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The electronic transport in a finite-size sample under the presence of inelastic processes, such as
electron-phonon interaction, can be described with the generalized Landauer-Buttiker equations
(GLBE). These use the equivalence between the inelastic channels and a continuous distribution of volt-
age probes to establish a current balance. The essential parameters in the GLBE are the transmission
probabilities, T(r„,r ), from a channel at position r to one at r„. A formal solution of the GLBE can
be written as an effective transmittance T(r„,r ) which satisfies T(r„,r ) =T(r„,r )
+ Jdr; T(r„,r;)g;T(r;, r ), where 1/g; = f dr, T(r, , r;}. The T's are obtained from the Green's func-

tions of a Hamiltonian which models the electronic structure of the sample (with density of states No,
Fermi velocity U, mean free path l, and localization length A, I ), the geometrical constraints, the mea-
surement probes, and the electron-phonon interaction (providing the inelastic rate 1/~;„). By using
known results for the Green's functions of infinite systems in dimension d, we show that T defined in the
above equation describes a conductivity of the form o.d =2e DdNO. In the ballistic regime (U~;„&l ) the
conductance is limited by inelastic scattering and the diffusion coefFicient is Dd = U z;„/d. In the metallic
regime of weak disorder (U~;„&&A,), we obtain Dd =Dd —=Ul/d. These results, derived from microscopic
principles, formalize an earlier picture of Thouless. Hence, we obtain the weak-localization correction
for a quasi-one-dimensional case as a factor [1—(D, v;„i ~ /k] in the diffusion coefftcient. For strong lo-
calization (k«D&~;„) we get D& =A, /3~;„. The wide range of validity of the whole description gives
further support to the GLBE which are then very appropriate to deal with transport not only in meso-
scopic systems but also in macroscopic systems in the presence of inelastic processes.

I. INTRODUCTION

In the past decade, the continued drive toward mini-
aturization of electronic devices required the evaluation
of the conductance of small samples. ' Many authors opt-
ed for some of the variants of the Landauer formula,
which represent an alternative to the traditional
Boltzmann and Kubo equations. This is because while
the latter remained more appropriate to describe macro-
scopic samples, ' the former gives a very direct and in-
tuitive way to deal with small samples. The original Lan-
dauer formula considers a sample with contacts to two
perfect conductors (L and R), each connected to an elec-
tron reservoir. The difFerence between their chemical po-
tentials (pl and ptt) produces a current through the sam-
ple proportional to the transmission probability Tz I
from conductor I. to R. In order to evaluate the conduc-
tance associated with the sample region one needs to
define the voltage drop in this region. Clearly it is not the
voltage difFerence between the reservoirs connected to the
current leads R and 1., because some voltage must drop
inside the leads. One possibility is to measure the chemi-
cal potentials associated with the charge pileup and
charge depletion at the contact regions A and 8 where
the current leads inject and extract current. These deter-
mine the voltage drop across the sample
V=(p, „—pz)/e. Landauer estimated their difference as
(p„—}M~)=1—TL z )(pL ptt ). Considering —the spin de-
generacy, Landauer's conductance results:

2 T2e RL
h 1 —T~ I.

In general, the transmission coe%cient should include all
the physical processes that afFect an electron in its transit
through the sample. However, since only coherent quan-
tum tunneling can be evaluated from a simple model
Hamiltonian, it is usual to require that complicated pro-
cesses beyond the quantum coherent tunneling occur only
in the reservoirs connected to the leads. In that case
TI ~ is the quantum transmittance for a particle with
Fermi energy, c.z=p . Therefore there are two condi-
tions which have been essential for the applicability of
this formula: (a) The inelastic and phase-relaxation pro-
cesses occur only in the reservoirs connected to the leads
and (b) Eq. (1.1) implicitly requires the presence of two
additional probes A and 8 (e.g. , two other leads). These
should have an interaction with the system which is weak
enough to be considered noninvasive but still allow one to
measure the chemical potential. Although the first of the
requirements restricts the range of applicability of the
formula, it can be conveniently achieved experimentally
by controlling the sample size, temperature range, and
impurity type. The second condition has been more
polemic. From the theoretical side, early deductions of
(1.1) from the Kubo formula found difficulties in the
definition of the voltage drop inside the sample, with the
consequent loss of the denominator in (1.1). Engquist
and Anderson emphasized that this voltage drop inside
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I„=2e(J„—J„) (n =1,2, . . . , M)

=2— g T„5p —(1—R„„)5p„
m

(m&n)

(1.2)

At least two of the channels should act as current source
and sink, and hence they have an externally fixed
difference in their chemical potentials. The others, being
voltage probes, present a cancellation in the net current
and their chemical potentials 6p„must be adjusted to
fulfill this condition. Equation (1.2) together with these
boundary conditions are the Landauer-Buttiker equa-
tions. Then the chemical potential in the voltage probes
and the currents at the current leads must be determined
using the system of equations (1.2). By using phenomeno-
logical guesses for the transmission coefficients, these
equations were successfully used to describe a wide
variety of experiments. Besides, Eq. (1.1) can be reob-
tained' from Eq. (1.2) if some interferences are neglect-
ed. '

Of course, the most desirable situation is to evaluate
the transmission probabilities using an electronic Hamil-
tonian which describes the sample with leads. This has
the advantage that all the interferences are taken into ac-
count exactly. As a general rule it is more fundamental
(and safe) to make physical approximations in the model-
ing of Hamiltonians rather than in the transmittances.
However, we mentioned that in many experimental situa-
tions the electrons can spend enough time inside the sam-
ple to lose their phase coherence due to the collisions
with phonons, magnetic impurities, or other electrons.
Therefore a description limited to the coherent propaga-
tion through the sample may not be a good enough ap-
proximation. The author in collaboration with
D'Amato' and independently Datta, " have proposed a
way to overcome this computational limitation of the

the sample should be measured through actual voltage
probes which in turn introduce some phase randomiza-
tion in the quantum states. From the experimental as-
pect, the common situation is that voltage probes are
indeed invasive to some degree and hence should be con-
sidered as part of the system.

