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Single-electron charging effects similar to those in small-area metallic tunnel junctions should take
place in semiconductor heterostructures, in particular, small-area quantum wells. Our analysis shows
that dc current-voltage characteristics of such a well should exhibit an interplay between single-electron
charging and energy-quantization effects. Relative magnitude of the single-electron charging effects is
determined by the same parameter which scales multielectron charging in the conventional (large-area)
quantum wells.

I. INTRODUCTION

Single-electron charging effects in small-area metal
tunnel junctions are well understood now (see, e.g. the re-
view'). The origin of these eff'ects is the fact that due to
small electric capacitance C of a small-area junction, its
electrostatic energy is changed considerably in the result
of tunneling of even a single electron. This change leads
to a certain correlation between electron tunneling
events, and gives rise to a variety of new phenomena that
can be observed in single junctions as well as multijunc-
tion systems.

In particular, electron-electron correlations in the sys-
tem of two tunnel junctions connected in a series result in
the "Coulomb staircase, " a periodic modulation of the dc
current-voltage characteristics of the system. Each
period of the Coulomb staircase corresponds to the addi-
tion of one more electron to the central electrode of the
system. This effect was clearly observed in a number of
experiments. '

In semiconductors, a similar structure is the famous
double-barrier quantum well —see, e.g., the review. In
the usual (large-area) wells the multielectron charging
effects are known to be important. In particular, such a
charging can lead to an intrinsic bistability of the current
Bow through this structure.

An objective of the present work was to show that in
the small-area quantum wells (and other small-area het-
erostructures) the discreteness of the charge accumula-
tion should become important, since the charging of the
well by even a single electron changes the potential
profile of the structure considerably. A brief report on
our results was presented earlier. Similar ideas were put
forward in Refs. 5—7.

We wi11 show that the single-electron charging effects
arising in semiconductor heterostructures may be similar
to those in metal junction systems. For instance, the dc

current-voltage characteristics of the quantum well may
exhibit a Coulomb staircase type structure similar to that
observed in its metallic counterpart.

However, the single-electron charging phenomena in
semiconductors and metals should differ in some impor-
tant respects, mainly due to two circumstances. First,
the Bohr radius az in semiconductors is much larger

0
(az =—100 A for GaAs}, and heterostructures with dimen-
sions smaller than a~ can be fabricated. As a result, the
discreteness 6 of the electron kinetic energy spectra in a
conducting region of heterostructures ("electrode" ) can
be comparable to the characteristic charging energy 5,
whereas for typical metal junctions, 6 &&5. Second, the
Fermi energy in semiconductor structures can be compa-
rable to the charging energy 5, and the absolute number
of free electrons in the electrodes is not necessarily much
larger unity.

In this work we extend the conventional description' of
the single-electron charging effects to semiconductor het-
erostructures (specifically, the quantum wells) with an ac-
count of these peculiarities. In Sec. II we write down the
master equation that describes the tunneling through the
quantum well. This equation takes into account both the
electron-electron correlations that arise due to single-
electron charging, and discreteness of the energy spec-
trum of the well. Using this equation we check the
adopted model by calculating the dc current-voltage
characteristics of a conventional (large-area) quantum
well (Sec. III). Next, we consider the most important
case of a small-area quantum well and calculate its dc I-V
curves (Sec. IV}. An emphasis is placed on a discussion
of the interplay between two structures of these two
curves, one related to the discreteness of the charge accu-
mulation in the well, and another one related to the ener-
gy discreteness. In Sec. V we consider electron transport
through a laterally confined quantum dot that also can be
described with our master equation. In this case the gate
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voltage dependence of the quantum dot characteristics is
of the special interest. We conclude (in Sec. VI) with a
discussion of published experimental results on the elec-
tron transport through small-area quantum wells and
dots and possible further experiments.

II. THE MODEL AND BASIC EQUATIONS

We begin by considering the conventional double-
barrier structure with the conduction-band-edge pro51e
(along the direction of the current Row) shown schemati-
cally in Fig. 1. The Hamiltonian of this structure in-
cludes energy H of the well itself, Hamiltonians H" of
the external electrodes (emitter and collector), and terms
HT' describing tunneling through the energy barriers,

H —H~+H'+H'+H~+ +HT .

U = —qVQ —eVN,
2C Q =en, n =+chic„, (4)

k

which work so well for the tunneling between metallic
electrodes. ' Here electric capacitance C of the well is the
sum of emitter-well and collector-well capacitances,

C=C, +C, , (5a)

which are given approximately by the following equa-
tions:

direction of the current Row and introduce the energy E
of this level relative to the conductance-band edge in the
emitter at vanishing bias voltage. Hence, the average in-
terval p between eigenenergies ck is determined by the
two-dimensional (2D} density of states p, p =M /mS.

For a description of electrostatic energy U of the well,
we borrow the simple expressions

We assume that electrons in the emitter and collector
form a free electron gas,

=~~K.' C C.i i i

lD
d, +—,C, =eeoS —+d +QN

(Sb)

Hg gskckck—+ U,
k

(3)

where [Ek J is the electron-energy spectruin in the
confining potential, and U is the electrostatic energy.

We will consider the "ideal" model of the quantum
well in which electron motion along the layers of the
structure and motion in the transverse direction (in the
direction of the current Aow} can be separated. We as-
sume that electrons in the well occupy only the lowest-
energy level Eo (see Fig. 1) with respect to motion in the

dp w

with a certain Fermi energy c+ determined by the doping
density of these electrodes.

Besides that, we assume that addition of a single elec-
tron to the well does not change substantially the shape
of the confining potential of the well (that is the sum of
the potential imposed by the structure, and the electro-
static potential due to the charge accumulated in the
well) and changes only the average well potential relative
to the external electrodes. In this case, by treating the
electron-electron interaction in the Hartree approxima-
tion one can write down the well Hamiltonian in the fol-
lowing form:

where S is the area of the well, and other notations are
explained by Fig. 1. Parameter g in Eq. (4) denotes the
part of the total voltage V across the structure that drops
between the emitter and the well, g-=C, /C; N is the
number of electrons that have tunneled through the well.

