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We describe a method for treating the time-dependent behavior of the electron cloud surrounding
each electron in a two-dimensional electron gas. The method is based on a conserving solution of
the quantum kinetic equation for the relaxation function of the system using the Mori formalism
with two distinct memory functions, one for the collective degrees of freedom and one for the single-
particle modes. At lower electron densities these dynamic eKects are shown to become increasingly
important and to play a part in the eventual solidification into a Wigner crystal. We find that the
plasmon resonance energy u„(q) is strongly depressed compared with the random-phase approxima;
tion, leading to a negative dispersion for large q in the low-density region. We have determined the
width of the plasmon peak and find that as the Wigner-crystal transition point is approached, the
plasmon peak remains well defined even for q comparable to the Fermi momentum. For r, & 20, we
observe a low-energy peak in the excitation spectrum of the electron liquid for values of q matching
the reciprocal vector of the Wigner lattice. The occurrence of this peak is matched by the appearance
of a large peak in the static suscep'ibility at that q value.

I. INTRODUCTION

In the study of the interacting electron liquid the intro-
duction of a local mean field surrounding each electron
has proved to be a very useful concept, . In this paper
we investigate the dynamics of the interaction between
an electron and its exchange-correlation hole, presenting
results for a strongly correlated two-dimensional electron
layer.

Hubbard first introduced the idea of a static exchange
hole to deal with the exchange corrections to the linear-
response random-phase-approximation (RPA) perturba-
tion expansion. The "hole" is a region of depleted elec-
tron density resulting from the antisymmetrization of the
many-body electron wave function. The idea has been
developed so that it now encompasses the depletion of
density due to the Coulomb repulsion between electrons.

The static local-field corrections are usually included
by inserting a static local-field factor G(q) into the RPA
expression for the total density-density (retarded) re-
sponse function of the system y(q, u),

1+ 11 —G(q)]vapo(q, ~)

wliere g (q, u) is the response function of noninteracting
electrons (Lindhard function).

For the three-dimensional electron gas at metallic den-
sities G(q) is found to be a smooth function lying in
the range 0 & G(q) & 1. For ~q~ & k~, G(q) approaches

unity from below. Values of G(q) lying between zero and
one reflect the depletion of density around each electron
in real space.

DiA'erent approaches to the calculation of the static
local field G(q) are possible. Singwi, Tosi, Land, and
Sjolander (STLS) developed a self-consistent scheme
based on the approximate solution of the equation of
motion for one-particle distribution function. Iowy and
Brown5 and Bedell and Browns calculated G(q) directly
from the two-body effective interaction (t matrix) ob-
tained from the infinite ladder sum of static Coulomb
interactions between the pair of electrons. Monte Carlo
numerical simulations by Ceperley and Alder of the
ground-state properties of the electron gas subsequently
confirmed the accuracy of the pair-correlation function
calculated by both STLS and Lowy and Brown for metal-
lic densities.

A key assumption of the static exchange-correlation
hole model is that the depleted surroundings around a
particular electron are assumed to rigidly follow the elec-
tron as it propagates through the system and undergoes
various scattering processes. In this picture the electron
remains precisely at the center of its own correlation hole
at all times. This should be a good approximation at high
densities, r, & I, since whenever the particular electron
changes its motion the time scale for the relaxation of
the surrounding cloud of electrons to the new electron
position is of the order of the inverse plasmon frequency

, and at high densities this is very fast.
However, at lower densities these assumptions should
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become less valid. Goodman and Sjolander investigated
the short-time relative movement of the correlation hole
and its electron. They found that even at metallic den-
sities the transient properties of this motion significantly
aAect the third-moment sum rule. Iwamoto, Krotscheck,
and Pines used the third-moment, sum rule as a way of
getting information about the frequency dependence of
the local-field factor and found that the dependence of
G(q) as a function of q was completely different in the
small- and large-~ regions.

Green, Neilson, and Szymaiiski (GNS) and Green,
Neilson, Pines, and Szymanski investigated the dynam-
ics of the electron system by developing a systematic per-
turbative expansion of the most significant corrections to
the RPA dynamic response function, including local-field
effects. The dynamics were expressed as a sequence of
independent binary collisions, and this was shown to be
a good approximation for the higher metallic densities,
r, & 4. This would be analogous to the way one treats
weakly interacting classical plasmas.

However, independent binary collisions cannot carry
certain information which is crucial when considering
strongly correlated systems. The situation would in cer-
tain respects resemble that faced in dense classical plas-
mas. In the formalism applied here, we picture the
individual electrons coupled to a Quid of surrounding
electrons which exhibit strong collective behavior and
which can react back on the primary electron. A mean-
field approximation with a static local-field correction
enters as the first approximation and incorporates the
static exchange-correlation hole which follows its elec-
tron rigidly. In the next approximation the dynamics of
the exchange-correlation hole is included. This takes into
account the nonrigid coupling between the electron and
its surrounding hole. One can also view the approach as
a natural extension of the GNS approach since for the
higher electron densities they give essentially the same
results.

By coupling the electron to density fluctuations rather
than to individual random electron fluctuations, we emu-
late the forces associated with the dynamic density pro-
file surrounding each electron. Density fluctuations in-
volve the collective motion of large numbers of particles,
and their time evolution can be significantly aA'ected by
overall conservation requirements such as the continu-
ity equation. If the time evolution becomes significantly
slower than the single-electron scattering time, then the
density excitations may not be able to readjust suK-
ciently quickly to changes in the electron motion. In this
case they can exert a significant force on the propagating
electron, thus aA'ecting its subsequent motion.

