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Coupling of excitons with excitations of the Fermi sea in asymmetric quantum wells
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In asymmetric quantum wells, optical transitions couple a hole state with several conduction-band
states. The coupling of excitons associated with higher subbands and free electrons in the lowest sub-
band are investigated using a two-band Mahan —Nozieres —De Dominicis Hamiltonian. The emission
spectrum for carriers in the lowest subband shows a very weak Fermi edge singularity at the Fermi level.
When the Fermi level approaches the second subband, coupling of excitons with excitations of the Fermi
sea leads to a large enhancement of the emission spectrum at the Fermi level.

Since the prediction of Mahan' of singularities in the
x-ray absorption of metals, the problem of optical transi-
tions in the presence of electron gas has been extensively
studied. ' Recent interest has focused on artificially struc-
tured materials, in which a quasi-two-dimensional elec-
tron gas with a tunable electron density can be created.
Cfood examples are gated heterojunctions, modulation-
doped quantum wells, and double-barrier resonant-
tunneling structures. The presence of the Fermi edge
singularity in the emission spectrum involving localized
holes has been confirmed by Skolnick et a/. The ability
to engineer samples permits not only the confirmation of
known phenomena, but also the investigation of a host of
additional effects unknown in bulk materials. Such
effects include the coupling of excitons with the excita-
tions of the Fermi sea. The resonant coupling of excitons
with excitations of the Fermi sea leads to large changes in
optical properties of asymmetric quantum wells, observed
recently in light scattering and luminescence experi-
ments. Since the standard perturbation theory based on
the summation of an arbitrary class of diagrams (e.g.,
ladder diagrams) fails completely in the understanding of
these phenomena, nonperturbative methods are a necessi-
ty. %'e present here a nonperturbative calculation of the
emission spectrum which takes into account the details of
the subband structure, screening, excitonic effects, and
the shakeup of the Fermi sea for a localized hole in a
valence band.

Let us denote the single-particle electron states and en-
ergies in the conduction band in the absence of the hole
in the valence band by ~k, n) and ek„, where k is the
wave vector of the plane wave, and n is the subband in-
dex. The single-particle states and energies for electrons
in the quantum well in the presence of the hole are denot-
ed by ~A, ) and ez. The hole potential introduces a mixing
of states from different subbands.

Prior to the emission of a photon, the (N+1)-electron
system in the presence of a hole is in the lowest-energy
state

~f ). The ground state
~ f ) is a product of the Slater

determinant of bound and scattering single-particle states
~A, ) and a hole state ~h ). The stimulated-emission spec-
trum E(co) involves the emission of a photon with fre-
quency co with simultaneous annihilation of a valence

hole and one of the electrons from the conduction band.
The annihilation of the hole changes the potential seen by
all electrons in the conduction subbands which makes the
transition a many-body effect. The emission spectrum
E(co) is given by a Fourier transform of the real-time
current-current correlation function E(t ): E(co)
=2Re jo"dt e ' 'E(t). The current-current correlation
function E(t ) is given by'

E(t)= g Mz(f ~e' 'abc e ' 'azc~f)M&

Here at& creates a conduction-band electron in a state ~A. )
with energy e&, c" creates a hole in a state

~

h ) with ener-

gy coh. The M&=P„(l.~h ) is the interband transition
matrix element, P„, is an interband momentum matrix
element, and (A, ~h ) is the overlap between the electron
and hole states. The dynamics of the switching off of the
hole potential during the emission process is incorporated
in the Mahan —Nozieres —De Dominicis (MND) Hamil-
tonian

H= g ezazaz+(c c —1) g Vz&.a&a& +cot, c c . (2)

and the electron state ~%z) is a Slater determinant of all
occupied states in the Fermi sea except for the state ~A, ).
The missing state was annihilated in the emission process.
Hence ~4z) describes a hole in the state ~A, ) of the Fermi
sea. The energy Ef is the ground-state energy of the

The potential Vz &, to be specified later, scatters elec-
trons between different electron states after the hole has
vanished. Integrating out the hole degree of freedom in
Eq. (1) gives the current-current correlation function E(t)
in terms of matrix elements of the final-state Hamiltonian
Hf and N-electron states

~ 4& ):
E(t)=e""e' f y M, (e,~e

' f ~e, , )M, (3)
k, A. (p

Hf is the final-state Hamiltonian with a repulsive ( —V)
hole potential:

Hf = X (ex~a, v
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(N+1)-electron system in the presence of the hole, and p,
is the highest occupied level. As shown by Combescot
and Nozieres, ' and Mahan, the current-current correla-
tion function E(t) can be reduced to a closed-form ex-
pression involving only the single-particle matrix ele-
ments Pi z. (yz i,.=(A, ~e

' '~A, '), where h is the single-
particle Hamiltonian in the absence of the hole):

E(t)=e "e f det[P(t)] g M~/~~(t)M~ . (4)
A, , A, &p,

The matrix P in Eq. (4) is built out of all N+ 1 occupied
states in the ground states. The first term in Eq. (4)
[det(P)] describes the shakeup of the Fermi sea due to
the disappearance of the valence hole, while the last term
describes vertex corrections, i.e., the scattering of the
hole inside the Fermi surface by a repulsive potential in
the finite-state Hamiltonian. Note that only occupied
electron states contribute to E(t ).

