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A continuum theory is developed to investigate the properties of the long-wavelength longitudinal-

optical phonons in GaAs-Gal Al„Asmultilayer structures and the associated electron-phonon interac-
tion. Depending on the layer, the relative ionic displacements are related to GaAs or GaAs-type
longitudinal-optical phonons and treated in the framework of the Born-Huang model, generalized to in-

clude isotropic dispersion effects in the Brillouin-zone center. For double heterostructures, a finite num-

ber of quantized confined modes is found. The interplay between the long-range Coulomb interaction,
which couples the vibrations of adjacent GaAs layers, and confinement effects, which prevent the dis-

placements of adjacent GaAs layers to overlap, is elucidated in the case of superlattices. The strength of
the electron-phonon coupling in double heterostructures is reduced as compared with the

0

electron-bulk-phonon effective coupling strength for quantum-well widths smaller than 100 A.

I. INTRODUCTION

Optical phonons in GaAs/AlAs superlattices have
been studied by an increasing number of authors in the
last few years, both experimentally and theoretically. On
the experimental side, Brillouin-zone-center phonons
have been investigated for a superlattice wave vector per-
pendicular to the plane of the layers by Raman scattering
experiments in the backscattering configuration. ' The
measured energies of the longitudinal-optical (LO) modes
confined in the CraAs layer lie on the bulk LO-phonon
dispersion curve, provided that the relevant wave vector
is the confinement wave vector given by k = n m /
[(m +x)a]; here m is the number of monolayers of the
GaAs layer, n refers to the order of the confined mode,
and x lies between 0.5 and 1. Therefore the super-
lattice normal modes are well accounted for by confined
phonons for superlattice wave vectors perpendicular to
the layers. Raman scattering experiments have been per-
formed in the right-angle configuration' where the in-
plane component of the phonon wave vector is nonzero.
Although the layer widths were too large for a shift of
phonon frequencies to occur, the usual bulk selection
rules for longitudinal- and transverse-optical (TO) modes
were found to be inverted, revealing again that the
confinement wave vector was the physically meaningful
wave vector.

From the theoretical point of view, approaches of
different complexity have been proposed. Microscopic
theories aim at solving the equations of motion for atom-
ic displacements by diagonalizing the standard dynamical
matrix. Several authors have calculated phonon modes
in superlattices within a linear-chain model. " ' This
model can only describe modes propagating along the su-
perlattice axis; the agreement with experiments is fairly
good. More recently, the shell model' and the rigid-ion
model' ' were used to calculate GaAs/A1As superlat-
tice phonons propagating in an arbitrary direction. The

long-range Coulomb force, which appears whenever the
atomic displacements have a longitudinal character,
causes a large anisotropy in the dispersion curve of the
superlattice optical modes: the frequencies of the long-
wavelength modes approach differential limits depending
on the directions of propagation relative to the axis of the
superlattice. This anisotropy is well marked for the n=1
LO and TO confined modes because the total dipole mo-
ment within the considered layer is large. On the con-
trary, the net dipole moment in each layer is small for
higher-order modes because of the fast oscillation of the
phonon envelope wave function or because of their sym-
metry. Therefore they do not show a strong angular
dispersion in their long-wavelength frequency curve ex-
cept by mixing with the n = 1 modes. In accordance with
the above-mentioned theories, Huang and Zhu' ' have
accounted for the anisotropy of the superlattice normal
modes in the Brillouin-zone center, within a microscopic
model where the atomic displacements are simulated by a
superlattice of dipoles.

Beside these microscopic approaches, a number of
macroscopic models have been developed to calculate the
envelope function of the atomic displacements. Macro-
scopic models are attractive not only due to their simpli-
city but also because they allow the calculation of the
Frohlich-type electron-phonon interaction since they
directly provide the polarization field due to optical pho-
nons as a continuous function of spatial coordinates. The
Frohlich electron-phonon interaction is of considerable
interest because it governs the electronic behavior in
many situations such as high field transport or electron
trapping in a quantum well. The dielectric continuum
model has been widely used in heterostructures and
slabs. ' ' However, it is now well recognized' ' that
the dielectric continuum model cannot lead to unambigu-
ous solutions for the phonon modes: owing to the neglect
of the dispersion in the bulk-phonon frequencies, all LO
confined modes are completely degenerate and any of
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their linear combinations can be taken as normal modes
of the system. Besides, the interface modes, although
rigorously derived from the Maxwell relations in the
dielectric continuum model, cannot hybridize with the
confined modes and present displacements exponentially
decreasing from the interfaces: this behavior is not
reproduced by microscopic theories for long-wavelength
phonons. In an attempt to generalize the dielectric con-
tinuum model so as to take into account effects of the
dispersion of the bulk mode frequencies, Babiker pro-
posed an isotropic model for dispersive LO phonons.
However, he used hydrodynamic boundary conditions at
interfaces which are unsuitable for optical phonons and
are not consistent with the equations of motion used in-
side each layer. Consequently, the calculated normal
modes are not orthogonalized to each other. Boundary
conditions for the envelope function of the normal modes
have been investigated by Akera and Ando on a micro-
scopic basis for various semiconductor heterostruc-
tures. " In GaAs-A1As heterostructures, where the
G-aAs and A1As bulk optical bands have a large gap be-
tween them, the boundary condition that the envelopes
should vanish at interfaces is shown to be applicable
whatever the wave-vector direction is. As this is the con-
dition used in the dielectric continuum model for
confined modes, the electron-phonon interaction has been
calculated within this continuum model. Finally, in an
attempt to establish an equivalent of the Frohlich interac-
tion in superlattices from their microscopic model,
Huang and Zhu conclude that the potentials of the nor-
mal modes cannot be described by simple analytical ex-
pressions because the frequency dispersion has the effect
of mixing the dielectric interface modes with the bulklike
confined modes. '