Using the Mori formalism~ for treating the dynam-
ics of many-body systems, we set up a formally exact
equation for the relaxation function Rgg~(r, t), which in-
troduces a memory function Mkkj(r, t) We show how .to
approximate in a conserving manner the dynamic part of
this matrix by two scalar memory functions y(r, t) and
p'(r, t) The function p. (r, t) gives the dynamic coupling
of a density fluctuation to the surrounding e~change-
correlation hole and p'(r, t) is the corresponding func-
tion for the "single-particle" part of the density fluctu-

ation. The introduction of p'(r, t) makes this approach
quite diAerent from a straightforward introduction of a
dynamic local field.

Our formalism has been developed in analogy to the
successful approach to classical liquids and plasmas based
on the classical notion of self-motion. The extension of
the Mori formalism to quantum fluids, particularly with
liquid helium in mind, was done by Holey and Smith'4
and by Valls and co-workers 5 and they discussed at
length the formal aspects of such a theory. Gotze has
in a series of papers applied the Mori formalism to the
localization problem of electrons in disordered systems.
A controversy arose with this work concerning the treat-
ment of interference eO'ects. We believe that neither in-
terference efkcts nor exchange eKects play any crucial
role in Wigner crystallization, but that the dominant role
is played by the ordinary spatial correlations between
electrons. The main objection to Gotze's work in this re-
gard should therefore not be relevant here. signer crys-
tallization is known to occur both in classical and quan-
tum pla.smas, and we believe it is dominated by classical
efkcts.

Since correlations play a more important role for
the two-dimensional (2D) system than for the three-
dimensional one, and since there is a much higher ex-
perimental possibility for the two-dimensional system of
lowering the electron density down to the Wigner crystal
regime, we concentrate here on the two-dimensional case.
From computer simulations for the ground state of the
uniform 2D electron system we know that signer crys-
tallization should occur for a density around r, 40.
We are therefore mainly concerned with what happens
at these very low densities before crystallization occurs.
However, our treatment does not include the phase tran-
sition itself.

Section II introduces the microscopic memory function
for quantum systems and describes how we approximate
it. The appendixes contain some details of the memory
function formalism which we have applied to this dynami-
cal problem Our ap. proach can be applied in the strongly
correlated region of the electron liquid, 5 & r, & 40. In
Sec. III we present results in this range of densities for
the plasmon dispersion ~z(q), the width of the plasmon
peak, and the retarded density-density response function
g(q, ~). Section IV contains concluding remarks.

II. KINETIC EQUATIONS

In this section we set up our equations of motion which
incorporate the efkcts of the dynamic interaction be-
tween excitations and their surroundings. The surround-
ings react back on the excitations through the time-
dependent memory function. The eA'ect of the excitations
themselves is contained in the generalized (retarded) re-
sponse function gkkl(q, t)

The function ykg (q, t) gives the response of one of the
system's microscopic degrees of freedom, labeled k, to an
external stimulus of wavelength q which couples only to
the k' degree of freedom. It is related to the density-
density response function y(q, t) by a summation over k
andk)
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x(q, t) = ) xkk (q t)
k,k'

x (q, t) = &&~(t) && [I,"(t) ~"- (o)] -»
(2)

where the double angular brackets represent a grand
canonical ensemble average, 0 is the volume of the sys-
tem, 0(t) is the step function, and we are using the
Heisenberg picture. p" is the particle-hole operator,

~g — k —g]Z k+g]~.
It is convenient to introduce a generalized relaxation

function Rkkj(q, t) which describes the relaxation of the
system if a constant external perturbation coupling for
times t ~ 0 to the k' degree of freedom is suddenly
switched off at t = 0. R kk(q, t) is the relaxation of the
k' degree of freedom for t ) O. The generalized response
function [Eq. (2)] can be recovered from the relaxation
function [see Eq. (85) in Appendix B].The advantage of
using the relaxation function is that it satisfies a kinetic
equation of motion [see Eq. (C9)].

The kinetic-equation approach has been extensively
applied to both classical and quantum many-body
systems. 4 ~ In the time domain the kinetic equation
is of the familiar I angevin form,

h
i—Rkk (q, t) = —q kRkk (q, t)dt 7A

coupling between collective (hydrodynamic) degrees of
freedom in the system, represented by the density pz and
the current density Jz. On the other hand, as q increases
the single-particle aspect of excitations becomes increas-
ingly important and the electron k has to be treated as a
distinct excitation (as opposed to being part of a collec-
tive motion) during its propagation through the medium.
In the limit of very large q an electron will undergo fre-
quent binary collisions with surrounding particles and
its motion can be described by a Boltzmann-like equa-
tion. For intermediate values of g both the collective and
single-particle aspects of the motion have to be treated
together.

We can deal with this by representing Mkk (q, t) as
a sum of two functions Mkk, (q, t) and Mkk, (q, t) For.
Mkk'(q, t) we use approximations to Mkk (q, t) appro-
priate for our picture of the passage of a single particle
through the randomly fluctuating surrounding medium,
MkkI(q, t) contains the remaining part of the memory
function. We will assume later that Mkk, (q, t) describes
the eA'ective coupling between the density and current
degrees of freedom of the system due to excitations of
multiparticle modes.

With this separation of M kk(q, t) into two parts, the
kinetic equation, Eq. (C9), can also be split into two
coupled equations, one involving only Mkk, (q, z), and
the other Mkk, (q, z):

(z —co~)Rkk, (q, z) = i6kk

+):
k"

Ct' Mkk~ (q, t —t')

xRk k (q, t')

+ ) Mkki(q) z)Rkik'(q) z)i
kl

In Appendixes A—C we outline the derivation of the ki-
netic equation with the primary purpose of introducing
a formal definition of the microscopic memory function
which will serve as the starting point for our approxi-
mations. MkkI(q, t) carries information on how states of
the system at earlier times aA'ect the relaxation function
Rkk (q, t) at the present time t.