One should note that an approximate description of
the electron-electron interaction in the well, based on
Eqs. (3) and (4), is not strictly valid when the number of
free e1ectrons or e1ectron density in the we11 is small. In
this case electron-electron interaction inside the well is
not screened out, so that both exchange interaction and
electron correlations inside the well [which are not taken
into account in the Hartree approximation used in Eqs.
(3) and (4)] may become essential. In this case one can
improve Eq. (4) somewhat by taking into account part of
the exchange interaction that is responsible for the fact
that an electron does not contribute to the average elec-
trostatic potentia1 for the same e1ectron. This can be
achieved by replacing Q /2C in Eq. (4) with
(e /2C)n (n —1).

Following Refs. 9 and 10 we write down the tunneling
terms Hz" as the standard tunnel Hamiltonians

0"=~ T"e- c +H c
i, k

and assume that the tunneling matrix elements T" and
the corresponding tunne1ing rates

dc g
I

I

I

l

I

eV
are small

A'I "&(mintp ', 5j . (8)

FICx. 1. Band-edge-profile model of the quantum me11.

In relation (8), 5 =e /C is the characteristic charging en-
ergy. This relation implies that the average conductance
of the whole structure is also small, 6 &&R &

'

(R& =M/2e -=6.5 KQ)." When this condition is
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respectively. Thus, the tunneling connects the state ek in
the well with an emitter or collector state with the energy
sk+4U„".

The total rates w„of electron tunneling to or from the
quantum well are the sum of all partial tunneling rates to
or from specific energy levels ck,

w+'(n)=Qrk'(c, ~)f (c+)[1 g( e)—],
k

and

w„*=w +(n)+w+(n),
(loa)

a+=sk+E+hU„", s =ek+E+hU„", . (10b)

Here g„(sk) is the single-particle distribution function
associated with the equilibrium Gibbs distribution
F(sk, . . . , ek }of n electrons in the well,

1 n

satisfied and temperatures are not too low (T»A'r"),
the dynamics of tunneling can be described by a simple
master equation. Validity of this equation is closely relat-
ed to the fact that for T&)AI" the resonant current
peak associated with each energy level (described by the
conventional Breit-Wigner formula) is strongly
broadened by temperature, and the resonant tunneling
process cannot be distinguished from the sequential tun-
neling.

In addition to assumption (8) we assume that the tun-
neling rates I "are smaller than the electron-energy re-
laxation rate ~, ' in the well. In this case the current Sow
does not disturb the electron equilibrium, and the master
equation can be constructed from the following simple
considerations. (The effects of electron nonequilibrium
have been considered in Ref. 11.}

Electron tunneling changes the number n of electrons
in the well, and hence, the electrostatic energy U,
b, U=U(n+1) —U(n). When an electron tunnels be-
tween the emitter and well or between the well and col-
lector, the energy change is

b U„'=5(n +—,
'

) —ye V, hU„'=5(n +—,
' )+(1—g)e V,

one can easily be convinced that the stationary solution
of Eq. (12) is given by the following recurrent formula:

o„+1—H„(w„ /wn +1 )
+ (13)

The dc current Aowing through the quantum well can be
calculated from this solution as follows:

I=I'=I',
I"=+eg o „[w+'(n) —w "(n)] .

Equations (10)—(14) are used below to calculate the dc
current-voltage characteristics of large-area and small-
area quantum wells.

III. LARGE-AREA QUANTUM WELL:
MULTIELECTRON CHARGING

Both the electric capacitance C and density of states p
of the quantum well with a large area S are large too:
C,p~S. In such a well the effects associated with the
charge or energy spectrum discreteness are suppressed,
for instance, by thermal fluctuations, T &)5,h. As a re-
sult, the dc I-V curves have no fine structure on the volt-
age scales of 5/e or b. /e.

The large-scale shape of the dc I Vcurves (-on the volt-
age scale of sz/e) is sensitive to the dependence of the
tunneling rates rk'(s+) on the energies e+. We will
adopt the usual approximation that not only the total-
electron energy, but also the electron mode of propaga-
tion along the layers of the structure is not changed dur-
ing the tunneling. In this case the tunneling rates depend
only on the energy c.„ofelectron motion in the transport
direction. Under the assumption that heights of the ener-
gy barriers are much larger than cF, one can get the fol-
lowing expression for the emitter tunneling rate (see Ap-
pendix A):

ties o.„ to find n electrons in the well in accordance with
the master equation

o.„=w„+ &
o „+&+w„+, o „&—( w„++w„)o „. (12)

Using the evident relation

( ri ) =gn o'„=g( w„o'„w„+,o'„+, )

g„(sk)=
k]) ~ ~ «pk

F(s~ ek sk
l n —1

(1 la)

F(ek~, . . . , sk )=Z exp —
T ask
1

i=1
(1 lb) e„e(y=gV) +F. . — (15)

n

exp ——g e.„
kl, . . . , k„ i =1

(1 lc)

and the sums in Eqs. (11a}or (1 lc) are taken over the sets
of difFerent energy levels, k;Ak, kj. In the two limits
T «p ' and T »p ', all g„(e) coincide with the Fermi
distribution function f(e). For intermediate tempera-
tures, T=p ', we calculate them numerically from Eqs.
(11).

Transitions (10) lead to an evolution of the probabili-

Here we have introduced the electric potential y associat-
ed with the accumulated charge Q, y—:Q/C. By I" we
denote the emitter tunneling rate at the threshold voltage
V„at which the tunnel current through the quantum well
appears, e g V, =E —cF. We will use the same convention
for the collector tunneling rate I', but here we neglect its
dependence [Eq. (A4)] on transport energy because the
relative variation of I' in the relevant voltage region,
V, & V& V, +sz/eel, is much smaller than the relative
variation of I'.

For the large-area quantum well its charge can be con-
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sidered as continuous (Q »e). Fluctuations 5Q arising
due to the shot noise of the tunnel current are small as
compared to the average charge Qo, 5Q =(eQO)' « Qo.
Thus, in order to calculate a current through a well it is
sufficient to find the average steady-state potential y from
the equation

I'(y) =I'(y) .