Although the frequency spectra and the atomic dis-
placements of the optical phonons are now well studied
for GaAs/A1As superlattices, a reliable and simple ap-
proach seems still to be lacking for the Frohlich interac-
tion in heterostructures. Moreover, most of the theoreti-
cal work has been devoted to the A1As/GaAs system
whereas most of the experimental studies on the polar in-
teraction between electrons and optical phonons have
been performed on GaAs-Ga, „Al„Asheterostruc-
tures. In the case of GaAs-AlAs heterostructures,
the GaAs bulk optical bands do not overlap at all with
the A1As bulk optical bands. Consequently, GaAs/A1As
superlattice phonon modes result from a hybridization of
the semiconductor (GaAs or AlAs) LO and TO bulk
modes. On the contrary, III-V mixed crystals such as
Ga& „Al„Asare known to exhibit an optical-phonon
two-mode behavior with two zone-center LO frequencies
(similar results hold for TO modes) which lie somewhat
between the pure GaAs LO and TO zone-center ones for
the GaAs-like modes and between the pure A1As LO and
TO zone-center ones for the A1As-like modes (Fig. 1).

The purpose of this paper is the formulation of a con-
tinuum theory for the polar optical modes in GaAs-
Ga& „AlAs heterostructures and the derivation of the
corresponding Frohlich interaction. In Sec. II we de-
scribe the whole model in the particular case of a double
heterostructure. The consequences nf this phonon model

LO

LO AtAs-type
11

TO

TO AlAs-type

3

REDUCED WAVE VECTOR

FIG. 1. Dispersion curves of the optical phonons in bulk
GaAs (full line), in bulk A1As (dashed line), in bulk
A10 25C7aQ 75As (dashed-dotted line) (Refs. 30 and 31).

for the Frohlich electron-phonon coupling are reported.
In Sec. III we examine the case of superlattices and in
Sec. IV, single heterojunctions are considered.

II. POLARIZATION KIGENMODES
OF A DOUBLE HETKROSTRUCTURK

The polar optical vibrations in simple ionic materials
are important because of the polarization field associated
with the ionic motion. As is well known, the charge
transfer from the Ga atom to the As atom gives an ionic
character to the GaAs crystal. The general expression
for the atomic displacements associated with a normal
mode in a three-dimensional crystal is given by

u, q(A&)= (AI2NVm co, q)' e

Xexp(iq'R& icoj qt)(bjq+bz q)

where j refers to the mode (LO or TO), q is the wave vec-
tor, co the eigenfrequency, a the atom (Ga or As) of
atomic mass m, and Rl the position of the unit cell l. V
is the volume of the crystal„N is the number of unit cells
per unit of volume, and e is the polarization eigenvec-
tor. b.

q
and b. are the annihilation and creationJ~q

32operators. For optical modes, it has been found that
the most convenient parameter to choose for describing
the optical type of motion is the displacement of the posi-
tive relative to the negative ions multiplied by the square
root of their reduced mass:

w. (R&)= (fi/2NVco~ q)' e, qexp(iq R& ice, qt)—
X(b, q+b,' q)
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with

e =(MlmG)' eG, , —(MlmA)' eA,

2 2
a,j,q+eAs & q

= 1

1/M =1/mG, +1/mA, .

terial and describe the optical modes dispersion curves
in the Brillouin-zone center. The displacement field
equation arises through the Euler-Lagrangian equation
d(5X/5w)/dt =5K/5w:

w(r, z) = coTQ—w(r, z)+ (epKp EpK ) coTGE

Since for long-wavelength optical modes the center of
mass of the unit cell does not move, we have also with

—P, V(V.w) —Pbb, w

1/2 1/2(mGa) Gaj q+(mAs) As jq
and it is easy to show that ~ej q ~

= l.
Therefore the LO polarization vector ez q, which ac-

counts for the displacements at the unit-cell scale, is a
unit vector along the wave vector whatever the material
is. This point enables us to focus on the study of the en-
velope wave function exp(iq R). The formal transition
of the microscopic theory to the continuum approach can
be done by considering the limit of vanishing atomic dis-
tances under conservation of the material macroscopic
dimensions. In that limit, we disregard displacements at
the unit-cell scale. To establish the equation of motion
for the atomic relative displacement envelope function,
we go along the lines of the Born-Huang continuum
theory.

In the long-wavelength limit, the general form of the
isotropic Lagrangian density for the atomic displacement
field w is given by

X= T —U =
—,
'w' —

[ —,'y, w' —P', (V w)'

—P&[(Vw„)+(Vw~) +(Vw, ) ]
—y2w-E —y3E ] .

The first term is the kinetic energy. The three follow-
ing terms account for the elastic energy due to the short-
range forces and their explicit forms are dictated by sym-
metry considerations; the first one is the elastic energy of
a collection of strings whereas the two following terms
are due to the fact that these strings are not independent
of each other and are the first terms to appear if the wave
vector is nonzero. The next to last term is the dipole en-
ergy in an electric field and the last one is the electrostat-
ic energy.