In an exact formulation each matrix element of
Mkk~(q, t) is in general a different function of q and t, re-
jecting the property that each microscopic degree of free-
dom evolves slightly diA'erently. However, in any practi-
ca,l calculation we need to group these matrix elements
and approximate each group by a single function.

Before discussing approximations to the infinite array
of matrix elements Mkk~(q, t) we note that from the defi-
nition of Mkk~(q, t) [see Eq. (C7)] it is straightforward to
establish that the exact memory function matrix satisfies
the condition

) Mkk (q, t) = 0.
k

Rkk (q z) = Rkk(q z)

) Rkki (q, z)Mki kq (q, z) Rk2k' (q) z),
kg, kg

where Ti~" = sok+ &z
—sk &2

—h k . q jm is the difFer-

ence in the free-single-particle energies ck.
The single-particle relaxation function Rkk, (q, z) is

associated with the propagation of a single electron
scattering oA its surroundings. The relaxation func-
tion Rkk, (q, z) and the single-particle response func-
tion Xkk, (q) are related by an expression analogous to
Eq. (B5) in Appendix B,

xkkI (q& z):) [bkk«+ 2zRkkji (q& z)]xki k (qI) Ii

k/'

X'(q -) = ) .Xkk (q z)
k,k'

We take Xkk, (q) to be

This is an important constraint on any approximation for
Mkk (q, t) since the equation of continuity follows from
it [see Eq. (Cll) in Appendix C].

The physical constraints on Mkk (q, t) are quite differ-
ent depending on the wave number q. For small q, the
dominant contributions to Mkk (q, t) are given by the

1 n
Xkk'('q) k bkk' r

Fl.O cd~

x'(q) = ) .xkk (q),
k, k'

(7)
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where n" = n(k+ q/2) —n(k —q/2) is the diff'erence in
the single-particle occupation numbers in the ground
state. If the occupation numbers n(k) are taken to be
step functions then y'(q) is the static response function
of the noninteracting electron gas y (q).

It is clear that if we were to set Mk&, (q, z) equal to zero
then ski, , (q, z) obtained from the Ri, i,, (q, z) would de-
scribe the free propagation of a single electron-hole pair.

For Mk&, (q, z) we assume every random scattering pro-
cess for a given q has the same relaxation time,

(
Mik'(q z) = & (q z) ~»'+

f,fl " ~hQ&'(q)~q" )
The last term in the expression is put there to ensure

that M&i, , (q, z) satisfies conservation requirements [see
Eq. (4)]. The form of the function y'(q, z), which is inde-
pendent of k and k', is specified later on. For now we note
that for a particle making its way through a field of scat-
terers (such as phonons or impurities), y'(q, z) would de-
scribe the relaxation of the current, leading to a finite dif-
fusion constant in the hydrodynamic limit. In the case of
classical liquids, y'(q, z) incorporates the so-called cage
efFect where a single particle tends to be trapped by the
particles surrounding it. This type of approximation for
the memory function was first introduced by Gotze. is If
we were to approximate y'(q, z) by a single relaxation
time r, i for all q and z, then the resulting R&k, (q, z)
would correspond to the solution of the relaxation-time
approximation for the Boltzmann equation. This is con-
sistent with our physical picture of Rkk, (q, z) as the re-
laxation function describing a single particle propagating
through randomly fIuctuating surroundings.

We now introduce the assumption that the collective
memory function M&i, , (q, z) couples only the density and
current degrees of freedom. With this assumption it can
be shown (see Appendix D) that

to the more tractable level of needing to determine just
three functions M& (q), MJ&(q, z), and y'(q, z).

Mjp (q) is shown in Appendix E to be closely related
to the static effective interaction v'

M,', (q) = — v', .P I ql, n.
(10)

The static effective interaction v' incorporates the staticg
density depletion efFects of the instantaneous exchange-
correlation hole around an electron. Being static it can
depend only on ground-state properties of the system
which are known from numerical simulation data.

M& J(q, z) can be written in the form (see Appendix F),

~J(q, z) = [p(q, z) —y'(q, z)],

y(q, z) = d& 1
2z. ~(z —~)

dte ' 'p(q, t). (12)

where n is the mean density of the system. y(q, z) de-
scribes the coupling of the current ffuctuations (both hy-
drodynamic and single-particle) to the multiparticle exci-
tations. Subtracting off y'(q, z) ensures that M&k, (q, z)
contains no part of the single-particle component which
is included already in Mkki(q, z).

We use the mode-mode coupling approximation to de-
termine p(q, z). We assume that at t = 0 the density
fluctuation interacts with its surroundings inducing a sec-
ond density fluctuation within the surroundings. The
two fluctuations are then assumed to propagate indepen-
dently, until at later time t they mutually interact for a
second time. In this way a disturbance induced in the
surroundings can later return to inffuence the motion of
the original density fiuctuation.

We introduce the function y(q, t),

Mki, i(q, z) = M~ (q) —M„'q(q, z)
fi q I

~ qj
Equations (8) and (9) reduce the task of evaluating

an infinite array of different matrix elements Mi, kl(q, t)
I

In Appendix F, Eq. (FG) gives an exact expression for
y(q, t), relating it to a higher correlation function. We
show there that it can be approximated within the frame-
work of mode-mode coupling by

1
v(q t)= ~ dridridrzdrze' '& ' '&[q V'v(ri —rz)]g(ri —r2)

x [S(ri, t; ri& 0)S(r2, t; r2, 0) + S(rz, t; ri, 0)S(ri, t; rq, 0))[q . Vv(r2 —ri)]g(rq —ri).