The decisive advance over the second limitation is due
to Biittiker, who extended the Landauer and Engquist-
Anderson ideas to the consideration of a sample with
many (M) leads or channels, each connected to a reser-
voir characterized by a chemical potential p„=p +5@„,
with n =1,2, . . . , M. As in the original Landauer ap-
proach, each reservoir is able to absorb any electron
entering the lead, while it injects electrons back with a
distribution of energies given by the Fermi occupation
factor f (E p„)—. The net electric current at each channel
n is determined by the balance between the "in" and
"out" particle currents, J„and J„, respectively. This
can be expressed in terms of the chemical potentials and
the quantum transmission probabilities T„ from chan-
nel m to channel n and the reAection probability
R„„=1 — g T „ for a particle coming from channel

m(Wn)

+ g g T„,gT, „gkT~+
J k

(nWj Wm )(nWkWm )

(1.3)

Here 1/g„= 1 —R„„and the summation index runs over
inelastic channels and voltage probes. T can also be in-
terpreted as a two-probe conductance in units of 2e /h.
Notice that the occupation factors do not appear explicit-
ly because the self-consistent chemical potentials have
been written in terms of the transmission coefficients.
Each factor g; indicates that, in its journey between
current channels m and n, an electron has entered the in-
termediate channel i and then returned incoherently to
the sample. The discussion of the physical meaning of
this equation will be expanded throughout this paper.

Notice that the GLBE are well suited (but do not need)
to use real space representation, while the traditional
forms of the Kubo formula are evaluated in the momen-
turn representation resorting to ensemble averages. This
gives some advantage to the 6rst method, because not us-
ing ensemble averages it describes exactly the quantum
interferences of a particular mesoscopic device. Howev-
er, one might think that this is also a limitation as it
could not deal with macroscopic transport. The present
paper intends to show that this is not the case. We will
prove that Eq. (1.3) also describes most of the known sit-
uations of transport in macroscopic samples. For this,
we will need to relate the transmission probabilities to

Landauer approach concerning the inelastic processes in-
side the sample. Our work exploited a seminal idea of
Buttiker, ' also advocated by other authors, ' according
to which the voltage probes are equivalent to inelastic
processes. In fact, we proved that both give a lifetime to
the electron states, and in both cases no current leaves
the sample. Therefore Eq. (1.2) remains valid with the
boundary conditions of zero current in the inelastic chan-
nels. These are what we call the generalized Landauer-
Biittiker equations (GLBE). It should be clear that this
identification is not heuristic but based on a well-defined
model Hamiltonian which describes the sample, the
leads, and the electron-phonon interaction. Within this
context Eq. (1.2) can be deduced" using the Keldysh
technique' in the linear response regime. We will show
in the next section how the transmission coefficients are
obtained from the Green's functions.

Once we know the transmission coefficients, the next
step is to solve (1.2), obtain the local quasiequilibrium
chemical potentials, and evaluate the currents. In Ref. 10
we have solved Eq. (1.2) with the condition that only
channels m and n act as current source and drain. We
found that the current between these channels results
proportional to an effective transmission probabilityT„. Then, T„represents a dimensionless conduc-
tance. In Ref. 10, this conductance was evaluated both
analytically and numerically for various one-dimensional
situations representing samples of finite size. Following
that procedure, it is easy to show that T has a series ex-
pansion of the form

T„=T„+ g T„jgjTJ
J

(nW jWm )
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II. THE GENERAI. IZED
LANDAUKR-BUTTIKKR EQUATIONS

Formulation in terms of Green's functions

In order to describe the quantum nature of transport
we need to define a Hamiltonian. We describe the isolat-
ed sample by a tight-binding Harniltonian with one orbit-
al at each point r„(with n =1, . . . , M) of a hypercubic
lattice with spacing a.

H = g E„ct(r„)c(r„)+ V „c (r )c(r„)

well-established properties of the Green's functions.
The results of this paper are presented as follows. In

Sec. II we show how the transmittances are evaluated
from a model Hamiltonian for the dissipative electronic
system, emphasizing the results that hold for a rnacro-
scopic sample. Section III presents the main results of
this paper. First we show that for a macroscopic sample
with inelastic processes there is an inelastic channel asso-
ciated with each point r„within the sample and the solu-
tion of Eq. (2.3) takes the form

T(r„,r )=T(r„,r )+ Jdr;T(r„, r;)g;T(r;, r ),
where 1/g; = Jd rj T(r~, r; ). By identifying T with a den-

sity propagator, we show that this equation represents a
classical random walk of an excited electron. From this
we sketch the evaluation of the corresponding diffusion
constant D. In Sec. IV we perform some approximations
which allow us to evaluate D in a wide range of transport
regimes: ballistic, metallic, weakly localized, and strong-
ly localized. This shows that the description of Sec. III is
consistent with known results of transport. Finally, in
Appendixes A and 8, we present known results about
Careen's functions and their averages introducing a nota-
tion consistent with the present work.

H=H +X„,+X;„. (2.2)

As a result, the Hamiltonian (2.1) is renormalized by the
connection to the external world through the effects of
the leads and the electron-phonon coupling.

The leads renormalize the Hamiltonian (2.1) with a
self-energy operator X„,. We will see below that as long
as we deal with a macroscopic sample we will not need an
explicit expression for X„,. Therefore it is enough to
conceive the leads as represented by a set of independent
one-dimensional channels which can be assimilated to the
propagating modes of real ordered leads. In that case
their effect is the renorrnalization of the site energies at
the boundaries with a complex (non-Hermitic) self-energy
whose imaginary part represents the escape rate to the
contacts.