The momentum that is conjugate to w is

=5K /5w = w.

and the Hamiltonian density is given by

&=—,'~'+ [ —,'yiw2 —P,'(V w)'

Pb[(Vw„) +(V—w~) +(Vw, ) ]

—y2w E—y3E ] .
Then, the polarization Geld P is

P = 5&/5E =y—w+2y E3.

As is well known, the y coefficients can be expressed
in terms of the measurable constants mTO, e„e which
are, respectively, the TO-phonon frequency at zero wave
vector, and the static and dynamic dielectric constants.
The p coefficients are of the same order of magnitude as
the velocity of the longitudinal acoustic mode of the ma-

=(1/U) f d r' f dz' P(r', z') VR.

E= —V@(r,z) .

X [1/(R —R') ]/4m ep,
(3)

Since the electric field derives from the potential creat-
ed by the polarization field in the absence of any macro-
scopic density of charge, we have

V D=V (epE+P)=0 .

In a bulk material, the fields satisfying the above
equations are either transverse fields with the dispersion
relation

2 — 2 p2I 2
CO

—
COT~ b

or longitudinal fields with the dispersion relation

co2=co2 —p2k2 with p2=p2+p2 .

We consider now a heterostructure composed of a thin
layer of GaAs sandwiched between two much thicker lay-
ers of Ga

&
„AlAs. The z axis is perpendicular to the

plane of the layers and the origin is taken in the middle of
the GaAs layer of thickness I.. We assume that the alloy
behaves as an effective average crystal. This fictive or-
dered crystal has the alloy GaAs-like average lattice dy-
namics. Indeed, it has been recently shown that GaAs-
like optical modes in the Ga

&
Al As mixed crystal ex-

hibit a well-defined downward dispersion curve. Then,
exploiting the translational invariance along the slab in-
terfaces, we can look for an ionic displacement field such
as

w(r, z) =g'(z)exp(ikx)exp( —icot),

where the x axis has been taken along the in-plane wave
vector. Because the coefficients entering into Eqs.
(1)—(3), account for short-range forces or local properties
of the materials, the displacement field obeys these equa-
tions in either material. The relative dielectric constants
Kp and ~ take into account the polarizability of the unit

P=(E'pKp lEpK~) co Tow +(EpK'~ —1)E .

Kp and ~ are the static and dynamic relative dielectric
constants. ~ accounts for the electronic polarizability
of the ions and does not appear in a rigid-ion model. Fi-
nally, the electric field derives from the potential created
by the polarization field (U is the unit-cell volume and the
sum is performed over all the unit cells): 3

N(r, z)= g P(r~, z~).V—[1/(R —R~)]/4~op
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cell either ionic or electronic. The transverse-optical fre-
quency coTo is determined by the short-range force con-
stant, the reduced mass, the e6'ective charge of the ions,
and their polarizability. The P coefficients should be
determined by the ionic masses and the short-range force
constants as the sound speed is. Since the long-range
Coulomb forces couple both materials, the electric field
must be kept explicitly in the equation.

As we are looking for GaAs-like longitudinal-optical
modes mainly localized in the GaAs slabs of heterostruc-
tures and as we suppose that they result of the hybridiza-
tion of the LO waves of the different materials (Fig. 1), we
look for irrotational displacements:

case of abrupt heterostructures. Matching conditions
are written by integrating the displacement field equation
across the interfaces. Since the GaAs-Ga, Al„As het-
erostructu res do not present microscopic interface
modes, we require that P dg(z)/dz should be continu-
ous at the interfaces.

Eliminating the electric field between Eqs. (2) and (3),
we get in each material:

W [(EpKp EpK~ ) COTQ]

X P+(K„—1)P,z

VXw(r, z)=0 or g, (z)= g„(z).I

ik dz

Then, the atomic displacement field equations of motion
become with

+ —,'(K —1)Idz' k(P K)exp( —k~z —z'~ )K (5)

P g' +(coTQ co P—k —)g
dz dz

= ( epKp
—epK )

'
coTQE (4)

with Eqs. (2) and (3).
In these equations, p CoTQ Kp and K„arestep func-

tions of z. P d /dz is written (d/dz)(P d/dz) in the
same manner as the electronic eigenvalue equation in the
efFective-mass approximation should be written in the

I

K=x+isgn(z —z')z .

From VXw=O and the above equation, we get
7' XP =0 and then V XE=O. All the fields are longitudi-
nal and the Maxwell relations on the electric field and the
electric displacement are fulfilled. From now on, we
write

P =exp(ikr)[qr(z)x+( I/ik)(dp /dz)z] .

Eliminating now w between Eqs. (1) and (5), we get an
equation on cp:

P K d qr/dz +(coro co P—K k—)p= —,'[co&o(Kp —1)+co (K —1)]Jdz'exp( —k~z —z'~)[kq&+sgn(z —z')dy/dz] .

