp—eV(+ ). The Schottky barrier becomes in-
dependent of the characteristics of the metal used for the
junction:

¢SBF:EC_-EZCP N (4.2)
(“sc”” standing for “screened”) because the Fermi level is
pinned at the zero-charge point. A number of numerical
studies, most of them using the pseudopotential method,
have satisfactorily described this limit, achiev-
ing!610:12.32.33 or not achieving®343° the self-consistent
procedure.

When the ionic character of the semiconductor in-
creases, the density of MIGS decreases and can no longer
screen the difference between Ep and E,cp. A proper
consideration of screening effects is thus necessary to ac-
count for the large variations of position of the Fermi lev-
el in the gap. Indeed, only the numerical calculations
that included the self-consistency!° ™ '? were able to repro-
duce the variation S of the Schottky-barrier height as a
function of the electronegativity of the metal,’®3’ while
the non-self-consistent approaches® concluded that
many-body effects were perhaps responsible for the ob-
served behavior. Restricted to the very ionic limit, a
self-consistent analytical approach was also performed!®
to interpret experiments on LiF and BaF,. In the ex-
treme ionic limit, the Schottky barrier becomes equal to
the value proposed by Schottky (‘““‘uns” standing for ‘“‘un-
screened”):

us—g . —Ep . 4.3)

Compared to these studies, our approach has the ad-
vantage of giving an analytical expression for @5 valid in
the whole range of ionicity of the semiconductor, based
upon a microscopic description of the states at the inter-
face. It is, in spirit, similar to that of Feuchtwang,19 but
our calculation of the charge density at the interface is
more general than his, which makes use of the Franz ap-
proximation!® for the insulator, and which is valid only
when a very small density of MIGS exists. Moreover,
this author, following a model by Cowley and Sze,? as-
sumes that the charge density can be approximated by a
capacitor with an ad hoc thickness, while we have been
able, for the first time, to integrate the Poisson equation.
Consequently, instead of writing an interpolation of the
type

Oy =07 /w +PF(1—1/w) (4.4)
with a phenomenological parameter w such that
0<1/w <1, we are able to reach a similar expression and
to assign to w the meaning of an effective dielectric con-

stant:
w=1y(21,/1;)+e;(1,, /I)1,(21,/1;) . 4.5)

We can also write down an analytical expression for the
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index of interface behavior S which is the derivative of
the Schottky-barrier height with respect to the metal
electronegativity:

S=A/w . (4.6)

Equation (4.6) was obtained by deriving the factor
(Ep—Ezpc) in V(z) with respect to the metal electrone-
gativity X,, (A denotes —dE/dX,,). On the other hand,
we have neglected the dependence of w upon X,,, which
gives corrections smaller than 10%. Equations (4.5) and
(4.6) are interesting because they can be compared to the
one derived from the model of Cowley and Sze:*

S=A4/(1+e’D,l z/¢,) . 4.7)

In this equation, D, is the density of interface states,
and /4 is the effective thickness of the capacitor. /. is
generally evaluated as the sum of a metallic length (the
Thomas-Fermi screening length divided by a metallic
dielectric constant) plus a semiconducting one (the intera-
tomic distance or mean penetration length of the MIGS
from Louie et al.,'° divided by the semiconductor dielec-
tric constant). Our general expression [Eq. (4.5)] yields
(4.7) only in a limiting case, namely when the ionic char-
acter of the insulator is large. In that case the ratio /,/l;
goes to zero and it is licit to perform a polynomial devel-
opment of the Bessel functions to lowest order. We find

A
S= .
1+e (L, /I, /e, +1,,)

(4.8)

Equation (4.8) is equivalent to (4.7) because
D;=n((ec+e ,)/2)=nyl,, which is found by integrating
Eq. (2.11) over z, and because n,l, =€¢;1, /(el; )2.

