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Stark shift of hydrogenic impurity states in a quantum well
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We present a variational calculation for the Stark shift of hydrogenic impurity states in an isolated
quantum well under a constant electric field, due to the competition between the quantum-confined
effect, impurity Coulomb potential, and electric field. The dependence of the ground impurity binding
energy on the width of the well and the impurity position under different electronic fields is calculated.
That the impurity at different positions causes different Stark shifts under an electric field is discussed.
En a narrow well, the quantum-confined effect depresses the Stark effect.

The quantum-confined Stark effect in a quantum-well
(QW) structure has attracted considerable attention re-
cently, due to its interesting optical-absorption properties
and electro-optical applications. ' Up to now, most
theoretical work has been devoted to the effects without
impurities, e.g. , the eigenstates of QW, the exciton spec-
tra, ' and the quantum-confined Franz-Keldysh effect. '

In this paper we report the results of variational calcu-
lations for the Stark shift of the ground hydrogenic im-
purity state in an isolated CxaAs/Ga, ,A1„As QW, un-
der a constant electric field perpendicular to the layers
defining the QW.

We ignore the tunneling between QW's, and take the
single-well approximation. In the framework of the
effective-mass approximation, the dimensionless Hamil-
tonian for an electron in an isolated infinite quantum-well
structure is given by

H = V 2/r+ V—(z)+—qz,
where

0, lzl &L/2
Izl &L/2,

and

q = lelFa*/%*,

where I' is the electric field applied along the direction of
the well, z axes. (This direction is perpendicular to the
interface plane. ) In Eq. (1) all energies are expressed in
units of the effective Rydberg A*=m*e /2irt e -5.83
meV, and all distances are expressed in units of the
efFective Bohr radius a*=ill e/m e -98.7 A, where m'
and e are the electronic effective mass and the dielectric
constant, respectively, of CiaAs. The position of the
hydrogenic impurity as (0,0,z, ), and the distance be-
tween the electron and the impurity is r = [x +y
+(z —z, ) ]' . The origin of the coordinate system is

chosen to be at the center of the well.
The square-well Hamiltonian under electric field

without impurity is

Ho= — + V(z)+qz .
dz' (2)

Eo =min I (f IHo If & j .
f (4)

The normalization constant No and the expectation value
of Ho are as follows:

No(P)= [0.5[Fi(0)+ReFi(2m. /L)]I;: ~z&zj '~2, (

(fIHol f ) =N&I(F13 )/(2L )'[F—i(0)+ReFi(2m /L)]

(mP/L )ImF,—(2n-/L)

+0.5q [F2(0)+ReF2(2n. /L) ] j I;:L~g&2 .

The functions Fi(a), F2(a), and others which will be
used later are defined in the Appendix.

For the ground state of H in Eq. (1), we use the trial
wave function containing variational parameter A, :

f( yx, z) =N(A, )cos(mz/L)exp( Pz/L r/A, ), ——

lzl &L/2, (7)

where the normalization constant

(8)

The trial wave function for the lowest eigenvalue of Ho is

f(z)=No(P)cos(mz/L)exp( Pz!L), l—zl &L/2 . (3)

The variational lowest eigenvalue of Ho with respect to
variational parameter P is given by
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The variational binding energy Eb affecting an electron
injected from the hydrogenic impurity is the difference
between the lowest Eo without the impurity potential and
the variational minimum of the expectation of the Hamil-
tonian H:

E =E —minI &QIHI@& I . (9)

The expectation values of H are as follows:

& qIH Iy& = [~N'/(2L')]

X [ T(A)I, ' I + T( —A)I;:,

+(AN /L)[S(A)I, 'L +S(—
A, )I;:,~

] .

(10)

Now, in the limit of infinite height barrier, (QIHIttj&
can easily be calculated from Eq. (10) and its minimiza-
tion with respect to A. leads to the desired binding energy
through Eq. (9). The electron density distribution in the
layers of a QW can be shown as follows:

4(z)= f dp2mpIP(p, z)I'

=(rrA, N l4)[1+cos(2/L)](1+2Iz —z; I/A, )

Xexp( —2Iz —z;I/A, —2Pz/L) .

petition between the quantum-confined effect and the im-
purity Coulomb potential. For example, when the impur-
ity shifts from the left edge to the right edge of the 300-
A-width QW, the inaximum of the electron layer density
distribution @(z) shifts from —30 to 30 A. So the impur-
ity binding energy has a maximum around the QW center
for all L„when the electric field is not applied. When the
applied electric field F is turned on, it drives the max-
imum region of N(z) to the —z direction, and narrows it.

0
For example, in the 300-A QW the maximum region of
@(z) for all a is ——90 to —75 A for F =50 kV/cm,——112 to —105 A for F=200 kV/cm, and ——126 to—123 A for F=500 kV/cm. The binding energy is the
result of competition between the quantum-confined
effect, the electric field, and the impurity Coulomb poten-
tial. When the position of the maximum of 4(z), which
is dependent on the impurity position z;, coincides with z,.
itself, the binding energy of the impurity has a peak.
When z; increases from the left of the peak then the de-
crease of (HI & is sharper than the increase of
(H~&[Hii, = —V + V(z)] while (HF & varies smoothly,
causing a peak of Eb, and in this region the stronger elec-
tric field drives Eb to higher value. Similar to the case of
N(z), the peak of curve Et, -a is driven by the applied
electric field I to the —z direction, and is narrowed by F.