In order to define a solvable electron-phonon interac-
tion we assume, following Datta, " uncorrelated point
scatterers in local thermodynamic equilibrium with a
bath. This assumption produces, as a one-dimensional
lead, a complex self-energy which is a 5 function in real
space and hence does not generate intersite interactions:

indicates that a physical quantity I is evaluated in the
closed system described by the Hamiltonian (2.1). Later,
we will use X to iv.dicate the self-consistent evaluation of
X in a system with dissipative processes and open boun-
daries. An actual sample is in fact an open system and
then requires the appropriate treatment. The idea is to
partition the Hilbert space of the universe in two pieces:
the subspace spanned by H, and its orthogonal comple-
ment. This breaks the total Hamiltonian in four blocks.
The diagonal blocks are H (sample) and H (external
world). The nondiagonal blocks correspond to their cou-
pling. We must adopt some model for this external world
by modeling the leads and the phonon bath, that is,
H =H„,+H;„. Then we perform a projection' over the
subspace of the "sample" and get an effective Hamiltoni-
an' ' of the form

n=l m
(rm nn, Of rn

(2.1)

M
X;„=g &;„(r„)c(r„)c(r„) . (2.3)

The site energy E„represents the potential energy and
hence should contain contributions due to the impurity
potential U(r„) as well as those arising from a self-
consistent Hartree potential. The kinetic energy term is
defined through the hopping parameter V „.For sirnpli-

city, the sum is restricted to r nearest neighbors of r„.
In this case V „=Pi /(2m'a )exp(i/~ „) is given in
terms of the lattice constant, the effective mass, and a
phase. The phase is determined by the path integral of

rm
the magnetic vector potential: P „=(e/cA') f, A dr.
In the following calculations we assume A=—0. This
model describes all the relevant parameters of the elec-
tronic structure: the local density of states per spin at the
Fermi energy No(r), the Fermi velocity U, the mean free
path I and, if finite, the localization length A, ~I. The
specific geometry of the sample is imposed by restricting
the domain of the points r.

In the notation introduced above, the expression "X "

Details of the calculation of this self-energy in terms of
the spectral density of the phonon field at a given ternper-
ature and the coupling constant may be found in Ref. 11.
It is important to remark that by adopting this model for
the electron-phonon interaction we may interchange the
words inelastic channels and (one-dimensional) leads. In
general, by independent channels we mean orthogonal
sets of states, each set (channel) with infinite number of
degrees of freedom. A complex part in the effective
Hamiltonian means that density is not conserved within
the subspace of the sample. One can include the real part
of this self-energy as a homogeneous shift in the lattice
potential and retain as a free parameter the site-
independent imaginary part:

(2.4)

Here we used the label R(A) denoting the retarded
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(advanced) boundary condition on the self-energies,
which determines that, given an initial state at time t =0,
the electrons (holes) are lost in the quantum coherent
description provided by the effective Hamiltonian be-
cause they escape toward the leads or mix with the pho-
non coordinates. These particles are recovered through
boundary conditions on the occupation of the states
which impose charge conservation at each later time.
The "recovered" particles, however, do not have memory
of the quantum phase of the previous state. As men-
tioned in the preceding section, this is just the physics de-
scribed by Eqs. (1.2). These equations can also be ob-

tained" using the field-theoretical methods of nonequili-
brium statistical mechanics. ' Hence Green's-function
techniques provide a formal way to describe this physics.
From a practical point of view, the self-energies and
transmission probabilities are more easily evaluated using
the Green's-function framework. Then, let us first con-
sider the case of the isolated sample. We evaluate the re-
tarded and advanced Green's functions defined in terms
of the electron field operator g at time t„and position r„
acting over the ground state

~ %0) of Eq. (2.1) or,
equivalently, in terms of the one-particle eigenfunctions
y~(r„) as

6„' '(t„,t )—:G ' '(r„,t„,r, t )=+—6(+(t„t )—)(%0~/(r„, t„)g (r, t )+P (r, t )g(r„,t„)~%0)

(2.5)

We often will use G„(s ) =G (r„,r, e ), the Fourier
transform of Eq. (2.5) with respect to t„r. The-
Green's function does not depend on t =(t„+t )/2 and
only the occupations might eventually depend on this
variable if the system is not in a steady state.

We can include the inelastic processes and the escape
toward the leads in the Green's functions using the
Dyson equation,

6=6 +G (X;„+X„,)G, (2.6)

which is equivalent to Eq. (2.2). We will solve (2.6) exact-
ly or use a perturbative approach suited to the specific
system we need to deal with.

Let us assume that we have already evaluated the re-
tarded (advanced) Green's function. This is equivalent to
knowing all the information about the spectral structure
and the transition probabilities of our system. The first is
given by the local density of states:

No(r„, E)= + —ImG ' "'(r„,r„,c, ) . (2.7)

The transition probabilities are associated with the
transmission coefficients, which are obtained in terms of
the complex part of the self-energies in the corresponding
channel and the Green's functions using the expression
obtained by Fisher and Lee

T„=T(r„,r )

=21mX"(r„)G (r„,r, E)G "(r,r„,s)

X21mX (r ) . (2.8)

1 —R„„=41mX (r„)lmG+(r„, r„,s) . (2.9)

Notice that transmittances and self-energies in expres-

The total transmission can also be written in a compact
way as

III. GENERALIZED LANDAUER-BUTTIKER
EQUATIONS FOR MACROSCOPIC SYSTEMS

In order to deal with macroscopic samples we will take
the limits of the sample size tending to infinity and the
size of the mesh of the hypercubic lattice used to
represent it tending to zero. We first observe that the
effect of (2.3) is to shift the energy argument to the com-
plex plane as c.—+c+ig. The presence of the current
leads and voltage probes is contained in X„,which renor-
malizes strongly the site energies at sites in the contact
regions. The effect is not trivial in the case of a finite
sample. However, in a very large sample, the homogene-
ous complex part produced by the inelastic processes
guarantees that those effects will be exponentially small'
far inside the sample. An upper bound is exp( —R /L;„),
where L;„=v~;„is the inelastic length in the ballistic re-
gime and E. the distance to the surface. Therefore the
Green's-function solution of Eq. (2.6) is

'"'(r„,r, &)=G '"'(r,r, E+iq) . (3.1)