The van Hove density-density correlation function
S(r, t; r', t') is the Fourier transform of the dynamic
structure factor S(q, w) and g(r) is the instantaneous
pair-correlation function.

Equation (13) describes a density ffuctuation at r2 cou-
pling to the surroundings at time t = 0. The coupling
induces a density fIuctuation in the surroundings at r».
The pair-correlation function g(ri —r2) takes into account

the correlation between the two density fluctuations in-
corporating the shape of the exchange-correlation hole.
The terms [S(ri, t; ri, 0)S(r2, t; r2, 0)] describe the inde-
pendent propagation of the two density fl.uctuations from
positions r» and r2 at time t = 0 to r» and r2 at time

At t the two fluctuations interact for a second time,
and again they are correlated by an instantaneous corre-
lation function g(ri —rz). Note that the g(r) functions
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1
7'(q, t) =— GI'& (&y dl'z(&28

correlate diA'erent fluctuations at the same instant of time
while the S(r', t', r, t) functions correlate the same den-
sity fluctuation at two diferent times.

We turn now to the single-particle memory function
y (q, z). This is determined by a single-particle excita-
tion dynamically coupling to its surrounding exchange-
correlation hole. The excitations induced in the sur-
roundings can contain both collective and single-particle
effects. Introducing the function y'(q, t) for the time do-
rnain analogously to Eq. (12) shows that we can write

x'(q, z)
1 —ip'(q, z)R&(q, z)

'

x(q, z) = x'(q, z)(, mz
1 + l

v' + [V(q, z) —V'(q, z)] i
x'(q )nq~ )

Using our expressions for Mii, '(q z) and Mki" (q z)
[Eqs. (8) and (9)], we obtain simple equations for the
total response function x(q, z) and the single-particle re-
sponse function x'(q, z). Their solution is

x [q '7v(r'i —r2)]g(rl 2)
x S (ri, t; ri ) 0')S(l.2) tI r2, 0)
x [q . V'v(rs —ri)]g(rg —ri). (14)

where

1 ~k
q) z

hQ - z —~" —p'(q, z)
'

The single-particle density-density correlation function
S'(r, t; 0, 0) represents the time evolution of a density
fluctuation b'p(r, t) from which the collective component
has been projected out. S'(r, t;0, 0) is specified by the
single-particle part of the relaxation function Rkk, (q, z)
through the fluctuation-dissipation theorem.

In Eq. (14) the eA'ect of the single-particle motion
on the motion of its surroundings and vice versa has
been introduced by coupling the two correlation func-
tions, S(r, t;0, 0) and S'(r, t; 0, 0) at times t = 0 and
t. Equation (14), like Eq. (13), describes the interaction
and independent propagation of two density fluctuations,
but here the two fluctuations are distinguishable.

k—2 A 1R~ q, z
hQX'(q) - cu" z —cu" —7'(q, z)

'

(16)

If we set p'(q, z) = 0 then X'(q, z) would be-
come the I indhard function Xo(q, z). The term
v'+ + (mz/nq )p(q, z) in the denominator of x(q, z)
would then give us a microscopically derived dynamic
local-field correction.

Using the fluctuation-dissipation theorem our expres-
sions for 7'(q, z) and y(q, z) [Eqs. (13) and (14)] can be
written in terms of x'(q, z) and x(q, z),

4h
7(q z) =

2~(z —ur)~

4J / ) (q q')8& [ImX(q', v')ImX(q —q', ~ —~')]

V (q, z) =
nm 27r(z —ur)u)

x[(q q')8q +8g ~(Iql —q q')]

/ ) (q q')8& [ImX(q', cu')ImX'(q —q', ~ —cu')][(q . q')8~ ].
jr

g

(17)

8q is the Fourier transform of 8(r) which is defined as

[see Eq. (13)],

~78(r) =—g(r)Tv(r).

It is straightforward to show4 that

8& = v~ [I —G(q)l

1
(q) = --„

d3 I

q q'[Sg q —q'
P

—1].

Equations (15) and (17) form a closed set. We solve these
iteratively until the solutions become self-consistent.

III. RESULTS

Tanatar and Ceperley have carried out numeri-
cal simulations of the ground-state properties of the
two-dimensional electron system for densities down to
r, 40. Their published results include the pair-
correlation function g(r), which is the probability of find-
ing two electrons separated by distance r at the same
instant of time. By Fourier transforming these data
we have extracted the static structure factor S(q) (see
Fig. 1). Determining S(q) in this way is not accurate for
small

~ q ~, and in this region we have constructed S(q)
so that it gives the value of the compressibility obtained
from their ground-state energy.

The Iluctuation-dissipation theorem relates S(q) to the
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1.0

0.5

0.0
0

q/kF

imaginar y p ar t of g(q, u),

(2o)

Once we independently know S(q), we can use the ex-

FIG. 1. The static structure factor S(q) for electron den-
sities r, = 5, 10, 20, and 40, deduced from pair correlation
functions data in Ref. 18.

pressions Eqs. (20) and (15) to uniquely determine the
static eA'ective interaction v' . Since with every itera-g
tion the functions p(q, z) and y'(q, z) change, v'+ must
be readjusted each time in order to leave S(q) unchanged.