Inserting Eqs. (15) into Eqs. (10) and (14) we get the fol-
lowing expression for the emitter-well and well-collector
currents I"(p):

a 06 —
(y

—
OGj)

r

0.4-

0.2-
+

Q.Q
0

1 3.5

2 3 0 1 2

I'(p) =epl '(E„)[eg(V —V, ) —ey —p],
I'(y) =epr'p,

(17)

where we have introduced the Fermi energy p in the well,
p=n/p. Since both the electrostatic potential y and the
Fermi energy p are proportional to the number n of elec-
trons in the well, p is directly related to y,

4d,~.p= p=p5=

Here aii =4vreeo/fi /me is the Bohr radius, and

d,z' =(d, +w/2) '+(d, +a+w/2) ' characterizes the
total capacitance of the well —see Eqs. (5).

Inserting Eqs. (17) into Eq. (16) we find for the dc
current I Aowing through the well,

r (.„)rI =[1+a( e)] 'e pal( V —V, ) r'(s„)+r'
where

r'(e„)r'

(19)

Another solution is

I =0 for V —V, & e~/eg . (19')

Equations (19) and (20) in the approximation
I "(E„)=const were first obtained by Sheard and
Toombs. They pointed out that parameter a determines
the importance of charge-accumulation effects, in partic-
ular, the magnitude of the bistability region. This con-
clusion remains qualitatively unchanged in our somewhat
more realistic model, in which we take into account the
dependence of the emitter tunneling rate on the transport
energy c„. To find the dc I-V curve of the well in this
model, one needs to solve Eq. (16) for the well potential y
and substitute it in Eq. (19). The results of these calcula-
tions are shown in Fig. 2. One can see that the additional
element introduced by s„dependence of I" (and related
to the fact that r'(e„) vanishes at s„,—+0) is a rounding of
the resonant current peak. It leads to a decrease of the
peak height and shrinking of the voltage region where
there are two stationary states with different current
values (19). The degrees of this rounding depends on the
tunneling rates ratio I '/I" [Fig. 2(b)].

The shape of the resonant current peak shows that in
the voltage region above ez/eq there is the third current

FICi. 2. dc I-V curves of a large-area quantum well for (a)
various values of the parameter o. and (b) various ratios of the
tunneling rates I'/I'.

value which satisfies Eqs. (16) and (17). However, one
can get convinced (in contrast to the suggestion made in
Ref. 12) that this solution is unstable —see Appendix B.

Thus, we can conclude that the charge accumulation in
the large-area quantum well can be essential if the param-
eter a (20) is sufficiently large, a 1. This inequality im-
plies that the two conditions are satisfied. First, the bar-
riers of the structure are rather thick: 4d, tr

& aii (so that
P&1) and second, the collector tunneling rate is not
much larger than the emitter rate, I'~ I'. As it will be
shown in the next section, the same parameters a,P
govern the single-electron charging of the small-area
quantum wells, so that the same conditions are necessary
for such a charging to take place.

IV. SMALL-AREA QUANTUM WELLS

In small-area quantum wells both the average energy
interval 6=—2p ' between 2D electron states in the well
(that are at least double degenerate) and the single-
electron charging energy 6 become large. In particular,
they can be larger than the energy scale of the thermal
fluctuations: A, 5» T. Hence, one should take into ac-
count the discreteness of the 2D electron spectrum of the
well, as well as the discreteness of the electric charge in
it.

In this case, the dc current-voltage characteristics of
the well can be calculated from Eqs. (9)—(14). The Fermi
energy in the external electrodes is typically ' ' of the
order of 0.1 eV, and it is larger than both internal ener-
gies 6,5 that are of the order of 10 meV or smaller even
for submicron-size structures,

cF»6, 5 . (21)

It means that the "global" ( V=ez/e) shape of the I-V
curve is the same as that of the large-area quantum well,
if the current is scaled down proportionally to the area.

The only difference in the global shapes can arise from
the fact that for small-area quantum wells deviations
from the "ideal" resonant tunneling model considered in
Sec. III can become essential. Since the lateral dimen-
sions of such a well are comparable to the depletion
depth, the laterally confining potential can be different in
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different layers of the structure, and electron motion
along the layers can be changed at tunneling. As a result,
the emitter tunneling rate can depend on energy in anoth-
er way than in the ideal model described by Eq. (15). In
particular, I' does not necessarily vanish when the
conduction-band edge of the emitter is higher in energy
than the subband edge of the well. This means that the
current through the well does not vanish at large volt-
ages, so that the peak-to-valley current ratio of the
small-area quantum well should be typically smaller than
that of the similar large-area structure.

However, these variations of the large-scale ( =sF} en-

ergy dependence of the tunnehng rates do not in6uence a
fine structure of the I-V curves, arising either due to the
discreteness of the 2D electron-energy spectrum of the
well, or due to the discreteness of the electric charge in it.
This fine structure (which is of main interest in this work)
has a voltage scale of the order of b, /e or 5/e, i.e., much
smaller than s~/e (21), and can be described adequately
within the same resonant tunneling model (15) employed
above.

A. General scheme of the Sne structure

Eqs. (9), i.e., neglect the variations of the well potential
arising due to the charge variations. Hence, the summa-
tion over k in Eqs. (10a) for the transition probabilities
partially can be carried out explicitly, and one gets

W+ (B) tD (8)—I (et~) gf (Ek +st~) —l1

k

e„=E—eg V (23a)

w' (n) m—+(n}=I' n —gf(sk+s„+eV)
k

(23b)

+I'yf(s„+s„+ev)
k

and hence, the current I

Equations (22) allow one to find the current I (14)
without solving the master equation (12). Inserting them
into Eqs. (14) one can find the average steady-state nurn-
ber ( n ) of electrons in the well,

Equation (9) (corrected for the case of the empty well,
as it was discussed in Sec. II) and Eqs. (10)—(14) imply
that in the low-temperature limit (T &(5,5) the dc I-V
curves of the well with E &cF should exhibit current
steps at dc voltage levels V„k which obey a very simple
rule

eg(V„k —V, )=5n+sk, n =0, 1,2, . . . , k =1,2, . . . .

e I'(E„)I'
g[f(s +s„)—f(Ek+s„+eV)] .I ' s„+I' k

(a)

&r rr rr

(24)

The physical meaning of Eq. (22) is quite simple: the step
appears when the voltage aligns the Fermi level of the
emitter with the kth energy level of the well, with an ac-
count of the well charging by n electrons already residing
there. Such an alignment opens new channels of the dc
current flow through the well. (When E &sz similar
current steps can also arise due to the alignment of the
well energy levels with the collector Fermi level. )

The system of voltages (22) is shown schematically in
Fig. 3(a). One can see that despite the simplicity of Eq.
(22) the fine structure of the I Vcurve can be quite -com-
plex, and the mere identification of the experimentally
observed singularities can present a hard problem.