Performing the integration in the right-hand side of the
above equation gives

d p/dz +rig= —(a/2) j s X exp[ —s k(z+L/2)]

+s+ 2~exp[ —s+ k (z L/2)]I—
(6)

with

a= [co (K„—1)—coTQ(Kp —1)]/(13 K„),
q = (Co„o co ) /13 k, co—LQ =co'rQ—Kp/K

s =sgn(z+L/2) and s+ =sgn(z L/2), —

=y( —L/2+) —q( —L/2 ),
X+=p(L/2+) y(L/2 ) . —

This equation holds in each part of the heterostructure
and the general solution is given by

g= 3 exp(iqz)+B exp( iqz)—
+ —,

' ( [(1—I/K )co —(1 —I /Kp)coLQ]/(co —coLQ) )

X [ s X exp[ —s k(z+L/2)]

+s+ 2+exp[ —s+ k (z L /2) ]J—

where q is a complex number verifying q =g.
We are interested in normal modes mainly localized

near the GaAs quantum well. For that purpose, we look
for phonons exponentially decreasing in the Ga& Al„As
barriers (go, ~i ~, (0). The constants A and B are deter-
mined in each part of the heterostructure with that con-
dition plus the continuity condition at the interfaces on

P dg'„/dz and P d g /dz . Finally, the normal modes
are either even or odd function of z in a double hetero-
structure. All these conditions define an eigenequation
on co (see Appendix A). We do not find any pure inter-
face modes with displacements exponentially decreasing
from the interfaces. All solutions are found for qG, A,
=(coo,~, LQ

—co )/p —k )0. Each displacement field

contains a sinusoidal part defining a confined mode be-
havior and an exponential part corresponding to an inter-
face or Coulomb mode behavior. The interface mode be-
havior is associated with the macroscopic electric field os-
cillating in the whole heterostructure. Finally, to com-
pletely determine the displacernent fields, we need a nor-
malization condition. The general expression of the
atomic displacements in a crystal periodic in two direc-
tions is given by

u~ J k(r&, z„)= (A/2XSm co~ k)' e~ J k.(z„)
X exp(i k ri i co1 k r )( bj. & +—b~ k )
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Once again, we introduce the displacement of the posi-
tive relative to the negative ions multiplied by the square
root of the reduced mass. For long-wavelength optical
phonons, the normalization condition is now, if v is the
unit-cell volume,

y [e,, k(z„)]'=1

or

f dz[w k(r, z)] =Ufij(2Sco I, )

with

w „(ri,z„)= (fi/2NSco) k
)' ej. k(z„)

Xexp(ik ri iso, „t)(—b k+b, k) . (7)

We define the symmetry of any mode by the symmetry of
the z component of the corresponding displacement.

In Fig. 2, we present dispersion curves as functions of
the in-plane wave vector for a 20-A and a 150-A GaAs-

a0.7sA10 25As quantum well.
In Fig. 3 the displacement envelope functions of the

four higher modes are displayed for an in-plane wave vec-
tor of 10 cm '. The z components of the 150 A
quan um-wuantum-well modes exhibit the features of well-confined
modes with nodes at the interfaces except that the first
mode which should behave like cos(mz/L) is absent for
k & 10 cm '. In agreement with microscopic theories,
we do find a topmost cosinelike mode but it disappears as
its dispersion curve reaches the GaAs one (k=10
cm '). Such a behavior cannot be tested against micro-
scopic theories which are always applied to much thinner
wells. On the contrary, this first even mode is found for
all wave vectors in the 20-A-wide quantum well. For this
quantum-well width, the displacement fields spread out
deeply in the barriers. However, the k=0 frequencies
plotted on the GaAs-bulk dispersion curve correspond to
q =sr/(m +0.5)a for the first mode and q =2m. /(m+
1)a for the second mode. Therefore the displacements

~ 36. 8

E—36. 6

~ 36. 4,

~ 36. 2

l. 150 A 36.5:————
1

35.5

L. 20

I I ~ I a I i I I I i ~ 35 s i I I a I a l i l I

0 5 10 15 20 25 30 0 5 10 15 20 25 30

IN-PlANE NAVE VECTOR k (10 cm )

FIG. 2. Dispersion curves for the four higher-energy GaAs-
like LO modes in two GaAs-Gap 75Alp 25As quantum wells with
the LO dispersion curves in bulk GaAs (dashed line) and in bulk
Gap 75Alp 25As (dashed-dotted line). The modes are labeled in
decreasing energy order for a vanishing wave vector.

where S is now the surface of the sample and X the num-
ber of unit cells per unit of surface. The other symbols
have their usual meaning. The polarization eigenvector
is normalized with

g [[eo.,, k(z. ) 1'+ [eAs, j,k(z. ) 1'] =1

2
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FIG. 3. Relative displacement envelope functions of the four
higher-energy GaAs-like LO modes of two GaAs-Gap 75Alp 25AS
quantum wells for an in-plane wave vector k =10 cm full
lines, z components; dashed lines, in-plane components. The
modes are labeled in decreasing energy order for a vanis ing
wave vector disregarding the topmost cosinelike mode which
disappears for k ) 10 cm

can extend deeply in the barriers for a nonzero in-plane
wave vector even if the zone-center frequencies give
roughly an extension of one monolayer. The in-plane
components of the displacements have the inverse sym-
metry of the z components as it should be, but cannot be
deduced simply by taking the sinusoidal function corre-
spon ing wding with the z component. This is obvious for the

0
uldhigher mode of a 150-A quantum well where one shou

take in the well u„=1+cos(2m z /L) rather than
u„=cos(2mz/L) or for the lower mode of the 20-A quan-
tum mell where the sinusoidal part of the displacement
appears only as a small modulation. A similar behavior
has been reported in A1As/GaAs superlattices' and is
due to the exponential or "electrostatic" part of the dis-
placements.