It is a common practice to express v' in
terms of a Hubbard-type local field G(q), where
v'+ = vqII —G(q)]. Figure 2 shows G(q) for electron
densities from r, = 5 to 40. Also shown is G (q) for
the initial iteration for which y(q, z) and y'(q, z) are
zero. Even for r, = 5 the maximum value of G(q) ex-
ceeds unity, corresponding to an attractive region for v'+
around ~q/k~ 2.6. This is a result of correlations ex-
cluding charge from the immediate neighborhood of the
electron. Since the overall number of particles is con-
served the excluded charge must go somewhere, and it is
pushed to the outside of the exchange-correlation hole,
resulting in a pile-up of charge there. When the density
in this shell exceeds the mean density of the system, v'
can have an attractive part.

Tanatar and Ceperley also give some results for
& 10 for the occupation numbers n(k + q/2) which

determine our function n". We have found that our re-
sults are not greatly altered if these functions are replaced
by step functions. Because of this, and because no data
is available for r, ) 10, for our final results we have ap-
proximated the n(k + q/2) by step functions.

1.2

1.0 1.0

0.8 0.8

0.6

0.4 0.4

0.2

0.0
0

q/kF

r = 5

0.2

0.0
0

q/kF

rs= 10

1.0 1.0

0.8 0.8

0.6
C3

0.4 0.4

0.2

0.0
0

q/kF

r =20S

0.2

0.0
0

q/kF

r, = 40

FIG. 2. Static local fie1d G(q) for densities r, = 5, 10, 20, and 40 (solid line). The dotted line is G (q) when memory
function effects are ignored. The dashed line is G(q) calculated from Eq. (19).



DYNAMICAL THEORY FOR STRONGLY CORRELATED TWO-. . . 6297

Figure 3 shows the functions p(q, z) and p'(q, z) [see
Eq. (11)] for densities r, = 5 and 40. Recalling Eq. (15)
for y(q, u), we see that for r, = 5 the values of p(q, u)
and p'(q, cu) are so small that they have little effect on
the overall shape of the response function. However for
r, =40 the peaks in p(q, u) and p'(q, u) are of the order
of her~, and in this case y(q, u) is significantly affected.

in Fig. 4 the imaginary part of the response functions
y(q, cu) are shown. For r, = 5 the narrow plasmon peak
in the small q

—u region saturates the available spectral
strength, making the single-particle contributions in this
region practically invisible on this scale. The peak has a
narrow but finite width.

[We recall that wit, hin the RPA that the plasmon is a
long-wavelength excitation of zero width. For the two-
dimensional system its frequency cuz(q) vanishes as

~ q ~

for
~ q ~

going to zero. As
) q (

increases the RPA plas-
rnon dispersion curve only asymptotically approaches the
boundary of the single-particle excitation region, and
so the plasmon cutoK momentum q, is much larger
than k~ for the lower densities. In the RPA there are
no multiparticle excitations and so the plasmon width
Au(q) is identically zero for all

~
q~( qRPA. ]

The finite width of our plasmon resonance arises from
contributions to the spectral strength which are multi-

particle in origin. Multiparticle excitations are also re-
sponsible for the tails which are appended to the central
envelope of Imp(q, cu). Because the dispersion curve is
much Ratter than in RPA, the plasmon cutoA' momen-
tum q, jk~ 1 is much smaller than RPA. This effect
is primarily due to the static correlations represented by

eff'

At r, = 20 the rnultiparticle tails at small and large
~ are more pronounced. The plasmon peak is broader.
If we increase q, the plasmon merges with the single-
particle spectrum at, q, 1.7. Then at around ~q~/k~
2.6 another peak appears on the opposite low-cu side of
the single-particle spectrum.

By r, = 40 all these effects have become much
more pronounced, and in particular the additional peak
around

~ q ~ /k~ 2.6 is quite sharp. Figure 5 shows
Im[vqy(q, ~)] for r, = 40 for momentum transfers

~ q ~/k~
from 1.6 to 3.1 . It also shows Im[vzy(q, cu)] without dy-
namic memory effects [that is with p(q, z) and 7'(q, z)
set equal to zero, but retaining the static local field G(q)].
For

~ q~ /k~=1. 6 the plasmon peak has a fractional half-
width of about 10%. Even though our plasmon cutoff for
r, = 40 is around q = 1.8k~, the plasmon peak remains
a well-defined excitation and continues to saturate the
spectral strength. For

~ q ~
jk~ ——2.1 the plasrnon has
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FIG. 3. (a) Im[ —p(q, u)] for r, = 5. (b) Im[—y'(q, u)] for r, = 5. (c) Im[—p(q, u)] for r, = 40. (d) Im[ —p'(q, u)] for
r, = 40. For all r: „'-, 20 the heights of the peaks are comparable to Ep, and these functions can significantly affect y(q, v).
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merged with the single-particle spectrum but the spec-
trum is still skewed towards high w. At

~ q ~
/ky = 2.28

the spectral strength is almost completely symmetric in
u, apart from a distinct high-u tail. For this value of
( q (/k~ the function [1 —G(q)] passes through zero (see
Fig. 2), and so the dashed line coincides exactly with
go(q, cu). For

~ q ~
/I-y = 2.6 we see the new peak which

develops on the low-u side of y(q, u). For
~ q ~

/k~ = 3.1
the peak has disappeared but the spectral strength is still
skewed towards low cu. The spectral strength goes over
essentially to the noninteracting result by ~q~/k~ & 3.6.