However, when the ionic character of the insulator de-
creases, the approximate form of S (4.7) gets increasingly
less accurate: we find that the relative error on S is of the
order of 5% for MgO, 30% for ZnS, and 200% for GaAs
(the approximate form being overevaluated). This hap-
pens because in the semiconductor there is a competition
between two characteristic lengths in limiting the MIGS
penetration: /,, the MIGS damping length, and /;, the
MIGS metallic screening length. In the ionic limit, /, is
much smaller than /;, and thus J, is the correct length to
consider. However, in the other limit, in which, unfor-
tunately, (4.7) was mostly used, /; limits the charge
penetration instead of /,. An approximate expression for
S can still be derived that makes use of the asymptotic
form of the Bessel functions when [, /I; >>1:

S~ A(4rl, /1) exp(—21,/1;) /(1 +€1, /1;) . (4.9

Another interesting feature in the expressions (4.5) and
(4.6) of S is that all characteristics of the “semiconduc-
tor” are included in the ratio (ec—e¢,)/B. There has
been a debate in the literature concerning the pertinent
way of representing the variations of .S for various semi-
conductors. Most of the authors followed the compila-
tion of experimental data performed by Kurtin and
MCcGill,*® which was done as a function of the electrone-
gativity difference (X 4 —X) between the anions and cat-
ions of the semiconductor. One of the reasons was the
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striking behavior of S in this representation, which
seemed to reveal an abrupt separation between covalent
semiconductors and ionic ones. Later, Schliiter’’
reanalyzed the experimental data with their error bars,
and concluded that the transition was actually very
smooth. Cohen’® stressed that (X ,—X.) was not the
pertinent parameter because a semiconductor with a sin-
gle type of atoms, like diamond, had a nonzero S value.
He proposed to use instead the product of the gap times
the surface cell area. Actually, our pertinent parameter
(ec—e 4)/B is very close to the latter, considering that a
good order of magnitude of the hopping integrals is
given by Harrison’s empirical law3*~4! in one over the
squared interatomic distance.

We have represented in Figs. 5(a) and 5(b) the varia-
tions of S versus (ec—e,)/B for a NaCl(100) and a
ZnS(110) type of interface and three positions of the Fer-
mi level corresponding typically to one, two, and three
valence electrons per atom in the metal. We have taken a
value of 1 for € to obtain these curves because the
penetration length at midgap is in all cases smaller than
the interatomic distance, so that the ionic polarizability is
not very efficient. Louie et al.!? justified the use of ;=2
for GaAs and Si with the argument that the penetration

S

15
1.0

0.5+

0.0

(b) (€c - €a)/B

FIG. 5. Index of interface behavior S (in eV) as a function of
the ratio (ec—¢e 4)/B of the gapwidth over the insulator hop-
ping energy for NaCl(100) (a) and ZnS(110) (b) types of surfaces
and for typical values of the parameter € ;, —E,.
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length averaged over the gap was equal to 2.8 and 3 A,
respectively. Since the relevant /, at midgap is several
times smaller than the averaged one, we found that €; =1
was a better compromise.

S increases continuously from S =0, in the most co-
valent case, to a maximum value theoretically equal to 4,
but which hardly exceeds A /2 for realistic values of the
ratio (ec —€ 4)/B [we have taken 4 =2.9 in Figs. 5 and 6
since work-function data yield a value of A4 ranging from
2 to 3 (Ref. 19)]. This is the order of magnitude experi-
mentally found in LiF and BaF,,** and also evaluated by
Cohen for a hypothetical extremely ionic compound with
a gap equal to 20 eV.

We find that the increase of S with the density of me-
tallic electrons is very weak due to the slow variation of
the MIGS density with this quantity. We also find that
the crystallographic structure of the semiconductor in-
duces only small changes in S [Figs. 5(a) and 5(b)]. An
average curve can thus be defined that can be compared
with the experimental values.

Figure 6 represents that average theoretical S curve
that we obtain, superimposed on the experimental points
as compiled by Schliiter,’” Kurtin and McGill,*¢ and Pau-
dyal and Pong.*? It should be kept in mind that in most
cases the experimental error bar was estimated at 20%,
which is also the order of magnitude of the variations of
S with the metal and the crystallographic structure. We
have not reported the data on diamond, silicium, and ger-
manium, which cannot be accounted for by our model.
The overall agreement is good, better than we would have
expected, considering the crudeness in the description of
the semiconductor (a single orbital per site, while all com-
pounds at least involve s and p orbitals). This may mean
that the Schottky-barrier height depends upon integrated
quantities of the band structure rather than upon tiny de-
tails of this latter. In that sense it shares this property

AR ]

h—GaTe

b—Si i—CdSe p—AN
c—InSb  j-SiC  g-SiO,
d—inP  k—ZnSe r—ZnO
05+ e—GaAs |1-GaSe s—Al,Q,
’ f—CdTe m—-CdS t-LiF
g—GaP n—GaS u—BdF,
o]
cl 7
00 =T T T T T T T T T T
(o] 1 2 3 4 5 6 7 8 9 10
(éc - €a)/B