In Fig. 4 the envelope functions of the 20-A well modes
are displayed for an in-plane wave vector of 2 X 10 cm
The modes are more localized in the well because their
behavior in the barriers is mainly determined by the po-
larization field following an exp( —kz) decrease. Two
modes display in their displacements an interface mode-
like behavior. The first one is the n=1 even mode: the z
component of its displacement field exhibits well-marked

7 —1relative maxima at the interfaces for a 2 X 10 cm in-
plane wave vector. Besides, this displacement field along
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0.5-

0

-0. 5
CD

I—

1

0. 5
CD

0
CK

-O. S

~el(~ harrier
at the interfaces for k =2X10 cm '. Now P, vanishes
but P is no longer determined by the confined motion
within the well. We believe that this normal mode is well
described by the Fuchs-Kliewer odd interface mode: ' it
owes its existence to the presence of the interfaces of the
double heterostructure and the displacement field is
mainly determined by the matching of the dielectric con-
stants of the materials through the interfaces. As the in-
plane wave vector goes to zero, the induced Coulomb
field spreads out in the barriers more deeply as
exp( —k~z~ ) and the eigenfrequency strongly decreases.

We come now to the electron —optical-phonon interac-
tion in quantum wells. The quantized interaction opera-
tor is straightforwardly derived from the displacement
fields and the polarization fields through Eqs. (3) and (7).
The general form of the resulting Hamiltonian is (see Ap-
pendices 8 and C):

H = g ie (SL—) ' [ficoLo(1/e —1/eo)/2]

X[/( z)/ k]e xp(ik r)(br, +b &)

whereas for three-dimensional bulk phonons, the Hamil-
tonian may be written

H = g ie (—V) '
[A'cubi o(1/e —1/eo)/2]

q, k

0. 5

-O. S

-1 I I r r

-0. 6 -0. 4, -0. 2 0 0. 2 O. I, 0. 6

z (100A)

FIG. 4. Relative displacement envelope functions of the four
0

higher-energy GaAs-like LO modes of 20-A-wide GaAs-
Gao 75Alo 25As quantum wells for an in-plane wave vector
k =2X10 cm ': full lines, z components; dashed lines, in-
plane components. The modes are labeled in decreasing energy
order for a vanishing wave vector.

the z axis bears a strong total dipole moment P within the
quantum well because of its even parity and of its nonos-
cillating behavior. In the approximation of an infinitely
thin well, this total dipole moment P induces the follow-
ing electric field in the barriers:

E(r, z) = [exp(ikx)/2eo)[k exp( —k~z~ )]

X [P, i sgn(z)P ][z——i sgn(z)x] .

Here P vanishes and P, is roughly constant, being
determined by the confined mode part of the displace-
ment field. When k is nonzero, this electric field induces
displacements in the barriers and therefore a relative de-
crease in the eigenfrequency of the mode. As the in-plane
wave vector A: goes to zero, the induced Coulomb field
vanishes like k and the eigenfrequency strongly increases.

The n=4 odd mode displays an almost all interface
modelike displacement feature: the x component of its
displacement field exhibits well-marked absolute maxima

X [exp(iqz)/(k +q )'~ ]exp(ik r)

X(br, +b"
r, ) .

In order to compare the interaction of quasi-two-
dimensional electrons with bulk phonons or with quan-
tized phonons, we have calculated the following coupling
constants:

for quantized phonons,
2

a(k) =(1/L) f dz g;(z)g (z)Pr, (z)

and for bulk phonons,

a(k)=(L, /2~) f dq[k /(k +q )]
2

X(1/L, ) jdz g;(z)g. (z)exp(iqz)

where g;(z) is the electronic wave function of the i quan-
tized level and L, is the sample length in the z direction.
We have considered intraband transitions within the first
quantized electronic level (i =j=O) and interband transi-
tions between the first and the second electronic quan-
tized levels (i=0, j= 1). For intraband transitions, only
the first odd phonon mode has been considered and inter-
band transitions have been calculated for the first even
phonon mode. %'e have checked that for a quantum-well
width lower than 250 A, these phonons give roughly 90%
of the total scattering rate: the higher mode functions
P(z) oscillate too much to match the electronic wave
functions considered.

0

For a 50-A quantum well and a 50-meV upper energy
electronic state, the electron —LO-phonon scattering rate
is roughly overestimated by a factor of 4 if the quantiza-
tion of LO phonons is ignored (Fig. 5). The overestima-
tion is even greater for lower quantum-well widths but
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FIG. 5. Electron —LO-phonon scattering rate as a function of
the GaAs-Ga075Alo25As quantum-well width. The involved
electronic transition is between a 50-meV electronic state and a
14-meV electronic state. The initial and final electronic states
have in-plane wave vectors in the same direction. These condi-
tions give an in-plane phonon wave vector of 1.4X 10 cm ' for
intrasubband scattering.

FIG. 6. Electronic probability function of the lowest quan-
tum level (full line) and LO-phonon potential function (dashed
line) for two GaAs-Gao 75Alo z5As quantum wells. The phonon
mode is the higher-energy GaAs-like mode for a 1.4X10 cm
wave vector.

care should be taken because we have neglected the in-
teraction with phonons propagating in the Ga, Al As
barriers and the electronic probability to be in the bar-
riers begins to be large for those low well widths. This re-
duced scattering rate is fairly explained by the mismatch
between the phonon function P(z) and the electronic
probability function [go(z)] which extends more deeply
in the barriers (Fig. 6). As the well width increases, the
electronic wave function becomes localized in the GaAs
quantum well and fits the phonon envelope function P(z):
the quantized phonon scattering rate exceeds the bulk
phonon scattering rate. The resonance in the interband
scattering rate for a given electronic initial energy is due
to the cancellation of the phonon wave vector when the
intersubband electronic energy value is coLo. For very
large quantum wells, one would expect that both scatter-
ing rates should be equal but the scattering rates for all
wave vectors should be taken into account in a sum rule
and a lot of quantized levels for both electrons and pho-
nons should be involved.