In general, we know the main properties of the Green's
functions in the macroscopic limit. This aHows us to

sions (2.8) and (2.9) would need an additional label to
identify the nature of the channels connected with a
given point of the sample (e.g., the electron-phonon, the
lead channel, or any other process contributing with a
self-energy correction). We did not write them to facili-
tate the notation. Besides, we will see that for a macro-
scopic sample described by our model Hamiltonian (2.2),
only the inelastic channels are relevant. An obvious
consequence of Eq. (2.8) is that channels which do not
generate a complex self-energy have zero transmittance,
even when they modify the Green's function according to
Eq. (2.6). This is the case of the evanescent modes of a
lead.
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evaluate the transmittance using Eq. (2.8). Then, we
must proceed with the solution of the GLBE, which has
the form of Eq. (1.3). At this point, one realizes that in
very large systems one can neglect the restrictions in the
summations in (1.3). These restrictions are important
when considering the contact regions, but because of the
inelastic processes their e6'ects cannot propagate far in-
side the sample. Besides, in the internal region of the
sample the only channels are the inelastic ones which, in
the model used, have a one-to-one correspondence with
the lattice sites. This allows the conversion of the sums
in Eq. (1.3) into integrals, giving

T(r„,r, co)=21mX (r„)G (r„,r, E+)

X (G "(r,r„,8 )2 ImX"(r )

=2 ImX (r„) P, (r„,r, co)No(r, c)

X2ImX (r } (3.3b)

P,(to}=P,+;„(co)=P, co+i rt—. 2
(3.4)

where G '"' is given by Eq. (3.1) and we have defined
s—=a+ —,'A'co. With this notation, Eq. (3.1) becomes

T(r„,r )=T(r„,r )+fdr;T(r„, r;)g(r;)T(r, , r } .

(3.2)

T(r„,r )=T(r„,r, co)~

with

(3.3a)

This equation is central to the present work. It expresses
that, in the steady state, the effective transmittance be-
tween the inelastic channels associated to two points is
related to the transmittances between all the other chan-
nels. However, only those sites within a length L;„are
relevant. The physical meaning is simple: The propaga-
tion of an electron from site r to site r„can be done in
two alternative ways: (a) With complete quantum coher-
ence, which is represented by the first term on the right
side; this term also contains the leak from the coherent
state toward the inelastic channels and (b) having inelas-
tic collisions on its journey with the last of them occur-
ring at point r;, as represented by the integral. This term
is essential to assure charge conservation and hence uni-
tarity in T.

In order to get a deeper interpretation of Eq. (3.2) it is
convenient to come back to the connection to the Green's
functions. According to the results in Appendix A we see
that, apart from constant factors, Eq. (2.8) represents a
density propagator. Therefore Eq. (2.8) is a particular
case of a more general expression:

T(r„,r ) = T(r„,r, co)
~

(3.Sa)

P, (r„,r, to)= f dc,„P, , (r„,r, co)

2 ImX(r„) "' ' 2 ImX(r )

X &o(r, s )
(3.Sb)

where the initial and final energies c. and c„are both
very close to the Fermi energy ~F. The essential idea is
that Eq. (3.2) represents an equation for this density
propagator. In fact, using this new notation we see that
the solution of the generalized Landauer-Buttiker equa-
tion can be written as

according to the notation used in Appendix A,
P, (r„,r, co), the Fourier transform, for a frequency co, of
P, (r„,t„,r, t ). The last gives the probability of propa-
gation for an excitation, injected with an energy c. , from
point r to point rn in a time t„—t . Since P is evalu-
ated in the absence of interactions, it conserves both ener-

gy and particle number.
Since the efFective transmission coefficient T in Eq.

(3.2) describes the self-consistent propagation of an exci-
tation, we define a self-consistent density propagator P in
analogy with Eq. (3.3).

de„, , (r„,r, co)= G (r„,r, e, ++ig)G "(r,r„,e ig)—n

~
~ n 7 Em n t m t

~~ ~ 0R
n t m t m

~ I 0 ~
m t n 7 m

~ ~ I

N m

1

t m
n E„,c~ n~ m~ 2~ n' m' m

No r, s

+fdr, f ds; Go"(r„,r;, E,++ig)G "(r, ,r„,e, —ig)'2m Xo(r;, E, )

1 P, , (r;,r, co),
m

(3.6)

for co=0, and E =E~. We assume that this can be extended for all coAO but small enough so that densities of states
and self-energies do not change appreciably in a range %co around the Fermi energy. We observe that the first term in
the right-hand side of Eq. (3.6) is P, (r„,r, co+i2rtlk), the Fourier transform for a complex frequency. co+i 2glfi of
P, (r„,t„,r, t ). If we come back to the time variable we get

tn ~m 0 ' ' d'-+fdr, P, (r„,t„,r, , t, )exp
" ' . ' P, (r;, t;,r, t ) .

+in F
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This is the basic equation we solve in this work. Its phys-
ical meaning is related to that already discussed in refer-
ence to Eq. (3.2). Observe that the first term in the right-
hand side of Eq. (3.7), which describes the coherent
beam, does not conserve the particle number. However,
the second term, which considers all the incoherent
paths, assures the total conservation. We often call P,F
the quantum probability of propagation because it
represents the propagation in absence of phase breaking
processes. When those processes are present P, is the

total probability, which is composed of a coherent part
P, =P, +,„and a sequential or incoherent partF F
P, —P, . This nomenclature recognizes an antecedent

in a discussion of dissipative tunneling process by
Buttiker. ' When a long-time scale is considered, P, be-

F
comes a classical probability of propagation due to the
complete attenuation of its quantum (coherent) com-
ponent. In fact, Eq. (3.7) represents a classical non-
Markovian process, ' which describes a random walk of
the excitation in a d-dimensional real space. Therefore,
in the long-time and large distances regime, its behavior
is characterized by a difFusion coefficient Dd. In this clas-
sical regime, the application of the fIuctuation-dissipation
theorem relates Dd to the conductivity through the Ein-
stein relation:

o-„=2e2D„X0 . (3.8)

We will show in the next section that Dd evaluated from
(3.7) describes the expected results for quantum trans-
port.