FIG. 6. Index of interface behavior S (in eV) as a function of
the ratio (ec—¢,)/B of the gapwidth over the insulator hop-
ping energy. Solid and dashed lines are the present theoretical
estimates for ZnS(110) (solid line) and NaCl(100) (dashed line)
surfaces, calculated for an average electron density in the metal
(e ,—E.=10 eV). We have reported experimental values found
in the literature (Refs. 36, 37, and 42) with their error bars.
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with surface energies (the first models of surface energies
of transition metals assumed a rectangular density of
states) and this is encouraging for our future evaluation
of the adhesion energy of liquid metals on insulators.

V. CONCLUSION

We have made a quasianalytical model of a metal-
insulator perfect and abrupt interface in order to study
nonreactive adhesion processes of liquid metals on insula-
tors. This paper represents the first part of this study. It
deals with the description of the electronic states at the
interface, and we postpone the evaluation of the energy
contributions to the adhesion energy to a forthcoming
paper.

The insulator electronic structure is modeled by a
tight-binding approach in which a single nondegenerated
atomic orbital per anion and per cation is considered.
Two crystal structures were accounted for: the NaCl
rock-salt and the ZnS zinc-blende ones. We focused our
interest on the complex band structure for energies inside
the gap, and showed that for both structures the zero-
charge point was at midgap.

We performed a matching procedure between the insu-
lator states and free-electron waves characterizing a jelli-
um, at the (100) and (110) surfaces, respectively, most
stable for the NaCl and ZnS structures. For energies in-
side the gap, our quasianalytical description of the MIGS
is in good agreement with numerical estimates obtained
by the pseudopotential method. At midgap, we charac-
terized the MIGS by two parameters: the density of
MIGS at the interface, and the penetration length, and
we studied the variations of these parameters with the
metal Fermi energy and the insulator ionocovalent char-
acter. Letting the ionocovalent character vary from zero
to infinity allows a description of a whole range of inter-
faces: from the covalent semiconductor-metal interface
to the highly insulating material-metal interfaces.

Then we performed a self-consistent analytical resolu-
tion of the Poisson equation, thanks to a Thomas-Fermi
description of the screening processes. The position of
the Fermi level was thus obtained, in an analytical way,
not only in the limiting cases of very large or very small
densities of MIGS, but also in the whole range of values
between these two limits. This represents considerable
progress compared to the phenomenological capacitor
model generally used in this field.

Although this was not our purpose in undertaking this
study, we were able at that point to give an analytical ex-
pression for the Schottky-barrier height ®5 and the index
of interface behavior S, and describe quantitatively how
these quantities depend upon the ionocovalent character
of the semiconductor, on the metal Fermi energy, on the
crystallographic structure, etc. Our results are in good
qualitative agreement with experimental data compiled in
the literature. They also allow a discussion of the limit of
validity of the capacitor model, which turns out to be re-
stricted to the highly ionic limit. This was not the limit
in which it was generally applied. The highest attainable
values of S that we find hardly reach half the Schottky
limit, in good agreement with experimental as well as pre-
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vious theoretical estimates.

Finally, concerning the problem of adhesion and wet-
ting of nonreactive metal-insulator flat and defectless in-
terfaces, our work yields two conclusions:

(i) It first shows that in such systems, for which
adhesion and wetting processes are mostly of electronic
nature (no interdiffusion), the depth of interaction is
determined by the interface modifications of the electron-
ic structures and thus is of the order of the penetration
length of the MIGS averaged over the gap. In the case of
strongly ionic insulators, this length is a small portion of
the distance between two neighboring atomic planes of
the insulator parallel to the interface, while it becomes of
the same order of magnitude for highly covalent semicon-
ductors. It can never exceed this typical distance.

(ii) Furthermore, the three electronic energetic contri-
butions to the metal-insulator interface energy (the kinet-
ic, electrostatic, and exchange and correlation ones) are
principally driven, as well as all the other electronic prop-
erties that we have previously discussed, by the value of
the Fermi energy of the metal with respect to a reference
energy, and by the ratio (e-—¢e ,)/B, which represents
the ionic character of the insulator. Moreover, we have
proved that the electronic properties of such interfaces
do not depend much upon either the crystallographic
structure of the insulator, or upon the orientation of the
interface, and it is encouraging to notice that this is also
true for wetting angles and adhesion energies.
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APPENDIX

We derive in this appendix a simplified expression for
the insulator Green’s function, valid when atomic orbit-
als on anions and cations have a reasonable overlap, with
an accuracy of a few percent at midgap. We also show
that under the same conditions, Gp(K,z;Ktg,z’) is
small with respect to Gz(K,z;K,z"), g denoting a vec-
tor of the 2D reciprocal lattice.