As the upper electronic state energy increases, the in-
plane wave vector k of the phonon interacting with the
electrons decreases. However, the decrease of the in-
plane wave vector k also implies an increase of the exten-
sion of the phonon wave function Pk(z) in the barriers be-
cause of the Coulomb part of the phonon mode and,
therefore, an increasing mismatch between the electronic
density function and the phonon interaction function.
This last efFect dominates and, as is seen in Fig. 7, the
bulk phonon scattering rate increases more quickly than
the quantized phonon scattering rate when the upper
electronic state energy increases.

Finally, we would like to emphasize that the lack of
continuity of the displacement envelopes at the interfaces
is due to the lack of continuity of the electrostatic field as
expressed by the Maxwell relations. As the total energy
of a mode is the sum of the kinetic energy of the atoms
and of the electrostatic energy, the interaction potential,
which we get from the integration of the polarization
field [see (3)], is continuous across the interfaces.
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III. LONGITUDINAL-OPTICAL MODES
IN SUPKRLATTICES

The same formalism has been applied to
GaAs/Ga& Al As superlattices. Owing to the periodi-
city of the structure along the z axis, the general form of
the envelope function of the displacement field and of the
polarizability function is now

FIG. 7. Electron —LO-phonon scattering rate as a function of
the upper electronic state energy. The initial and final electron-
ic states have in-plane wave vectors in the same direction. The
higher-energy odd phonon mode is considered for intrasubband
scattering and the higher-energy even mode for intersubband
scattering.

Expressing the boundary conditions at z =L and at z =d
and the relations between ip and X, f (0), f (d) gives the
eigenequation of the superlattice normal modes.

Contrary to the quantum-well case, the displacements
in the barriers are made from the superposition of both
real and imaginary argument exponentials; hence, barrier
displacements are not necessarily expected to decay ex-
ponentially from the interfaces, particularly when the
eigenfrequency approaches the Ga& Al As dispersion
curve.

Going from quantum wells to superlattices, we
displayed in Fig. 8 the dispersion curves of 20-A-wide
well superlattices with infinite, 40-A, and 20-A barriers.
Since the short-range force effects do not change with the
barrier thickness for the modes mainly localized in the
GaAs wells, we expect that only modes involving
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35. 5

35
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35.5-

w(r, z) = [g(z)x+(1/ik)(dgldz)z] xpe(ik r),
P(r, z) = [p(z)x+(1/ik)(dy/dz)z]exp(ik r)

with y(z) =f (zo)e'Q"" and g(z) =x (z0)e'Q",
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z =zo+nd, 0(zo (d
d is the period of the superlattice and L is the GaAs well

width. f (z) and x(z) are defined in the unit cell of the
superlattice and the z component of the wave vector
verifies:—~/«Q &n/d .

~p(z) obeys the following equation if the origin is taken
now on the left side of the well:

dip/dz~+gy=(a/2)[ U exp( —kz)+ V exp(kz)]

Wave vector »g « of in-plane eave vector

q, ( 10 cm ) propagation 8 (deg) k ( 10 col')

FIG. 8. Dispersion curves of GaAs-like LO phonons in three
0

superlattices with 20-A-wide GaAs slabs: infinite Gap 75Alp 25As
0

barriers (top), 40-A-wide Gap 75Alp 25As barriers (middle), 20-
0
A-wide Gap 75Alp 25As barriers {bottom). The eigenfrequencies
are given for a wave vector along the superlattice axis {left-hand
panel), for a vanishing wave vector, and as functions of the
direction of propagation measured from the growth direction
(central panel), for an in-plane wave vector (right-hand panel).
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FIG. 11. Electron —LO-phonon intrasubband scattering rate
as a function of the z component of the GaAs-like LO-phonon
wave vector in a single GaAs-Gao 75Alo»As heterojunction.
The in-plane component is 10 cm ' and the electronic density
is 3 X 10"/cm .
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GaAs/Ga, „AlAs interface (Fig. 10). The general form
of the electron —LO-phonon Hamiltonian is given by

H = g —ie (SL) ' [AcoLo(1/e„—1/&0)/2]
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FIG. 12. Electron —LO-phonon intrasubband scattering rates
as a function of the upper electronic state energy in a single
GaAs-Gap 75Alo»As heterojunction. The initial and final elec-
tronic states have in-plane wave vectors in the same direction.

have calculated the following coupling constant in order
to compare the scattering of electrons on bulk phonons
and on heterojunction phonons:

for heterojunction phonons,

a(k)= (Lo,A, /2m) fdq[k /(k +q )](1/Lo,&, )

X dz z z

and for bulk phonons,

a(k)=(L /2~) f dq[k&/(k2+q2)]
2

X(1/L, ) fdz[g(z)] exp(iqz)

where g(z) is the Fang-Howard electronic wave function
and I.G,A, is the GaAs thickness. The electron-phonon
scattering rate is peaked for the z component of the wave
vector that gives the best fit between the electronic densi. -

ty and the phonon potential function along the growth
axis (Figs. 10 and 11). Computing the scattering rates as
functions of the upper electronic state energy, we recover
the same behaviors as in quantum wells (Fig. 12).