While Eq. (3.5) involves a continuous time distribution
for the inelastic processes, which might be diKcult to
solve in the general case, we get a Markovian approxima-
tion considering a discrete time process. This involves
the replacement exp( tlr, „)~r;„5(t——r;„) in Eq. (3.7).
In physical terms this corresponds to a process in which
the loss of coherence occurs with probability one at a
characteristic clock s tick, with a period ~;„. At that time
the quantum probability of propagation is sampled and a
new quantum evolution starts with the new initial value
until the next clock's tick. Therefore, at ~;„ the quantum
probabilities are the transition probabilities of the Mar-
kovian process. In this condition Eq. (3.7) becomes

2dDdr;„=([r (r;„)—r„(0)] ) (3.10)

Here the mean value of the right-hand side is evaluated

=P(r„,r ) .

which can be interpreted as a matching condition be-
tween the quantum and classical regimes of the probabili-
ty of propagation. This equation also defines P(r„,r ),
the transition probability in a classical Markov process,
which can be used to estimate the kinetic constants in-
volved in the solutions of Eq. (3.7). For example, the
evaluation of the mean square displacement between in-
elastic collisions gives

with the quantum probability in the absence of inelastic
processes, while the left-hand side corresponds to a classi-
cal diffusive process.

IV. EVALUATION
OF THE TRANSPORT COEFFICIENT

A. Ballistic regime

In this case the electrons propagate ballistically until
they sufFer a phase randomizing collision in a characteris-
tic time w;„. The quantum propagation is associated with
the product of Green's functions.

(4.1)

which rejects the fact that quantum mechanics gives a
propagation probability P, (r, t, r ,00) with a mean at

F
lr —ral=vt in correspondence with the classical ballistic
behavior. Therefore Eq. (3.7) describes a classical
diffusive transport with a diffusive constant given by

2
UDd= (4.2)

the same value that we would obtain using (3.10). The
same value of o

&
has been obtained in a previous paper'

by solving directly Eqs. (1.2).

B. %'eakly disordered systems

+P, (q, co+i2g)2ilP, (q, co) . (4.3)

The input in this equation is the averaged density prop-
agator in the absence of phase randomizing processes,
that is, the product of Green's functions (G G ").
This, in turn, can be expressed as a Bethe-Salpeter equa-
tion (see Appendix B) in terms of ( G ) ( G ), the
product of the ensemble averaged Green's functions of
the form (B2). In the limit of long distances it gives

(G (r, r, e ))(G "(r„r,e ))

lr —ral

l
(4.4)

which resembles the product of Green's function in the
ordered system but with an exponential decay with a
characteristic length l =U~,&.

As shown in Appendix B, the quantum density propa-
gator can be evaluated in terms of the expression (4.4) in
an approximation in which only ladder diagrams are re-
tained. This is expressed by Eq. (B4). The solution for
times t ) r„=l/U is a diffusive behavior described by Eq.

This regime corresponds to the metallic limit in which
the resistance is linear on the concentration of impurities.
In order to perform analytic evaluations of Eq. (3.7) we
may resort to ensemble averages which restore the homo-
geneity of the space. Performing the Fourier transform
of spatial coordinates in Eq. (3.6) we get

P, (q, co)=P, (q, co+i2rI)
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(B6) that is,

P, (q, co)= 1

F '
D~q —ice

(4.&)

with Dz =Ul/d. We replace (4.5) in the expression (4.3),
obtaining

P, (q, co)= 1

Dgq 1 co
(4.6)

C. Localized regime

When we need to consider the regime where the locali-
zation is important we recall that the asymptotic behav-
ior of the average of the products of Green's functions is

with D& =D&. This is a remarkable result, which could
be expected on physical grounds. This means that as
long as the quantum evolution is well described by a
difFusive process, the inelastic time does not appear ex-
plicitly in the transport coef5cient. However, this ap-
proximation breaks down in two opposite regimes.

(a) When ~;„ is small as compared with r„, the mean
time between elastic collisions. In fact, observe that we
do not recover the ordered regime for the propagator
defined in Eq. (A6) if we use the approximation to the
mean value given by Eq. (B7). This approximation,
which gives a diffusive behavior (4.5) for the quantum
evolution, is not good for short times where the transport
is still ballistic.

(b) When r;„becomes comparable to the time in which
quantum interferences start to contribute. These interfer-
ences arise from multiple scattering between impurities, a
process which is neglected when only the ladder diagrams
are considered. An improvement is to evaluate the densi-
ty propagator including also the "fan" diagrams. In
this regime the inelastic time is a necessary "cutofF' to
avoid divergences of the integrals and therefore the quan-
tum corrections depend on its value. These corrections,
however, are not enough to deal with the strongly local-
ized regime, in the usual conductivity calculations. The
GLBE, instead, describe also the localized regime provid-
ed that the behavior of P, (r„,t„,r, t ) is known in this

regime.

solution of the difFusion equation within a spherical box
of radius k and surface S which contains ro as an interior
point. Then the particle diffuses limited by this con-
straint, represented as a boundary condition requiring
that at every time the current vanishes at the surface of
the localization sphere, that is,

n VP, (r, t, ro, O)~, ~+=0 (4.8)

exp( t/~;„)P,—(r, t, ro, O)
dt o

~ln
(4.9)

as the probability distribution for an inelastic collision at
position r after an inelastic collision at time 0 at position
ro. This also gives a physical interpretation for the zero-
frequency limit of P(r, ro, co). This is also the same physi-
cal meaning as the probability defined in Eq. (3.9). How-
ever, in that case it was evaluated as a discrete time pro-
cess. Introducing (B7) in (4.9) we get

P(r, ro) Dzr;„V P(r—, ro)=5(r ro) . — (4.10)

The boundary condition (4.8) translates in an equivalent
condition for P(r, ro). Apart from the boundary condi-
tion and a normalization factor, Eq. (4.10) expresses that
P(r, ro) is itself a Green's function and hence its asymp-
totic square modules is given by (4.7). The energy vari-
able is replaced by —E=h' /(2m'L;*„). This gives a new
attenuation length L;*„=(Dzr;„)',which is the inelastic
length in the disordered regime. In one dimension (4.10)
can be solved exactly by considering that the initial point
xo may be anywhere in the range [ —A, , A, ]. This gives the
probability distribution:

cosh I (xo+X)/L ~
]P (r, ro)=, . „cosh[(x + A)/L;*„],L;*„isnh(2A, L/;"„)

for +(x —xo) &0 . (4.11)

where n is the normal to S. When an inelastic process
occurs at a given point r a new evolution starts in a
sphere enclosing this point. This observation leads to an
interpretation of the function:

1P(r, ro) = P, (r, ro oi)
~ =o

+in

(G (r, ro eF)G "(ro r eF)~

lr —roI
(4.7)

As in the discrete time process of Eq. (3.10), this solution
can be used to evaluate the mean square displacement
((x —xo) ) and from this we get the diffusion constant
that includes the inelastic processes:

Here the localization length satisfies A, ~ l, with the equal-
ity only valid in strictly one-dimensional systems. This
result cannot be obtained diagrammatically. A complete
summation of diagrams would be necessary to include a
dependence of Dz on m and q which describes the locali-
zation effects. However, Eq. (3.7) does not contradict
(4.4), which is still valid. Besides, for times shorter than
that required to reach the boundaries of the localization
regions, t&„=A, /2D&, the diffusive behavior should be a
good approximation of the quantum evolution. There-
fore we can use an early idea of Thouless, ' who approxi-
mated the localized behavior of P, (r„,t„,r~, t ) as the

F

tanh
Lin

(4.12)

L;„
D, =D( 1— (4.13)

in agreement with the diagrammatic calculations. No-

This result contains the quantum correction due to weak
localization when the inelastic time is relatively short:
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tice that the localization length appears explicitly in this
expression. For very weak inelastic events, the localiza-
tion will manifest itself, preventing the diffusion beyond
the limits of the localization "sphere. " The asymptotic
value given by (4.11) is a uniform distribution inside S,
and we get

(4.14)

We should remark that we have described the right phys-
ics of the transport phenomena, using a rough estimate of
the shape and eccentricity of the localization region. The
fluctuation of this last is very important to determine the
form of the weak-localization correction. A symmetric
approximation would give a correction of the order
D&2(A, /L;"„)exp —(k/I. ;*„), which is weaker than that in

Eq. (4.13). Therefore this model also sheds some light on
the physics of the weak-localization correction.

V. FINAL REMARKS

In the present work we present the analytical proof
that the generalized Landauer-Biittiker equations, origi-
nally devised to describe transport in small samples in the
presence of measurement probes and dissipative process-
es, also contain the most important results of quantum
transport in macroscopic systems. The explicit account
of the inelastic processes constitutes an essential in-
gredient in our derivation. Currently, numerical solu-
tions of GLBE for mesoscopic devices in the presence of
dissipative processes are becoming an exciting topic of
solid-state physics and an important tool to proceed to-
ward the development of a new generation of electronic
devices. However, while the GLBE are well suited for
numerical implementation in small samples, actual
codes' ' cannot be easily applied to the macroscopic
limits because of the huge computational time required.
We expect that those methods could be improved to take
advantage of the physics discussed in this paper.

In addition, our work clarifies the physics involved in
transport processes. It supports a vision within which
the coupling with the external world is fundamental to
obtain the real relaxation, and hence determines the dissi-
pative nature of the transport processes. We have dis-
cussed how, if we only consider the collisions with the
impurities, the diffusion of an excitation is an approxirna-
tion, within certain limits, to the exact quantum evolu-
tion of the closed system. Only the interaction with a
system open to the external world (e.g. , phonons) is able
to transform this "almost" difFusive evolution in a true ir-
reversible di6'usive process. In the Boltzmann and Kubo
equations, dissipation is somewhat subtly introduced by
assigning statistical occupation factors which describe
the conservation of the average current. That is why,
when the inelastic processes are introduced explicitly in
the Kubo equations as in Ref. 23, the local currents are
not conserved. In the linear response regime of the
quantum Boltzmann equation, presented in the form of
the generalized Landauer-Buttiker equations, the conser-
vation of current is imposed at every point of the system

and hence it determines self-consistently the local occu-
pation of the energy states. This self-consistency is con-
tained in Eq. (3.2), which is the cornerstone of this work.

Our formal description could also help to clarify other
phenomena. An old problem is the variable range hop-
ping regime for the conductance. In this extremely local-
ized limit, the essential physics has been pointed out
many years ago by Mott and Davies. However, a
description from a model Hamiltonian without further
adjustable parameters and consistent with the other re-
gimes has been elusive. Our numerical simulations and
some analytical results seem to show that the GLBE pro-
vide again the right track toward this objective. Another
area in which the GLBE could be used in the treatment
of magnetotransport in the presence of dissipation for the
different regimes. Finally another problem of fundamen-
tal interest in the transport phenomena is to account for
the electron-electron interaction. From a formal point of
view the problem becomes much more complex; however,
it is this complexity which drives the quantum evolution
of the system close to irreversibility. Therefore, as dis-
cussed with reference to Eqs. (3.7) and (3.9), there is a
characteristic collision time ~&, at which the one-body
description breaks down and becomes so complex that it
can be approximated by a diffusive process. Therefore ~&

plays a role similar to ~,&
in the description of Sec. III B.

The true irreversibility is assured by the interaction with
a bath in characteristic time ~;„which, however, does not
appear explicitly in the diffusion constant provided that it
is much larger than ~&. This is the regime of the recent
experiments of electrostatic focusing of electron beam,
in solid-state devices in which the coherence of the ballis-
tic propagation is broken by the electron-electron interac-
tions. In a different context, we have recently reported
results on experimental kinetic constants in the regime of
strongly interacting electrons. There, we used a set of
crystals in which the dimensionality of the dynamics can
be engineered to take values between one and two. The
analysis of the data showed consistency with the above
point of view.
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APPENDIX A: DENSITY PROPAGATOR

Here we review results on the connection between the
Green's functions and the propagation in real space of a
density excitation. That relation has been exploited by a
number of Soviet authors. First, we remember that the
probability of finding a particle at point rz and time t2,
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P (rz, r„tz —t])=A G (rz, tz, r„t, )

XG (r, , t„rz, tz) . (Al)