In a tight-binding approach, with one atomic orbital by
anion [ 4 (r)] or cation [C(r)], the Bloch functions ug(r)
[cf. Eq. (2.2)] can be expressed as

ui(r)=3 e*RDpE(r—R), (A1)
R
with
Pi(r)=ay A (r)+r,C(r—v) . (A2)

Symmetry arguments valid for the two crystallographic
structures under consideration show that
(K, —G;k;(K;—G,)) differs from (K,k;(K)) only by
a vector of the 3D reciprocal lattice. Since coefficients ajf
and 7y and dE*®(k)/dk, have the k periodicity of the 3D
reciprocal lattice, one can prove that the sum over G” in-
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volved in Eq. (2.3) can be achieved, and that this sum can
be restricted to the poles kf"(K”) with a real part ranging
from —/d to w/d (the addition of 27j /d to k,, where d
is the interplanar distance parallel to the interface, leaves
the current term of the series invariant). Consequently

MV se (2 stz )

dE*/dk,(K,,k5(K,))

’

Gp(K,z;Kpz )= 3

& kE(K))
(A3)
where k=(K, kfi(K|[)) and
Si(=3 " KM Kz —pd) . (A%
p

p denotes an integer in this equation. The p summation
in real space may be replaced by a ¢ summation (g denot-
ing an integer) in reciprocal space by introducing the ®,
Fourier transform

Si(z)x 3 SY(z), (AS)
q
where
Si"(z)=e2”i""/d¢§(K[‘, kfi(K||)+21rq /d) . (A6)

Since ®{(k’) decreases at large |k’| values, the largest
term of the sum is the ¢ =0 one, which corresponds to
the minimum length of K, k;(K,)+2mg/d . Keeping
only this term in the sum yields simply Eq. (2.4).

We now prove that the accuracy of this approximation
is increasingly better as the atomic orbitals A4(r) and
C(r) have a wider extension. We suppose that the atomic
wave functions are Gaussian functions with the same
width o:

A(r)=C(r)xexp(—r2/20?) . (A7)

o must be of the order of half the nearest-neighbor dis-
tance to yield a hopping energy 3 of the order of 1 eV; we
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keep this value of o in the following discussion. The ra-
tio of the gth term over the g =0 one is equal to

|S59 /S | =exp[ —87%(0 /d)*q(q+kod /m)],  (AB)

where =Tk, are the real parts of the poles and
0=(kod/m)<1. It is very quickly vanishing with in-
creasing |g|. However, it is of the order of 1, for g==1,
as soon as kgm/d approaches 1, which happens only
when the energy E approaches the gap edges. This is not
the range in which we are primarily interested. At
midgap, we calculate that in the most unfavorable condi-
tions (a very covalent semiconductor, and with K“ near
the edge of the BZ), |Si"’=i1 /S| is around 4% for the
NaCl structure and 1% for the ZnS structure. Other
terms are completely negligible. The conclusion is that
approximation (2.4) is rather accurate, especially at
midgap.

Under the same conditions, the off-diagonal com-
ponents of the 2D Fourier transform of the Green’s func-
tion can be written

|Gx(K,z; K, +g,z")|
IGE(K”,Z ;K“azl)'

=exp[ —20%|K,+gl>—|K,|®)] .
I I

(A9)

Equation (A9) prove that we can disregard all
Gp(K,z;K +g,z") terms (g#0) with respect to
GE(K”,Z;K”,Z’) as soon as K does not approach a BZ
edge. Indeed, no special point used in the K summation
is located on the BZ edges. In order to estimate more
quantitatively the accuracy of this approximation, we cal-
culate the ratio (A9) in the case of a single special point,
and with o of the order of the half-nearest-neighbor dis-
tance. We find that the maximum value of this ratio is of
the order of 0.7% for the NaCl structure and 14% for
the ZnS structure.

Summing up all these results shows that the MIGS
density at midgap is obtained with an accuracy of better
than 5% (the NaCl structure) and 15% (the ZnS struc-
ture).
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