Nevertheless, in some particular cases the fine struc-
ture may be more simple, because not all of the steps (22)
have equal heights, and some of them can be not ob-
served at all. Let us analyze these ultimate cases.

(b)

B. 5 &&6: Energy quantization

We begin by considering the case 5 &&5, when the en-

ergy spectrum discreteness is dominant. Let the tempera-
ture be not too low, so that the charging energy 5 is negli-
gible,

5, 7 »5 .

In this case one can neglect the terms containing 5 in

Vo, a

FIG. 3. (a) The general scheme of the dc-current step posi-
tions on the dc I-V curve of a small-area quantum mell and (b)
steps visible at T—+0 and I')&I"(indicated by circles).
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One consequence of Eq. (24) is that at T«b and
E & sF the threshold voltage is increased by s i/e g, where
cl is the lowest eigenenergy of the we11 energy spectrum
Iek], in comparison to the threshold voltage of a large-
area quantum well with the same parameters of the band
structure.

Besides this, Eq. (24) implies that only the current steps
corresponding to n =0 in Eq. (22) are visible. The shape
of the current steps at V=—VJ, for a finite temperature T is

2eI'(E —eel V)I"
I"'(E —

eel V)+I"
X(k —1+ I 1+exp[ —eq( V —

Vk )/T]] ') .

which yields

exp
n=exp + I

pT
(26)

Carrying out the integration in Eq. (10a) with I k given
by Eq. (15) and I k

=I'=const, one gets

two circumstances. The sum over k in Eqs. (10a) for the
tunneling rates can be changed into integral over c,k, and
the electron distribution function g„(ek) at T»p is
the Fermi distribution, with the Fermi energy p defined
by the following equation:

p dog„c =p c exp c—p T +1 '=n,

In the initial part of the global I-V curve where the
current increases, these singularities are real current steps
somewhat rounded by temperature. The decrease of the
tunneling rate I (E —egV) with increasing voltage gives
rise to the small ( ~ 1/psF) negative slope of these steps.
For voltages well beyond the threshold voltage V, the fine
structure adjusts itself to the g1obal shape of the I-V
curve, due to the voltage dependence of I' (Fig. 4).

C. 8 »6: Single-electron charging

Now consider the opposite limit, when the discreteness
of the well energy spectrum is negligible,

5, T»h .

Such a we11 is very similar to the system of two metallic
tunnel junctions, so that the two effects, characteristic for
the latter system, also should take place in the well. The
first efFect is the Coulomb blockade of tunneling (a
suppression of the tunnel current at small-bias voltages),
and the second one is the Coulomb staircase (a periodic
modulation of the I-V curve at voltages above the
Coulomb blockade interval) —see, e.g., Ref. 1.

Calculations in this limit are essentially simplified by

6 I I I I I I I I ~ I l I 1 I I I I I I I f

: r'/r'=io, .-.
,

~12- 1
0.1

Q 8~

o
4,—4 /p

/'

0 4 8 12 16 20
(v-v. )neo

FICx. 4. The current steps associated with the single-particle
energy levels in the dc I-V curves of a small-area quantum well
with negligible charging and an equidistant energy spectrum for
various I"/I ' ratios and T=0.15. Dashed lines show the dc
I-V curves of a similar but large-area quantum wells, formally
scaled to the same small area.

w~'(n) =+pTI"'(sp) [1—exp[+(p+s~ —s„)/T]}

1+exp[(eF +s~) /T]
Xln 1+exp(p, /T)

(27)

Gi z=e Pl '; C, =ilC, Cz=(1 —g)C . (29a)

Parameter Qo which describes the zero-bias potential
difference between external electrodes and central elec-
trode, is

C eQo= —(eF —Eo —V)+— (29b)

Thus, transport behavior of the quantum well with
E & c+ and 5 »6 is completely similar to that of the sys-
tem of two metal tunnel junctions with parameters
defined by Eqs. (29), and the dc I Vcurves of such -a well
coincide at small voltages with the dc I-V curves of the
latter system. '

Now let us consider another situation, when the con-
duction subband edge E of the well lies above the Fermi
levels of external electrodes at V =0 (E & Ez, as is shown
in Fig. 1), and Eqs. (28) for the transition rate are not
applicable. In this case the chemical potential p is small,
and for not too small temperatures (T»np ') Eqs. (27)
can be simplified as follows:

w+'(n)=pTI "(e+)in[1+exp[(e~—E+)/T]],
(30a)

where e+ =E+hU„"and c. =E+hU„" I.
If the conduction subband edge E of the well lies

suSciently below the Fermi level of the external elec-
trodes at zero-bias voltage V (E & sF), the Fermi energy
p is large: p» T, 5. In addition, if the voltage is small,
so that sF —ez » T, Eq. (27) takes the following form:

w+'(n) =+pl "(ez)(EF—e+ —p)

X [1—exp[+(p+e~ —ez)/T] J
' . (28)

For small voltages, V « eF /e, one can neglect the energy
dependence of the tunneling rates I ",and the transition
rates (28) coincide with those for the system of two metal-
lic tunnel junctions with conductances 6, z and capaci-
tances C, 2,
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w "( n ) = n r"(e )exp [(s e—~ ) /T]

X in[1+exp[(e~ —e )/T]] . (30b)
e ~ ~ ~ ~ ~4.

Although at arbitrary temperatures the tunneling rates
(30) are difFerent from those described by Eq. (28), they
can be cast in the form similar to the tunneling rates in
the system of two metal tunnel junctions at T «5 and
voltages near the threshold voltage. The parameters of
equivalent junctions are, however, difFerent from those
given by Eq. (29):

e
G, =e'zr, G, =cr', c, =o, c,=c, g, =—,

O

e

0 1 2 3 0 1 2
(v-v, )qc/e

and the efFective voltage for the equivalent metallic sys-
tem is g( V —V, )+e/C.