However, we are interested in adding a particle with a

provided that it was injected at an earlier time t, at posi-
tion r„ is given by

given energy close to the Fermi energy. Besides, this en-
ergy dependence would enable one to deal with the ex-
clusion principle. For this we should allow an uncertain-
ty in the initial and final times compatible with that ener-
gy. That is, we are seeking a propagation for particles
which are placed with energy c& and found with energy
c2, both very close to the Fermi surface. Hence we define
the more general function:

6 (rz, tz, r„t] )6 (r], t, , rz, tz )= exp[ iF]]—(tz t] )/—]]i]exp[ —is„(t]"—tz" )/]]]]OR R R OA A A R A ~ R R

2M 2~%

XG (rz, r„E]])6 "(r],rz, c~ ) . (A2)

Here, the initial and final times are t] =(t] +t]")/2 and tz =(tz +tz" )/2, while the uncertainties are given by
5t, =t, t," and —5tz=tz tz". W—e will be interested in a situation in which 5t]]z]« ~tz t, ~. N—ow we rewrite the
above expression in terms of new energy and frequency variables E]=(si]+E„)/2 and co=(E]]—E„)/]]i. Using the
shorthand notation E—=(c.+—,]]]]co),we get

f d~1 dc'
e p[ —iE](5tz —5t])/]]t]exp[ —iso(tz —t])]G (rz, r], E]+)G "(r],rz, E] ) . (A3)

We introduce a further integral over a "final" energy c.2 and a 5 function to compensate it, so we get

2 1 OR + OAde] f dEzexp[ —i(Ez5tz —E,5t, )/]]1] 5(Ez —E, ) e G (rz, r„E, )G (r„rz, E, )2a 2m'
(A4)

When we allow the 6t's to take the smallest value compatible with the energy, the whole expression approaches Eq.
(Al). In that condition the exponential functions in the energy integration take a unitary value in the range of interest.
Therefore we identify the term inside the parentheses as the probability of propagation for a single particle. The 5 func-
tion imposes the energy conservation Ez= E]', and (Al) becomes the integral over the initial energy of

f dEzP, , (rz, tz, r], t])NO(r„E, )=P, (rz, tz, r„t, )ND(r„c])

de —ice(t2 —tl ] OR (A5)

A comparison with Eq. (Al) shows that P, measures the
F

probability of propagation of a particle injected with en-
ergy c., from the initial to the final point. Setting c, =@~,
the Fourier transform of Eq. (A5) is just

P, (rz, r„co)NO= fdEP, , (rz, r„co)ND

P, (q, cu)NO= f G (p+, EF )6 "(p,sF )

This expression will be used in Appendix B.

(A7)

6 (rz, r„E~ )G (r„rz, sF ) .
2m

APPENDIX 8: DENSITY EVOLUTION
IN A DISORDERED SYSTEM

If we were dealing with a homogeneous system it might
be convenient to transform these results to the momen-
tum representation to describe a density Auctuation with
wave vector q. The procedure is analogous to that used
with the time variable. We allow for an uncertainty in
the initial and final position, in a d-dimensional space, in
order to have a defined momentum p. Using the short-
hand notation p

—=p+ —,'Aq, we get ( U ) =0 and ( U(r) U(r') ) = u 5(r —r'), (BI)

Here we review the results ' of the evaluation of the
density propagator in an infinite disordered system. As a
model for the potential due to the impurities placed at
random sites R;, we consider U(r)=g, u(r —R;). It is
usual to retain only the lowest-order correlations and
shift the energy origin in order to get a white-noise char-
acter for the potential:
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(GOR(A)(pE)) 1

E
p
+i A /2%e)

(82)

The elastic scattering rate can be calculated in the Born
approximation which also defines a mean free path:

where u =c;
~ Ju(r)dr~ and c; is the concentration

of impurities. Here (X) denotes the average of the
quantity X over and ensemble of impurity configurations.
The retarded (advanced) Green's function can also be
averaged and we get

=2& 2&0 and I =vz„. (83)

We need to evaluate ( 6 6"), the ensemble average of
the product of Green's functions (A7) at the Fermi ener-
gy c = c.~. Because of the statistical correlation this is not
equivalent to ( 6 ) ( 6 "), the product of averaged
Green's functions. However, we can perform a series ex-
pansion of the first in terms of the last. As usual in a con-
ductance calculation, up to a precision A/~ &By we only
consider the ladder diagrams. In this approximation we
get

P, (q, )=f (6' (p+, E+)&(6'"(p,E )& + (6' (p+, E+)&(6"(p,E )& P, (q, )

g(q, co)

2~u'X, 1 —pq, ~) ' (84)

where the function g is

g(q, co) =u f (6 (p+ ,'Aq, EF+ ,'f—ico)) ( G "—(p——,'A'q, eR ,'fico) )——dp

1 + l covet
dQ 1 . (lq)'
Sd 1 i (co+v.q)—r„' d

(8&)

Here the momentum integration was performed transforming as usual

then the energy integral is evaluated by residues considering q «pz/A, and finally, the solid angle integration is evalu-
ated in the limit ql « 1 and cor, i « 1. Using the g in (84) we get the density propagator:

P, (q, co)=
2

1

Ddq —im
(86)

with a diffusion constant defined as Dd =u ~,&/d. The fact that the mean time between collisions is just the transport
time is a consequence of the isotropic scattering against the impurity potential. Coming back to position and time vari-
ables, we find that the density propagator I' is indeed the Green's function of a diffusion equation:

8
DqV2 (P, —(r t2r2ti, )) =5(t2 t )5(ir ir, ) . —

Bt2
(87)

which is interpreted as a probability of propagation for a density excitation in the hydrodynamic limit.
It is worthwhile to recall the relation between the usual density-density response function y and the density propa-

gator defined above. In the linear response theory y is defined in terms of the commutator of the density operator.
5p(r, t) =g (r, t )f(r, t ) f(r)P(r), and it h—as the form

y(r2, r„co)=—f d(t~ t, )exp[ico(tz —ti )](apl [5p—(r2, t2), 5p(r„t, )]I'po& . (88)
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The commutator can be decomposed in three terms.
Each one corresponds to the integral in energy of an ex-
pression of the form of (A6) in which any of the combina-
tions 6 6",6 G, and 6 G appear multiplied by the
corresponding occupation factors: f (E —p )—f(E+ —p ), —f(E —p ), and f(E+ —p ). Performing
an average over impurity configurations, g can be
transformed to the q space. The result (B6) holds for the
(G G ) term with an additional factor co due to integra-
tion in energy. The terms with ( G G ) and ( G "G )
combine to give, after integration, a contribution propor-
tional to No. In consequence, a simple expression for g

in terms of P can be obtained:

1VODd q
g(q, co)=icoNoPc (q, co)+No=

Ddq l co
(B9)

gd = lim lim — ze y(q, co) =2e NoDd
co~0 q~o q

which is the Einstein formula.