The origin of the second peak on the low-energy side
of Imp(q, u) can be understood from the structure of
our expression for the response function [Eq. (15)]. We
have noted that for r, & 5 the local field G(q) can ex-
ceed unity for some values of q. In this case it is the
region around

~ q [/I"~ —2.6 where the effective poten-
tial v' = v&[1 —G(q)] is the most strongly attractive.
The cause of this can be traced to the piling up of elec-
trons at the edges of the exchange-correlation hole and
the development of long-range correlations which are re-
flected in oscillations of the pair-correlation function g(r)
with a period matching the interparticle spacing. As r,

increases the peak in G(q) grows sufficiently high that
it is possible for the denominator of y(q, ~) to become
very small or to change sign for positive y" (q, a) . The
likelihood of this happening increases markedly with de-
creasing density, not only because the peak in G(q) is
higher, but also because when Eq. (15) is expressed in
dimensionless variables there is a prefactor of r, in front
of the y'(q, u) term in the denominator.

The presence of the low-energy peak in Fig. 4 indicates
that for r, & 20 the system strongly favors excitations
with a q value matching the reciprocal lattice vector of
the signer crystal. The associated excitations are pre-
cursors of the phase transition to a signer crystal. As we

approach the transition point we would expect a soften-
ing of the peak position towards ~ = 0. At the transition
point the peak should diverge leading to a divergence in
the static susceptibility g(q) for q equal to the reciprocal
lattice vector. In Fig. 6 we see that y(q) does develop a
very large peak.

We also observe a strong renormalization due to dy-
namical effects of the particle-hole propagator pi(q, ur)

[see Eq. (16)). y~(q, ~) describes propagation of the
dressed particle and hole. For ~ ~ 0 we have

5
3
O'

3

1
E

r,=5 ra= 10

(c)

1p
3 QU'

6

E

PQ
3
o'

1O

E

I" =20 r, =40

FIG. 4. Im[vuy(q, u)] for densities r, = 5, 10, 20, and 40. For the lower densities the plasmon peak develops a significant
width for all nonzero q, and there are large- and small-u tails on the single-particle contribution to y(q, u). For r, = 20 and
40 there is an additional peak on the low-cu side of the single-particle spectrum around q/ky 2.6 and u/~y 1.8.
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ever, for r, = 40 the plasmon width exceeds 10%%uo for

~ q ) /ky & 0.3. For larger
~ q ~

/k~ the width then remains
approximately constant up to

~ q /k~ & 1. We conclude
that right through to the solidification point the plasmon
remains a well-defined resonance for all q up to q, .

APPENDIX A: RESPONSE FUNCTION

P
(~~g) dP && ~tg(;gP) )) (Al)

We define a scalar product for any two operators A
and B by the relation

IV. CONCLUSIONS

The theory we have developed is particularly suited
to the strongly interacting electron system. The dy-
narnic functions y(q, u) and p'(q, u) provide a measure
of the relative importance of multiparticle excitations.
We have investigated their eA'ect for densities down to
the point at which the correlations have become so strong
that Wigner crystallization occurs. For densities r, 20
we find that both the y(q, u) and y'(q, u) functions sig-
nificantly acct the properties of the plasmon and the
additional peak in Imp(q, u). While y(q, ~) could be
incorporated into a dynamic modification of the static
local-field correction G(q), the y'(q, ~) is primarily as-
sociated with corrections of the single-particle part of
the response function g'(q, cu). The increasing impor-
tance of y'(q, u) as the signer transition point is ap-
proached is consistent with our physical picture that the
single-particle properties of the system will be strongly
affected in this region [recalling that on the solid side of
the transition y'(q, u) should represent the response of
a single-particle localized on its lattice site].

We find that the plasmon dispersion curve as a func-
tion of u is significantly Battened compared with the RPA
curve for all densities r, & 5 by the eA'ect of the static
exchange-correlation hole. Multiparticle eKects further
depress the curve for r, & 20 leading to a negative dis-
persion for large g.

Even though the plasmon peak develops a width when
multiparticle eA'ects are included, the plasmon resonance
remains well defined for all

~ q ~

& q, for densities right
down to r, 40. This means that even though the mul-
tiparticle eAects become large they are never sufficiently
strong on the liquid side of the Wigner phase transition
to wipe out the plasmon as a well-defined resonance.

The plasmon peak occurs on the high-energy side of
the single-particle excitation spectrum, merging with it
at q, k~. We observe a second peak on the other side
of the single-particle region at around

~ q ~ /k~ 2.6.
This peak indicates that for r, & 20 the system strongly
favors low-energy excitations with a q value matching
the reciprocal lattice vector of the VVigner crystal. A
very large peak develops in the static susceptibility g(q)
at the same point. We interpret this phenomenon as a
precursor of the transition to the signer solid.

where P = 1/k~T Th. e angular brackets on the right-
hand side of the expression are the grand canonical en-
semble average. The state bra and ket vectors (B

~
and

~
A) are operators in a Hilbert space of operators.

It is a property of this scalar product that

(I.a ( x) = „«[at,x]»,1
(A2)

where the I iouville operator I operating on any operator
A gives the commutator

+ ~ g V&Ckl+&~ 2 Ck &~2 Ck+'P(2Ck' —Z/2 ~

k,k'
(A4)

where v& is the bare Coulomb interaction.
For future use it is convenient to also split I into ki-

netic and interaction parts, by defining operators I."'"
int.

L king [Hkin ~ g]
h

L intg [Hint g]
h

We also note a useful relation,

I pq = —[H —pÃ, pq] = —
( q ) Jq.

1
(A6)

where the density and longitudinal current operators are
defined as

kpq=) pq&
k

(A7)
Jq: ) q kp

k

IA = —[H —IJ, N, A].
h

The Hamiltonian operator H can be split into kinetic
and interaction parts, which for our system are given by

Hkin + ~int

kckck
k
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Xkk (q, &) =
&

6i(&)(Lp"q(t) ~p" (0)).