These parameters of the equivalent metallic systexn im-
ply that the tunnel current appears at V= V„so that
there is no Coulomb blockade of electron tunneling (that
could manifest itself as an increase of the threshold volt-
age) in the well with E & cF The .reason is that when the
voltage across the structure reaches V, the first electron
tunnels in the empty well, and electrostatic potential
created by this electron does not afFect the electron it-
self, ' as it was discussed in Sec. II. As a result, there is
no shift of the threshold voltage.

Nevertheless, from the analogy (31) with the metal tun-
nel junction system it follows that the dc I-V curve of the
quantum well should exhibit the Coulomb staircase, if the
parameters (31) satisfy the condition G&/G2=pr'» l.
For p» 1 this inequality is close to the inequality a »1
with a given by Eq. (20). The origin of the Coulomb
staircase can be understood as follows. If pI"» I', the
well-collector conductance is small and the current
through the well is limited by the well-collector tunneling
rate w' (n). In this case the number n of electrons in the
well [as well as w' (n) (30b) that is proportional to n] in-
creases discretely with increasing voltage. Thus, the I-V
curve looks like a staircase, each step corresponding to
the addition of one more electron to the well. The period
of the structure is 5/eel.

Decrease of the ratio pI'/I' and/or raising the tem-
perature suppress the Coulomb staircase as illustrated by
Fig. 5. The dc I-V curves of the well shown in this figure
were calculated numerically according to Eq. (14) by
solving the master equation (12) with the transition rates
(30).

D. Coexistence of the two structures

If the temperature is sufBciently low,

T &&5,h,
the structures arising due to discreteness of the charge
(the Coulomb staircase), and due to discreteness of the
well energy spectrum, should coexist. The resulting I-V
curve of the well depends strongly on the ratio of the tun-
neling rates I'/I '.

For I'&&I' the charge is not accumulated in the well
and the only visible structure is the one related to energy

FIG. 5. The Coulomb staircase structure on the dc I-V
curves of a small-area quantum well with negligible energy spec-
trum discreteness {P&) 1) at (a) various values of the parameter
PI '/I" and (b) various temperatures T. The dashed line
denotes the same as in Fig. 4.

w' (n)=(p —q)l 'g(E),
w' (n + 1)=(q + 1)I'[1—g(e) ], (33)

where e=e„+E+b,U„'. From Eqs. (33) and (13) we get

quantization which is described by Eqs. (24) and (25) [i.e.,
n =0 in Fig. 3(a)]. In the opposite limit, I"» I ', the
choice of the steps is entirely difFerent [Fig. 3(b)]. Let us
increase dc voltage starting from V = V, when the well is
empty. First we will reach voltage Vo &

and populate the
level c&. Due to small I', occupancy of this level will be
virtually complete, so that n =1 now. Hence, we should
pass to the line n =1 in Fig. 3 if we consider the further
voltage increase. On this way we reach the value V»,
but since the level c,

&
is already occupied, no current step

of a considerable amplitude is formed. Reaching the
value V& 2 we will populate the level c2, form the new
current step on the I-V curve, and pass to the line n =2,
etc. [see the dashed line in Fig. 3(b)].

As a result, of all the systems shown in Fig. 3(a), only
the current steps at values n =k —1, i.e.,

V= Vk ) I,
= V, +[sk+5(k —I)]/eq,

will be pronounced. Thus, the main efFect introduced by
the charging of the well in the limit I'&)I' is a shift of
the eigenenergies sk by (e /C)(k —1). In particular, this
means that degeneracy of the energy levels is lifted by the
charging.

In order to Gnd the dc current through the structure in
this limit quantitatively it is sufticient to calculate the sta-
tionary probability density for I'=O. Let's assume that
for n electrons in the well the highest populated level is a
p-fold-degenerate level c„and q electrons of n occupy
this level. (Here and below in Sec. V we use index r in-
stead of k when we want to distinguish only nondegen-
erate levels in the well. If the well energy levels are non-
degenerate r =k.) For voltage V—= V„„[seeEq. (22)] and
low temperatures (T «5, b), only two probabilities o„
and o„+& are nonvanishing. The transition rates (10a)
between these two states are
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the probabilities

0 n+1

(q+1)[1—g(e)]
(p —2q —1)g (e)+q +1

(p —q)g(s)
(p —2q —1)g (E)+q +1 (34)

=eI' n+
p —

q +(q + 1)exp[ —eg( V —V„)/T]

(35)

Inserting Eqs. (34) into Eq. (14) one can find the
current I through the well. When the subband edge E
lies above sF (E )EF), the backward collector-well tun-
neling vanishes (ic+ =0) and we get

I=eI'[nor„+(n +1)cr„+,]

Q~ 10-
4l

5

6--
+
r 4

2--

—2
0

p=o. 55 r'/r'=o.
36
26

26 6

26 6 1

bb 2b

b b 2b 3b'
6

h.+26 h, +26 6,+26

2 4 6 8 10 12
(v —v, )pep

14

It means that in the case of a degenerate level, p&1, the
shape of the current steps (35) is different from steps (25).
This is the consequence of the Coulomb correlations be-
tween electrons that occupy what was the degenerate lev-
el.

For intermediate values of the I '/I" ratio, the I-V
curves exhibit not only two limiting series of the steps
discussed above ( Vo k and V„,k), but also all steps be-
tween them [below the dashed-arrow line in Fig. 3(b)].
Let us have a look on examples shown in Figs. 6—S.
They were calculated nuinerically from Eqs. (10)—(14) un-
der the assumption that the energy spectrum of the well
is equidistant and all energy levels are doubly degenerate.