V. CONCLUSION

In an attempt to establish an equivalent of the Frohlich
interaction in GaAs-Ga, Al As heterojunctions
(x (0.3), we have investigated the nature of
longitudinal-optical phonons in superlattices, quantum
well, and single heterojunctions within a continuum ap-
proach. Assuming that the alloy behaves as an effective
average crystal, the GaAs bulk LO band overlaps with
the GaAs-like LO-phonon dispersion curve of the alloy.
Therefore we have looked for normal modes as hybridiza-
tions of the corresponding bulk LO phonons. Boundary
conditions have been derived by integrating the Euler-
Lagrange equation of motion of the relative displacement
field provided that this one is written in a Hermitian
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form. %'e do not And any pure interface mode but every
normal mode contains a Coulomb displacement field be-
sides a confined motion. Two kinds of Coulomb modes
come out: either the total dipole moment within a slab is
nonzero and induces an electric field within the other slab
or the presence of interfaces allows the emergence of a
Fuchs-Kliewer mode through the matching of the dielec-
tric functions. The long-range Coulomb interaction
shows up in the dispersion curves as a function of the in-
plane wave vector for superlattices with decreasing bar-
rier thicknesses because the short-range forces involved
in modes mainly localized in the GaAs slabs are not
affected by the Ga& Al As thickness. Finally, the
electron-phonon interaction is strongly reduced in quan-

turn wells for well widths lower than 100 A. This reduc-
tion is attributed to the mismatching between the quan-
tized phonon potential function in the z direction and the
electronic density function which spreads out more deep-
ly in the barriers.

APPENDIX A: EIGENKQUATION
FOR A DOUBI.K HETEROSTRUCTURE

%'e give the coe%cients of the 3 X 3 matrix defining the
eigenfrequencies co. A11 quantities related to the GaAs
quantum well are labeled by m whereas those concerning
the Ga& „AlAs barriers are labeled by b:

—
(

2 2 P2 k2)1/2/P

—
(

2 P2 +P2k2)I/2/P

b, = [(1—1/~ )co —(1—1/x.o)coLo]/(co —co„o),
X =b, —1+1/~

R = [(Ico K ) co To/& ]/[(&ob & b ) ~b To/& b ]

(P q„+PPbqb )cos(q„L/2)
PPbqb+exp( kL/2)[co—sh(kL/2)(P k X b, RPbqb—)+R sinh(kL/2)(Pbk Xb AbPbqb) J—

Odd modes:

a» =cos(q L /2),
a 12 1

a» = 1 —exp( kL /2 )[b, co—sh( kL /2) +b b sinh( kL /2) ],
a2, =P q sin(q L/2),

2a„=Rpbqb—

a23 =k exp( kL/2)sinh(kL—/2)(P X„RPbX&), —

a 3, =P~ q~ cos( q L /2),

a3p =Rpbqb
2 2

a 33
=k exp( kL /2 )[P„Xc—osh( kL /2) +PPbXb sinh( kL /2) ] .

Even modes:

a» =sinh( q L /2),

ai2

a» = 1 —exp( kL /2) [5 sinh( kL —/2 ) +b b cosh( kL /2) ],
a2, =P q„cos(q L/2) .

a~2 =R pbqb

a23 =k exp( kL/2)cosh(kL/2—)(PPb X&P X ), —

a3, =P q sin(q„L/2),

a» =Rpbqb

a33=k exp( kL/2)[P X sinh—(kL/2)+PPbXbcosh(kL/2)] .
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Odd modes:

APPENDIX B: ATOMIC DISPLACEMENTS

[P—q„+RPbqb]cos(q„I./2)

R13bqb+exp( —kL/2)[cosh(kL /2)(P k X —5 RPbqb )+R sinh(kL/2)(Pbk Xb —b bI3bqb )]

8 =cos(q„L/2)+ C I 1 —exp( —kL /2) [b, cosh(q„L/2)+ b bsinh(qbL /2) ]j,
A =(L/2)/ I dz(u„+u, )+ f dz(u, +u, )

0 L/2

U =Au

U, =Au, .

~z~ &L/2:

u~ —[~„~/[(&0~ e„„)'co—~~'o] j[cos(q z) XC—exp( kL/2)c—osh(kz)],

iu, = [v /[(eo„—e )'~ co zo] j [ —(q /k)sin(q„z) —X C exp( —kL/2)sinh(kz)] .

z )L/2:
u =I~ b/[(cob eb)—' cob ~o]j [8 exp[ —qb(z L/2)]+—X„sinh(kL/2)C exp( —kz) j,
iu, =

I ~ b/[(cob —e b)' cob ~o] j I (qb—/k)B exp[ —qb(z L/2)] —Xb—sinh(kL/2)C exp( —k, z) j .

Even modes:

—[13 q +P13bqb)sin(q L/2)
[sinh(kL/2)(P k X bRPb)+R cosh—(kL/2)(Pbk X„bb/3bqb)], —

PPbqb+ exp( kL/2)—
8 =sin(q L/2)+C[1 —exp( kL/2)[b, —sinh(q„L/2)+bbcosh(qbL/2)] j,
A =(L/2) f dz(u +u, )+j dz(u, +u, )

0 L/2

U =Au„,
U, =Au, .