The Laplace transform of this can be expressed as
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Xkk'(q) Z) = dt e'"Xkk (q, t) (Imz ) 0) P = P' =
& ) . I p', ) x,,' (q) (p", I.

k,k'
(C1)

(A9)

The static generalized response function
Xkk (q)—:Xkk (q, z = 0), and the static response func-
tion x(q) are given by

The inverse of the matrix Xkk~ (q) appears in this defini-
tion due to the nonorthonormality of the operator basis
set. The projection operator complementary to P is de-
noted by Q = (1 —P)

From the definition of the operator P we can rewrite
Eq. (B4) as

Xkk (q) = —„(P",IP",)

x(q) = ) .Xkk (q).
k, k'

(A10)
Rkk(q, z) =

~ ) p ~ P P p ~ Xk„k, (q).
k II

(C2)

Using the operator identity~~

APPENDIX 8: RELAXATION FUNCTION

d
x(q, t) = —x(q) «R(q, t). (B1)

Comparing Eqs. (A8) and (Bl) we define the general-
ized relaxation function Rkk~(q, t) as

The density-density relaxation function R(q, t) de-
scribes the relaxation of the system back to its unper-
turbed ground state if a static external potential which
has been perturbing the system is suddenly removed at
t = 0. For t ) 0 the relaxation function R(q, t) is related
to the response function of the system through

P P=
z —L z —PLP —Z(z)

'

with K(z) defined by

Z(z) = PLQ QI P,
1

we can write Eq. (C2) for the matrix R(q, z) as

R(q, z) = i[z —~(q) —M(q, z)]

The matrix u(q) is given by

(C3)

(C4)

(C5)

Rkk'(q, t) =
& ) (p",(t) I p"-,(o))xk 'k (q) (B2)

~kk (q) = —) (L"'"p",Ip",)xk'k (q),0

This describes the relaxation of one particular micro-
scopic freedom labeled by k with the external pertur-
bation coupled only to one degree of freedom k'. The
density-density relaxation function R(q, t) can be recov-
ered from Rkk (q, t):

and M(q, z) is tlie memory function matrix which is de-
fined as

Mkk'(q, z) =
& ) (p „1(L'"")'+ ~(z) I

p",)Xk 'k (q)
k II

1
R(q, t) = ) Rkk (q, t)xk k (q). =

~ ) (P",Ir(z) IP"",)X„-,l„,(q).
k"

(C7)

The Laplace transform of Eq. (B2) can be expressed

1
Rkk'(q, z) =

& ). p", , L
p"-, xk"k'(q) ( )

k"

The relaxation function Rkk~ (q, z) is related to the gener-
alized response function Xkk (q, z). Comparing Eqs. (A9)
and (B4) we have

Xkk'(q z) —) [bkk" + iz kk" ( I z)] Xk"k'(q).
k"

Fquation (C7) defines the vertex operator 1 (z). The op-
erator (L'"')t is the conjugate to L'"'

With the help of the identity

z —~™—I (i+I
z —~ —MP

(CS)

and hwkkI(q) = her" 6kk~, we can express Eq. (C5) in the
form of a kinetic equation for the generalized relaxation
function Rkk (q, z):

APPENDIX C: KINETIC EQUATION

To evaluate the relaxation function RkkI (q, z), we start
by introducing a projection operator P which projects
the total Hilbert space of operators on to the subspace
spanned by the single particle-hole operators! p z):

(z —co~)Rkk'(q, z) = lbkk' + ) Mkk" (q, z)Rk"k'(q, z).
k II

(C9)

Transforming Eq. (C9) back to the time domain, we
obtain the familiar Langevin-type equation
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. d h
i—Rkk (q, t) = —q kRkk (q, t)

ck FA
-„).(p-ql p",&xk' (q) =1,

k II

+). «Mkk (q, t —t )Rk k (q, t ).

(C10)

~k
&p", I ~-q& —

qp I

From the definition of the memory function, Eq. (C7),
it can be easily established that Mkk (q, t) must satisfy
the constraint Pk MkkI(q, t) = 0 [Eq. (4)]. This is re-
lated to the Ward identity. Using this equation together
with the definitions of Pq, Jq, and Rkkj(q, t), we obtain
after summing Eq. (C10) over the index k,

Using these relations, the matrix elements of the col-
lective part of the memory function can be reduced to
the expression

'
(q )=„

I

'', (q) — '(q )
'

h q ( p '
q )

i—„,&p- (t) lp"-, (o)& = —lql &J- (t)lp", (o)& (C11) (D4)

This is true for all k', and confirms that the continuity
equation is exactly satisfied. APPENDIX E: STATIC EFFECTIVE

INTERACTION

APPENDIX D: COLLECTIVE MEMORY
FUNCTION

We assume that the collective part of the memory func-
tion Mkk, (q, z) couples only to the density and current
ffuctations

I p q) and
I
J q&, and so we may express the

collective vertex operator 1"(z) in the form

r'(z) = Ip &M' (q, z)&p

+
I p —q&M'z(q z)&~-ql

+
I ~-q&MJ, (q z) &p-ql

+
I J-q&M~J(q z)&~-ql.

In this general form we have the four functions,
M' (q, z), M'&(q, z), M& (q, z), and MJ&(q, z) that
have to be specified. They are independent of the matrix
labels k and k'.

Equation (4) cannot be satisfied if either Mpp(q, z) or
M'J(q, z) are nonzero, and this permits us to eliminate
these two functions.