When b, ~5, (e.g., 5=3.5b,—see Fig. 6) the main
structure is one associated with charging and described
by Eqs. (32) and (35). However, each current step of this
charging-related structure has a "super6ne" structure re-
lated to the energy spectruin discreteness b, [Fig. 6(b)].
With a decreasing I"/I ' ratio and/or increasing voltage,
the amplitude of the main structure decreases and only
the super6ne structure remains visible. On the contrary,

FIG. 7. dc I-V curves of a small-area quantum well with a
relatively small charging energy (5=—0.286) and various ratios
of the tunneling rates, at T =0.1e /C. Here, the structure with
a larger period in the upper curve is due to the energy quantiza-
tion, whereas its smaller period is associated with the single-
electron charging. The bottom curve shows the splitting of the
current steps associated with the doubly degenerate energy lev-
els, due to the single-electron charging of the well.

at large I"/I" ratios the superfine structure is
suppressed.

If the energy spectrum discreteness 5 is dominant,
ERE, and I"5 I ', the two fine structures also can be
easily separated: the energy quantization structure with
the larger period b, /e modulates the charging related
superfine structure with the smaller period 5/e (Fig. 7).
One can note that at large 6 the current steps associated
with the single-electron charging persist to larger volt-
ages than the usual Coulomb staircase at small A. ForI'+I' the modulation period is increased due to the
charge accumulation, and equals (6+25)/e. In this case
the superfine structure can be viewed as the splitting of

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~4

CI

10-

5-
2-

0 10 0 j
'(5 8+6,

~ ~ ~ ~

~

~ ~ ~ ~

y
~ ~ ~ ~

(v-v, )qc/e

FIG. 6. dc I- V curve of a quantum well with a relatively large
charging energy 5=3.55, for e /Ccz =0.1, I"=I", and
T =0.2e /C: (a) the global shape of the curve; (b) an enhance-
ment of its initial part. The curve exhibits the coexistence of the
fine structure with the period 5/eg due to the single-electron
charging and superfine structure with the period 6/e due to the
energy quantization. The dashed line meaning is the same as in
Fig. 4.
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FIG. 8. dc I-V curves of a small-area quantum well with
nearly equal characteristic energies (5= 1.3A) and various ratios
of the tunneling rates at T =0.02e~/C.
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the large current steps corresponding to the double de-
generate levels into two smaller steps separated by the
voltage interval 5/e —see the bottom curve in Fig. 7.

When the periods of the two fine structures are nearly
equal, 5—=5, they form a more complicated pattern. In
the limits I'« I' and I"» I ' the largest current steps
in this pattern are those described by Eqs. (24) and (25)
and Eqs. (32) and (3S), respectively (Fig. 8). At inter-
mediate I"/I' ratios and/or large voltages, additional
current steps at voltages (kb, +j 5)/e (where k,j are arbi-
trary integers) become pronounced. As a result, the visi-
ble quasiperiod of the I-V curve fine structure equals nei-
ther b, /e nor 5/e —see the two upper curves in Fig. 8.

Thus, we can conclude that for the most realistic case
when the characteristic charging energy 5 and the aver-
age interval b between energy levels in the well are com-
parable, the dc I-V curve of the well should exhibit a
complicated steplike fine structure. In order to identify
current steps with the single-particle energy levels one
should take into account the charging contribution to the
well energy.

V. LATERAL TRANSPORT THROUGH
THE QUANTUM DOT

The master equation (12) allows one to describe not
only the vertical transport through the quantum-well
structure shown in Fig. 1, but also the lateral transport
through a "quantum dot" formed by a laterally confined
region of the 2D electron gas. These cases differ only in
the energy dependence of the tunneling rates I ". For
driving voltages much smaller than ez/e, where sF is the
Fermi energy of the 2D electron gas outside the quantum
dot, one can neglect this dependence and adopt the ap-
proximation I "(s)=const. Within this approximation
the above discussion of the two types of the I-V curve fine
structures can be applied to the quantum dot as well.

If the effective distance d,z between the dot and the
nearest conducting layer of the structure is smaller than
the lateral dot dimension a, the dot electric capacitance C
can be calculated as that of the plane capacitor. In this
case the type of the I-V curve fine structure is determined
by the same parameters a (20) and P (18). In the opposite
limit d,z »a, capacitance C can be estimated as the self-
capacitance of the disk with radius a, C =8eeoa, and the
parameter P should be expressed as

(36)

Typically, minI4d, s, n.a/2] »as, so that the Coulomb
modulation of the I-V curve of the quantum dot should
dominate.

The lateral transport through the quantum dot has one
specific feature in comparison to the vertical transport
through the quantum well: the electric potential of the
dot can be readily varied (at fixed potentials of the exter-
nal electrodes} by that of some additional gate electrode.
Hence, one can study the dependence of the dot charac-
teristics on the gate voltage Vg.

Inhuence of this voltage can be described by adding the
term —A, Vg Q to the electrostatic energy (4), where

A, =—Cg/C, Cg is the dot-gate capacitance, and the total
capacitance C =C, +C, +C now. This term leaves the
above reasoning intact, if it is added to the right-hand
part of Eq. (9). One can, however, simplify the resonance
condition [see Eq. (22)] by restricting the observations to
those of the zero-bias differential conductance Gd and
differential capacitance Cd of the structure as functions
of V . In this case the resonance condition similar to
condition (22) takes the form

(Vs)„k = [5(n +—,')+s„+E—sF] .1

eA,
(37a)

(37b)

One can say that the physical origin of these reso-
nances is a V~ dependence of the energy gaps between the
state with the n electrons in the dot, which provides the
minimum of the dot energy (4), and excited states with
n 61,. . . electrons. These gaps (for P)) 1) are of the or-
der of characteristic charging energy 5, except for the
"resonant" values of

Vg =( Vg )„I„when one of the gaps,
e.g., one between states with n and n +1 electrons, van-
ishes. It means that at low temperatures, T«5, the
number of electrons in the dot is fixed, and both Cd and
Gd vanish at any gate voltage except for these resonant
voltage values.

Thus, the differential capacitance and conductance of
the quantum dot as functions of the gate voltage Vg
should exhibit a sequence of the resonance peaks. Each
peak corresponds to the addition of one more electron to
the quantum dot. In the most realistic case P»1 the
voltage interval between the peaks is determined by the
charging energy, since this energy gives the main contri-
bution to the dot energy when an electron is transferred
to the dot. Hence, in this case the sequence of the reso-
nance peaks is almost periodic with the period
5/eA, —=e/Cs.