The results are displayed in the figures. Figure 1 shows
the binding energy as a function of the position of the hy-
drogenic impurity with the electric field I as a parameter
in difFerent width QW's, L =70, 100, 200, and 300 A.
a=z; /L is the parameter of the impurity position in the
QW. In the figure the dotted line is for F =500 kV/cm,
the dashed-dotted line is for F =200 kV/cm, the dashed
line is for F=50 kV/cm, and the solid line is for F =0.
At zero field we obtain central symmetrical curves
Eb-a. Upon decreasing the well width L, Eb increases
and the Stark shift decreases for all n, due to increase of
the quantum-confined effect. The electron is mostly
around the center of the QW for all a, due to the com-
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FIG. 1. Binding energy Eb vs impurity position o; in different
width QW for four values of the longitudinal electric field F:

F =0; ———,I =50 kV/cm; ———., I' =200
kV/cm; and - . , F =500 kV/cm.
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FIG. 2. Binding energy Eb vs well width L for four values of
the longitudinal electric field I' (the legend is the same as Fig. 1)
for different position impurity doping.
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On the other hand, when z; increases in the right half of
the QW, that smooth increase of (Hr '/ is a little faster
than the decrease of (H~ ) and (HF ) causes Eb to de-
crease, and in this region the stronger electric field drives
Eb to lower value. Between them, there is a transforma-
tion region where the behavior of Eb under electric field
is complicated. Both of the two kinds of Stark shift are
depressed by the quantum-confined effect in the narrow
QW.

Figure 2 shows the binding energy as a function of the
well width with the electric field F as a parameter for the
different position of the hydrogenic impurity in the QW.
When the impurity is in the right half of the QW, a & 0,
the stronger electric field drives the impurity binding en-
ergy down. When the impurity is at the center of the
QW, a=O, the situation is mostly like one where a&0,
except for the QW with 50 & L & 110 A, where E& has a
small opposite shift under electric field. When the impur-
ity is doped in the left side of the QW with a & —0.35, Eb
has the opposite Stark shift under electric field for the
QW with L & 400 A. When a is around —0.3, the strong
electric field causes Eb to have a maximum. When the
impurity is doped near the QW center with z; & 0, the
electric field causes Eb to have a complicated behavior.
For any positions of impurity doped in a narrow QW the
Stark shift becomes indistinguishable in the figure, due to
the strong quantum-confined effect.

Figure 3 shows the binding energy as a function of
electric field for well width L, =100 A. In the figure the
solid line represents the central impurity, and the dashed
line, the dotted line, the dashed-dotted line, and the
dashed-dotted-dotted line represent impurity position
Z, = —50, —25, 25, and 50 A, respectively. For the
negative-region doping the impurity binding energy Eb as
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FIG. 3. Binding energy Eb vs electric field with L =100 A
for different impurity positions a: ———,a= —0.5;
a = —0.25; , a =0; ——,a =0.25; and —"—,a =0.5.

a function of electric field has a positive slope. On the
contrary, for the positive-region doping the Eb curve has
a negative slope.

In summary the effect of the hydrogenic impurity state
on the Stark shift in a QW is studied in terms of varia-
tional calculation. The competition among the
quantum-confined effect, the impurity Coulomb potential,
and the constant electric field causes different Stark shift
of the impurity binding energy. The strong quantum-
confined effect depresses the Stark shift under electric
field for a narrow QW.

This work was supported by the National Natural Sci-
ence Foundation of China.

APPENDIX

F, (a) =exp(ICz)/K, K =2/A, 2PIL +ia, —

Fz(a) =F,(a)(z —I /X),
Fz(a) =F, (a)(z —2z/K+2/K ),
F&(a)=exp(Ez)/K, X= 2PIL+ia, —

Fz(a) =F,(a)(z —I/K),
P(A, )= [(1+2z;/A, )[F,(0)+ReF, (2m/L)] —(2/A, )[Fz(0)+ReFz(2ir/L)]]exp( —2z;/A),

T(A ) =(1+2z,. /A )exp( —2z,. Ik ) [ 3
&
[F&(0)+ReF&(2rr/L)]+ 3z[Fz(0)+ReFz(2irIL)]+ 231mF&(2ir/L)]

—(2/A )exp( —2z A ) [ 2
&
[Fz(0)+ReFz(2zr/L)]+ Hz[F3(0)+ReF3(27r/L)]+ A31mFz(2m/L)],

S(A ) =exp( —2z, /A) [ 2„[F,(0)+ReF, (2'/L)] —P[Fz(0)+ReFz(2n IL)]+rrz, ImF, (2rrIL) —+ ImFz(2m /L)],

where

A, =0.5[(vr —P )A, —L ], Az=0. 5qk. L

~3= ~p~', ~.=(1—I~I)L+pz, .
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