M& (q, z) has to be a static function which is indepen-
dent of z. This follows from the definition of K(z)—which
requires that Z(z) I

p"
&

= 0—and from the definitions of
the operators I and P which imply that

nk (
~kk' + Mjp(q) ).Xk"k'(q z)

hQ
~ Plql

Dividing this by (z —u") and summing over k and k' we
obtain the response function

x(q, z) = X'(q, z) + x'(q, z) MJ p(q)x(q, z)Pq
x (qz)

)

1 — M~ (q)XO(q, z)
q

(E2)

In this section we relate current-density memory func-
tion MJ (q) the instantaneous effective interaction be-
tween electrons v'+. A direct way of making this identi-
fication is to start by setting all the other contributions
to the memory function, p'(q, z) and M&J(q, z), to zero
[see Eqs. (8) and (9)]. Then Eq. (5) can be rewritten
with the help of Eq. (B5) as an equation for Xkkj(q, z),

(z —~q)xkk (q, z)

QLplp- &
= —IqIQIJ- &

= —).q kQIP, &
=0. (D2)

where

Equation (C7) then implies that M& (q, z) cannot de-
pend on z.

To write down the matrix elements of M&J(q, z) and
M& (q) we need the following relations which are ob-
tained using Eqs. (A2) and (A10),

is the free-electron response function.
The memory function MJ (q) plays the role in

Eq. (E2) of a static effective potential which we can write
in the form

0v' —= — M~ (q) = v [1 —G(q)],
q

(E4)

kit

k k k" —i= —
& ) . ~q&p-ql p, )xk k (q) = —~, ,

k,k"

thus recovering the local-field construction introduced by
Hubbard. ~ v' takes account of the instantaneous ex-
change and correlations between an electron and its sur-
roundings.
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APPENDIX F: CURRENT-CURRENT MEMORY
FUNCTION

In this section we relate the functions M//(q, z),
p(q, z), and y'(q, z) [see Eq. (11)]. In Sec. II we split
the memory function Mi, k (q, z) into two parts

M» (q, z) ™~~(q z)+ Mkk (q z).

We define p(q, z) as the current-current expectation
value of the full memory function:

~(q z) = „~{J qI I'(z-)
I J-q) (F2)

where I'(z) is the vertex operator defined in Eq. (C7). If
/

we multiply both sides of Eq. (Fl) by cu"n" and sum over

k and k' we can project the equation on to the current
basis. Then using Eqs. (8), (9), and (C7) we get

On
~(q z) = ~'(q z)+ MJ/(q z)

which is Eq. (11).
Direct calculation using time reversal symmetry shows

that {J z ~
(I,'"')t

~
J z) vanishes. From our expression

for Z(z) [Eq. (C4)] we may therefore write

~(~, «)= „„(~J-«Q, ~ Q I&-,) (~4)

Evaluating the commutator I,J z
—g [II,J ]

[Eq. (A3)], and using the property of the Q projection
operator that Q ~

LJ &) = Q ~

I'"'J &), we obtain

7(q, z)= g, . v (q q) p p --g p p (q -q-)v
g/ g//

By introducing the fluctuation-dissipation theorem, in the zero-temperature limit Eq. (F5) can be cast in the form

V(q, z) = G4) 1

2ir cu(z —~)
dk e' 'y(q, t),

(F6)

7(q, "):
~ ~s ) vq (q q) (& P 'Pq-q Qe Pq" —qP —q" && (q q )vq

q/ q//

~
~ /

dridridrzdrze' "' '& [(q T, )v(ri —rz)]

x[« p(r2)p(ri)Qe ' 'p(ri)p(19) ))][(q V', )v(r2 —ri)].
The four-point density expectation value in Eq. (F6) gives the probability of finding two density Iluctuations at

time t = 0 at positions rq and rq, which then propagate to positions r~ and rq at the later time t, We approximately
factorize it into products of two-point density expectation values,

« p(i~2)p(i 1)Qe * ' 'p('i)p(»)»= g("i —r')[ «bp(ri h)bp(» o)»«bp(r' h)bp(» o)»
+ &( bp(ri, t)b'p(r2, 0) »«bp(r&, t)bp(ri, 0) ))]g(ri —rz), (F7)

where bp{r, t) = p(r, t) —n Equati. on (F7) describes the independent propagation of two density fluctuations, the
first from ri to r~i and the second from r2 to r2. The static density-density correlation functions g(ri —r2) and
g(ri —r2) correlate the two fluctuations at their starting and finishing points. This simulates the interaction of the
first density Iluctuation with its surrounding exchange-correlation hole. The presence of the operator Q which projects
out excitations involving a single density fluctuation means that the lowest-order Hartree-Fock-type terms in which
one of the pair of Aucuations is averaged over cannot contribute in Eq. (F7).

Equation (13) follows from Eqs. (F6) and (F7) by recalling the definition of the van Hove density-density correlation
function, S(r, t; r', t'):—« bp(r, t)bp(r', t') )).

Turning now to y {q,z), this describes the coupling of the single-particle part of the density fluctuation with its
surroundings, and by analogy with Eq. (F7) we postulate

V'(q z) = 1

2ncu(z —~).dh e' 'p'(q, t),

1
y'(q, t) =— " l[{q.V'„) { ', — ', )]

xg(ri —r2)[« bp(ri, t)bp(ri) ))'&( bp(rz, t)bp(r2) ))]g(ri —r2) [(q . '7,. )v(r2 —ri)],

(F'8)

where « bp(ri, t)bp(ri) ))' is a density fluctuation from which the collective component has been projected out. It is
uniquely specified through the fluctuation-dissipation theorem by R», (q, z). We obtain Eq. (14) from Eq. (F8) by in-
troducing the corresponding single-particle density-density correlation function S'(r, t; r', t') =(& bp(r, t)bp(r', t') »'.
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