The shape of the Cd( Vs} and Gd( Vs) peaks at low tem-
peratures can be easily calculated from the stationary
solution of the general master equation (12) for P)&1. If
the states with n and n + j, electrons are in resonance,
only the probabilities o.

n and o.n+ &
are nonvanishing,

~n+ion=
LUn +Wn+i

w non+i=
~n +~n+i

From these equations we get the following expressions for
the differential capacitance of the dot:

Cd( Vs ) = =e ( I+w„+, /w„), (38)d&a& d — + -i

and [after substituting them into Eq. (11)] for the

Moreover, in contrast to the finite-voltage case, the quan-
tum dot remains in the thermodyriamic equilibrium, so
that at low temperatures (T«6, 5) the electrons fill

completely all states below the kth level, irrespective of
the I"/I ' ratio. Hence one can take n =k —1, and the
resonant series becomes quite simple,

1(Vg)„k=(Vg)k, k= [5(k —
—,')+s„+E sF),—
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differential conductance:

Gd( Vg)=
dI

V=O

w+(n) w' (n +1)—w+(n)w' (n+1)
'dv

W~ +W„+i

(39)

If the temperature is not too low, T»b (but still
T«5), the transition rates w„* are given by Eqs. (27)
with I "=const, and we obtain

' —2

defined by Eq. (26). When the electron gas in the dot is
degenerate, p»T, the logarithm in Eq. (41) can be re-
placed with the linear function (sz E)—/T, and Eq. (41)
coincides with that obtained earlier in Refs. 17 and 6.

At low temperatures, T &(5, the shape of the reso-
nance peaks depends on the degree of degeneracy of the
one-electron energy levels of the dot. As in Sec. IV C, let
us assume that the highest populated level in the dot is a
p-fold degenerate level e„and q electrons occupy this lev-
el while there are n electrons in the dot as a whole. In
this case the transition rates w„,w„+, [cf. Eqs. (33)] are

w„+ =(p —q)gl "g(s),
Cp- E P

( )= (40)
e, c

w. +i =(q+1)gl "[1—g(e)],
(42)

2 I e+I"c
G(V )= lnIe+I c

1+exp[(ez —e) /T]
1+exp(p/T)

EF E P
X sh (41)

Here e =E +5(n +—,
'

)
—eA, V, and chemical potential p is

e, c

s=s„+E+b,U„". Equations (42) inserted into
Eq. (38) show that the capacitance peak Cd ( V ) is
described by the same expression (40) as for
if one replaces the chemical potential p with
s„+Tin[(p —q)/(q+1)]. From Eqs. (39) and (42) one
gets

e I'I ' [(p —q)(q+1) l'"
T I'+I" p +1+2[(p q)(q+1)] —~ ch[(E~ —E p')/T]

p'=E„+(T/2)in[(p —q)/(q+1)] .

(43a)

(43b)

Equations (40), (41), and (43) imply that in accordance
with Eqs. (37), Cd(Vs) and G(Vs) have sharp maxima,
when e=eF —p, i.e., at V =-[p —e~+E+5(n+1/2)]/
eA, . The interval between the resonance peaks of Cd( V )
and G ( Vs) varies slightly from peak to peak due to the n
dependence of the chemical potential p. These small de-
viations from the charging-determined period are of the
order of T or 6 for, respectively, nondegenerate and de-
generate electron gas in the dot.

An interesting property of the conductance peaks (43)
is that for multidegenerate levels, p + 4, the amplitude of
the peaks G,„(n) exhibits large-scale oscillations even
for I "=const. One can see from Eq. (43a) that this am-
plitude as a function of the "filing factor" q reaches its
maximum at q =p/2 (the energy level is half-filled with
electrons) and decreases both for q~0 and for q~p.
These oscillations arise from the Coulomb correlations of
electrons occupying the degenerate energy level.

VZ. KXPERrMENTAL SITUATION

There already exists a number of experiments on the
transport properties of the small-area quantum wells and
quantum dots. A steplike fine structure of the current-
voltage characteristics of the submicron quantum wells
was observed in a series of experiments' ' pioneered by
Read et a/. In the first two of these experiments
the double-barrier structure was symmetrical, so that at
relevant voltages V & V, the condition I'&&I' was
satisfied. Hence, charge accumulation in the well was

negligible and the observed structure was apparently due
to the 20 electron-energy quantization rather than
single-electron charging. The latter e8'ect can be presum-
ably observed in almost similar heterostructures, but with
a thicker and/or higher collector barrier, providingr'& I'.

Such an asymmetriea1 heterostructure was used in ex-
periment however, only the results obtained for
positive-bias voltage (when the emitter barrier was the
higher one) are reported. According to our results, at
negative-bias voltages this heterostructures should exhib-
it the single-electron charging effects, since a similar
large-area quantum well exhibited the hysteretie I- V
curve' characteristic of the intrinsic bistability due to
the charge accumulation in the well.

Barrier thickness of the typical double-barrier hetero-
structures including those studied in Refs. 13—15 varied
between 30 and 100 A. Hence, parameter P (18) for these
structures was approximately within the interval 1 —4, so
that the characteristic charging energy 5 was of the order
of the energy interval 6 between energy levels. Thus, in
these structures the single-electron charging should
modify the dc I-V curve similarly to the curves shown in
Fig. 8.

However, as it was discussed in Sec. IV C, a detailed in-
terpretation of the Qne structure of the I-V curves seems
to be a serious problem. In this respect the case of the la-
teral transport through the quantum dot seems to be
more advantageous, since in this case the efFective dis-
tance d,z between the quantum dot and external elec-
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trodes is not limited by the width of the tunnel barriers,
and the charging energy can be made much larger than

Several experiments' ' with submicron quantum dots
show a periodic structure in the gate voltage dependence
of the differential capacitance Cd( Vg). The structure was
observed as periodic oscillations in the (dCd /d Vg )-vs-Vg
curves. The oscillations could be associated in principle
with the transfer of single electrons to the quantum dot.
However, two properties of these oscillations, their large
period, AV=50 mV, and their periodicity, cannot be
united in a simple way within this approach. In fact, the
large period implies that the gate-dot capacitance (and
thus the effective size d of the dot) is small, d =100 A.
(The effective size of the dot can be much smaller than
the lithographically defined size due to a surface de-
pletion layer. } Hence, the parameter P (36) is close to
unity and the energy spectrum discreteness should be
comparable to 5. In this case, under the realistic assump-
tion that electron-energy levels in the dot are at least dou-
ble degenerate, oscillations in the capacitance spectrum
should not be periodic, since the energy of the order of 6
is added to part of the periods of the oscillations.