~z~ &L/2:

u„=[~„/[(eo —e )'~ co ~o] j [sin(q„z)—X„Cexp( kL /2)sinh—(kz)],

iu, = Iw„„/[(eo—e„)'~co ~o]j [(q„/k)cos(q z) —X C exp( kL/2)cosh(k—z)] .

z &I./2.

u. = I~ „/[(cob—e„,)' '~b ~o] j [8 exp[ —q, (z —L/2)]+Xbcosh(kL/2)C exp( kz) j, —

b/[(cob e b ) ~bTo] j I (qb /k)+ exp[ qb(z —L—/2)] —Xbcosh(kL /2)C exp( —kz) j

APPENDIX C: ELECTRON-PHONON INTERACTION

We give the electron-phonon interaction potential in double heterostructures.
Odd modes:

II =ieA(SL) ' [hcoz (o1 /e —1 /e) o2/]ex (pi rk)(b k+bk)(1/k)xT .

z & —I./2.

T =Rg exp[qb(z+ —,')]+RC(bb —1)sinh(kL/2)exp(kz),

T =cos(q z)+C(1—b, )exp( —kL/2)cosh(kz) .

z )I./2:

T =Rp exp[ —qb(z —
—,
'

) ]+RC(b,b
—1)sinh(kL /2)exp( —kz) .
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Even modes:

H = i—eA(SL) 'i [hcoto(l/e„—1/eo)/2)exp(ikr)(bk+b k)(1/k)xT .

z & —I /2.

T = RB—exp[qb(z +—,
'

) ]—RC(b, b
—1)cosh(kL /2)exp(kz) .

Izl «/2:
T =sin(q„z)+C(1—5 )exp( kL—/2)sinh(kz) .

z)L/2:
T =RB exp[ —qb(z —

—,
'

) ]+RC(b &
—1)cosh(kL /2)exp(kz) .

B. Jusserand, D. Paquet, and A. Regreny, Phys. Rev. B 30,
6245 (1984).

C. Colvard, T. A. Gant, M. V. Klein, R. Merlin, R. Fischer, H.
Morkoq, and A. C. Gossard, Phys. Rev. B 31, 2080 (1985}.

A. K. Sood, J. Menendez, M. Cardona, and K. Ploog, Phys.
Rev. Lett. 54, 2111 (1985); 54, 2115 {1985).

4M. Nakayama, K. Kubota, H. Kato, and N. Sano, J. Appl.
Phys. 60, 3289 (1986).

5G. Fasol, M. Tanaka, H. Sakaki, and Y. Horikoshi, Phys. Rev.
8 38, 6056 (1988).

6Z. P. Wang, H. X. Han, G. H. Li, D. S. Jiang, and K. Ploog,
Phys. Rev. B 38, 8483 (1988).

B.Jusserand and D. Paquet, Phys. Rev. Lett. 56, 1752 (1986).
8H. Chu, S. F. Ren, and Y. C. Chang, Phys. Rev. B 37, 10746

(1988).
E. Molinari, A. Fasolino, and K. Kunc, Phys. Rev. Lett. 56,

1751 (1986)~

J. E. Zucker, A. Pinczuk, D. S. Chemla, A. C. Gossard, and
W. Wiegmann, Phys. Rev. Lett. 53, 1280 (1984).

' A. S. Barker, J. L. Merz, and A. C. Gossard, Phys. Rev. B 17,
3181 (1978}.

2A. Fasolino, E. Molinari, and J. C. Maan, Phys. Rev. B 33,
8889 (1986).

' A. Fasolino, E. Molinari, and J. C. Maan, Phys. Rev. B 39,
3923 (1989).
E. Richter and D. Strauch, Solid State Commun. 64, 867
(1987).

i5S. F. Ren, H. Chu, and Y. C. Chang, Phys. Rev. Lett. 59, 1841
{1987);Phys. Rev. B 37, 8899 (1988).

I T. Tsuchiya, H. Akera, and T. Ando, Phys. Rev. B 39, 6025

{1989).
i7K. Huang and B. F. Zhu, Phys. Rev. B 38, 2183 (1988); 3S,

13 377 (1988).
~88. F. Zhu, Phys. Rev. B 38, 7694 (1988).
'9E. P. Pokatilov and S. I. Beril, Phys. Status Solidi 8 110, K75

{1982);118, 567 {1983).
2 L. Wendler, Phys. Status Solidi 8 129, 513 {1985).

R. Fuchs and K. L. Kliewer, Phys. Rev. 140, A2076 {1965).
F. Bechstedt and H. Gerecke, Phys. Status Solidi B 156, 151
(1989).

2 M. Babiker, J. Phys. C 19, 683 {1986).
~ H. Akera and T. Ando, Phys. Rev. 8 40, 2914 {1989).

N. Mori and T. Ando, Phys. Rev. B 40, 6175 {1989).
J. Shah, A. Pinczuk, A. C. Gossard, and W. Wiegmann, Phys.
Rev. Lett. 54, 2045 {1985).
C. H. Yang, J. M. Carlson-Swindle, S. A. Lyon, and J. M.
Worlock, Phys. Rev. Lett. 55, 2359 (1985).
N. Balkan, B. K. Ridley, M. Emeny, and I. Goodridge, Sem-
icond. Sci. Technol. 4, 852 {1989).
C. Guillemot, F. Clerot, P. Auvray, M. Baudet, M. Gauneau,
and A. Regreny, Superlatt. Microstruct. 8, 259 (1990).
B. Jusserand, D. Paquet, and F. Mollot, Phys. Rev. Lett. 63,
2397 (1989).
S. Adachi, J. Appl. Phys. 58, R1 (1985).

3zM. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, Oxford, 1954).

33H. Haken, Quantum Field Theory Of Solids (North-Holland,
Amsterdam, 1976).

34G. T. Einevoll, P. C. Hemmer, and J. Thomsen, Phys. Rev. 8
42, 3485 (1990).