The actual calculation of E(t) is nontrivial due to An-
derson orthogonality and infrared divergencies, i.e.,
singularities in the long-time behavior of E(t). This is
circumvented by working in the final-state basis

~ k, n ) of
plane-wave states in a subband n. We define matrix
Gk „k „which describes the propagation of the hole in
the Fermi sea in the final-state basis as

Gi, „ i, , „(t)= g (k, n ~A. )Pi„ i (t)(A, '~k', n'),

where ( k, n
~
A, ) are the overlap matrix elements between

the initial and final single-particles states. Using the
identity

qi, = g (A, ~k, n )e '"" (k, n ~A, '),
k„n

the relationship between the initial matrix elements I&
and final basis matrix elements Mk given by
Mi =gt, „Mi, „(A,~k, n ), and the identity det(y)
=exp[Tr[ln(P)] j =exp[ iC(t)], a—set of nonlinear
differential equations for the time evolution of the vertex
(6) and self-energy (C) functions can be derived:

a
GA. „i,. „.(t)= ie&„G&—„ i,. „.(t)

+i g 6„„~ .(t)

C(t)=2+ ei, „Gi, „i,„(t) .
8

k, n

The relationship between nonlinear differential equa-
tions and the edge problem has been pointed out by
Schonhammer and Gunnarsson. '

The final expression for the current-current correlation
function is now given simply in terms of the vertex G and
se1f-energy corrections C:

k, n~
k, n, k', n'

XG„„„.„(t)M„„.

e/, „(k,n ~A, )+ y Vi,"'i", (k', n')A. ) =e i(k, n ~A, ) .
k', n'

(7)

Here the attractive electron-hole interaction matrix
elements are defined as Vi", 'i", = —V(q )F„„.(q ), with

q =
~
k —k '

~
and V( q ) the statically screened interaction.

I'„„.is a form factor,

F„„(q)=I J g„(z)g„(z)

Xexp( —
q ~z

—z'~ )g„(z')dz dz',

which depends on the position of the hole and subband
structure.

In the absence of coupling between different subbands,
the eigenstates of Eq. (7) correspond to the bound and
scattering excitonic states associated with each individual
subband. The only effect of free carriers on the eigen-
states of Eq. (7) is the screening of the electron-hole in-
teraction. All subbands contribute irrespective of wheth-
er they are occupied or not, and bound states exist for a11

carrier densities. This is to be contrasted with the rigid
Fermi surface approximation where only excitonic states
built out of unoccupied states of the initial basis contrib-
ute.

The bound exciton state associated with the second
subband falls into the continuum of the scattered states of
the first subband and turns into a Fano resonance when
the intersubband interaction is turned on. The details of
the interaction depend on screening and the details of the
subband structure of the quantum well.

We calculate the subband structure of an In Ga& As

quantum well of thickness w sandwiched by thick layers
of Aly Ga& y As and GaAs. The Al Ga& y As layer is
doped with silicon, which donates electrons to the we11.
The subband wave functions g„(z) and energies E„are
obtained by a variational calculation including confining
potentials and Hartree energies. The effective potential,
the position of energy levels, and wave functions are
shown in Fig. 1. The first subband is filled up to the Fer-
mi energy, which is slightly below the bottom of the
second subband. The wave function of the first subband
peaks close to the Al Ga, As/In„Ga, „As interface at
z =0, while the wave function of the second subband has
a node at z =zo and peaks close to the GaAs interface at
z =io. The schematic wave function gi, of the hole local-
ized at z& is also shown. One expects the hole to be local-
ized at the In Ga& „As/GaAs interface due to confining
potential and interface defects. Another possibility
would be the selective doping with acceptors. For a

An important consequence of working in the final-state
basis is that all states of the final basis

~
k, n ) contribute

to the frequency spectrum of the emission E(t), irrespec-
tive of whether they are occupied or empty in the final
ground state of the system, i.e., in the absence of the hole.
The filling of phase space of initial states enters via the in-
itial condition for matrix G(0):

6„„„„(0)=g (k, n ~A. ) (A,
~

k', n') .
k&p

The overlap matrix elements ( k, n
~

A, ) between the initial
and final states are so1utions of the Wannier equation:
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In summary, the numerical solution of the multisub-
band Fermi edge problem in the emission spectrum of
modulation-doped quantum wells is presented. Our
method allows us to include the coupling of intersubband
excitonic transitions with the excitations of the Fermi
sea. This coupling is responsible for the enhancement of
the Fermi edge singularity in asymmetric quantum wells.
Hence optical probes signal the presence of higher sub-
bands when transport measurements would indicate only
one subband to be occupied. These results underscore

the fact that a photoinjected hole is a large perturbation
in the electron system and care must be exercised in com-
paring optical and transport measurements.

The effects of band-gap renormalization, finite temper-
ature, and finite hole mass will be presented elsewhere. '
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