Thus, a more plausible explanation of these oscillations
relates them to the large-scale fluctuations of the densi-
ty of states in the dot. However, to prove this explana-
tion one needs to gain more understanding of the origin
of these Auctuations, in particular, a reason for there
periodicity.

In another series of experiments ' the linear con-
ductance Gd(Vg) through the submicron quantum dot
was shown to exhibit periodic oscillation as a function of
the gate voltage. These oscillations were attributed to the
single-electron charging of the dot. Although this inter-
pretation cannot fully account for the existing experimen-
tal results, it seems to be consistent with most of them.
The main evidence for the single-electron charging is the
almost strict periodicity of the conductance oscillations
and a very nice correspondence between the voltage
period of these oscillations and estimations of the gate-
dot capacitance C~ (b, V~ =e/C~ =1 mV).

Another strong support for this interpretation of con-
ductance oscillations was provided by experiment, in
which these oscillations are accompanied by the Coulomb
staircase at larger driving voltages. The absence of such
a structure on the dot current-voltage characteristic in
the experiment can be explained by the assumption that
conductances of the two tunnel barriers confining elec-
trons in the dot were approximately equal in this experi-
ment. In such a case the Coulomb staircase is very weak-
ly pronounced. '

An obscure aspect of these experimental results is a
periodic modulation of amplitude of the conductance os-
cillations. This large-scale modulation could be related
to the Coulomb correlations of electrons on the multide-
generate levels in the well, as was discussed in Sec. V.
However, for this interpretation to be valid, the tempera-
ture should be smaller than the energy interval between
single-particle levels in the dot. It seems not to be the
case at least in the experiment, since the width of the
thermally broadened conductance peaks was of the order

of the peak separation. Another possible origin of these
1arge-scale oscillations is the large-scale oscillations of
the single-particle density of states in the dot, mentioned
above. Finally, for the lateral transport through quan-
tum dots the arguments presented in Appendix A are not
strictly valid, so that the energy dependence of I "can
be more complex than that suggested by Eq. (15). Thus
we can conclude that although some experimental evi-
dence of the single-electron charging in semiconductor
heterostructures is on hand, further experiments and cal-
culations are needed to obtain more definite results.

Note added in proof. After submission of this paper we
learned that our suggestion to use asymmetrical quantum
wells for observation of their single-electron charging
(first published in Ref. 4) was successfully implemented
by Su, Goldman, and Cunningham. Their experimental
data are in at least a qualitative agreement with our re-
sults for the case 5 ~ 4.

APPENDIX A

X5(e+—s„—e )

(A2)

The tunneling amplitude t(e„) can be calculated accord-
ing to the standard prescription (see e.g., Ref. 24)

2

t(e„)~ f dx g (x)go(x), (A3)
2m

Here f~(x) is the wave function of an electron that in the
external electrode has momentum p in the transport
direction, go(x) is the electron wave function in the well,
and the integral is taken over the width of the well.

One can get convinced that when the height U of the
tunnel barriers (Fig. 1) is large, U)) s„, the amplitude of
the wave function f~(x) transmitted through the barrier
into the well is proportional to p. Thus, in this case
t (E„)~ (e„)'~, and we get from Eq. (A2)

I "(e ) (s„)' ', E„=E —s„. (A4)

For the large-area well, Eq. (A4) gives us Eqs. (15) of the
main text.

Tunneling rates I i,'(c, ) are defined by Eq. (7) where the
sum is taken over emitter or collector energy states. The
eigenenergy c; can be separated into energy c„ofelectron
motion in the transport direction and energy c, of elec-
tron motion along the layers of the structures,
~i ~tr+E, qp so that

&=Xf «i~(Ei, ) . (Al)
i q

Here p(e„) is the one-dimensional density of states,
p(e„)~ (s„)

Since the mode of electron propagation along the lay-
ers is not changed during the tunneling, T&=5~&t(E„),
and the tunneling probabilities 1 "in Eq. (10) are

I'„'(E+)= +6qi f dE„p(e„)~t(E„)~
0
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governed by a simple equation,

y= [I'(y) I'—(q)) ]/C, (81)

where emitter~well and well —+collector currents I"
are given by Eqs. (17). These currents are plotted in Fig.
9 as functions of y for the voltage V in the bistability re-
gion ( V & V, +Ez/e g).

The stationary solutions q&; of Eq. (81) are defined by
the intersections of the two curves in Fig. 9. Equation
(Bl) determines the evolution of the small deviation
6y=y —y; from these stationary solutions,

FIG. 9. Emitter —+well and well~ collector currents I"(y)
[Eq. (17)] in the bistability regime.

A.PPENDIX 8

In this appendix we will show that the charge accumu-
lation in the large-area double-barrier structure gives rise
only to two stable states with different values of the
current Aowing through the structure. The third state,
which can be obtained by solving Eqs. (16) and (17), is
unstable.

In order to prove this statement one needs to consider
the time evolution of the well potential y associated with
accumulated charge Q, y =Q/C. This evolution is

(82)

One can see from Fig. 9 that for y=y0=0 and y=y2
(dI'/dy) & (dI'/dy), so that A,o z & 0 and these two solu-
tions are stable. In contrast to this, k, &0, the solution
y=gt is unstable [small deviations from y& are spontane-
ously amplified, 5y(t) ~ exp( ~A, , ~

t ) ].
Thus, there are only two stable solutions of Eqs. (16)

and (17). It is clear from the above reasoning that this re-
sult does not depend on the precise analytic expressions
for the currents I"(y), but only on the topology of Fig.
9. Hence, our main conclusion that the charge accumu-
lation gives rise to the bistability, but not tristability, is
more general than the adopted model with the tunneling
rates (A4), and will apparently hold on for any realistic
model of the charge accumulation in the quantum wells.
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