Including a factor of 2 to account for the spin degenera-
cy, the static conductivity can be evaluated as

Y. Imry, in Directions in Condensed Matte~ Physics, edited by
G. Grinstein and G. Mazenko (World Scientific, Singapore,
1986), p. 101.

R. Landauer, J. Phys. Condens. Matter 1, 8099 (1990}, and
references cited therein.

B. L. Altshuler and A. G. Aronov, in Electron-Electron In-
teractions in Disordered Systems, edited by M. Pollack and A.
I. Efros (North-Holland, Amsterdam, 1985}.

4P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287
(1985).

5R. Landauer, Philos. Mag. 21, 863 (1970).
S. Washburn and R. A. Webb, Adv. Phys. 35, 375 (1986).

7C. M. Soukoulis and E. N. Economou, Phys. Rev. Lett. 46, 618
(1981); D. J. Thouless, ibid. 47, 433 (1981); D. C. Langreth
and E. Abrahams, Phys. Rev. 8 23, 6851 (1981};for a review
see A. D. Stone and A. Szafer, IBM J. Res. Dev. 32, 384
(1988).

~H. L. Engquist and P. W. Anderson, Phys. Rev. B 24, 1151
(1981).

M. Buttiker, Phys. Rev. Lett. 57, 1761 (1986).
J. L. D'Amato and H. M. Pastawski, Phys. Rev. B 41, 7411
(1990).
S. Datta, Phys. Rev. 8 40, 5830 (1989); J. Phys. Condens.
Matter 2, 8023 (1990).
M. Buttiker, Phys. Rev. 8 33, 3020 (1986); IBM J. Res. Dev.
32, 63 (1988).

~31. B. Levinson, Zh. Eksp. Teor. Fiz. 95, 2175 (1989) [Sov.
Phys. —JETP 68, 1257 (1989)];C. S. Chu and R. S. Sorbello,
Phys. Rev. 8 42, 4928 (1990).

~4L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964); [Sov.
Phys. —JETP 20, 1018 (1965)];L. P. Kadanoff and G. Baym,
Quantum Statistical Mechanics (Benjamin, New York, 1962);
and reviews in J. Rammer and H. Smith, Rev. Mod. Phys. 58,
323 (1986); G. D. Mahan, Many-Particle Physics, 2nd ed. (Ple-
num, New York, 1990}.

~sJ. P. Killimbeck, Techniques of Applied Quantum Mechanics
(Butterworth, Washington, DC, 1975); A. Messiah; Quantum
Mechanics (Wiley, New York, in press), Chap. 7, Sect. 10;

Chap. 21, Sect. 13.
P. R. Levstein, H. M. Pastawski, and J. L. D'Amato, J. Phys.
Condens. Matter, 2, 1781 (1990).
D. S. Fisher and P. A. Lee, Phys. Rev. 8 23, 6851 (1981); see
also C. Caroli, R. Combescot, P. Nozieres, and D. Saint-
James, J. Phys. C 4, 916 (1971).
D. Rodrigues, H. M. Pastawski, and J. F. Weisz, Phys. Rev. 8
34, 8545 (1986).
E. W. Montroll and B. J. West, in Fluctuation Phenomena,
edited by E. W. Montroll and J. L. Lebowitz (Elsevier, Am-
sterdam, 1987), p. 61.
E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979);L. P. Gorkov,
A. I. Larkin, D. E. Khmelnitzkii, Pis ma Zh. Eksp. Teor. Fiz.
30, 248 (1979) [JETP Lett. 30, 228 (1979)].
D. J. Thouless, Solid State Commun. 34, 683 (1980).
M. J. McLennan, Y. Lee, and S. Datta, Phys. Rev. B 43, 13
846 (1991).
D. J. Thouless and S. Kirkpatrick, J. Phys. C 14, 235 (1981);
see also G. Czycholl and B. Kramer, Solid State Commun. 32,
945 (1979).

~~M. Faas (private communication).
N. F. Mott and G. A. Davies, Electronic Processes in Xon-
Crystalline Materials (Clarendon, London, 1979).

2 M. Lax and T. Odagaki, in Random 8'alks and Their Applica-
tions in the Physical Sciences —)982 NBS/La Jolla Institute,
AIP Conf. Proc. No. 109 (AIP, New York, 1984).
U. Sivan, M. Heilblurn, C. P. Umbach, and H. Shtrikman,
Phys. Rev. 8 41, 7939 (1990);A. Yacoby, U. Sivan, C. P. Um-
bach, and J. M. Hong, Phys. Rev. Lett. 66, 1938 (1991).

~SP. R. Levstein, H. M. Pastawski, and R. Calvo, J. Phys. Con-
dens. Matter 3, 1877 (1991).

z9S. L. Ginzburg, Fiz. Tverd. Tela (Leningrad) 16, 9 (1974) [Sov.
Phys. —Solid State 16, 5 (1974)]; S. V. Maleev and B. P. To-
perverg, Zh. Eksp. Teor. Fiz. 69, 1440 (1975) [Sov. Phys. —
JETP 42, 734 (1976)]; V. L. Berezinskii and L. P. Gorkov,
ibid 77, 2498 (1.979) [ibid 50, 1209 (197.9)].

3 D. Vollhardt and P. Wo10e, Phys. Rev. 8 22, 4666 (1980).


