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The valence-electron density for diamond and silicon at finite, nonzero temperature has been calculat-
ed by using the first-principles pseudopotential method, where thermal effects are taken into account by
averaging the valence-electron densities over all possible ion configurations at temperature T. The de-
rived Debye-Wailer factor for the valence electrons, D(Cx), is given by a linear combination of the self-
correlation and nearest-neighbor-pair correlation parameters of the ion displacement. The calculated
values for Si(222) above room temperature are about 88% of the Debye-Wailer factor for the core elec-
trons, Dz(Cx), in good agreement with experiment within experimental uncertainties.

I. INTRODUCTION

Recent progress of the x-ray diffraction technique
(especially by using syncrotron radiation) has made it
possible to measure weak forbidden reAections in
diamond-type crystals precisely. ' Since the forbidden
reAection results from nonsphericality of the electron
density, we can obtain valuable information on the bond-
ing character in the crystal from these experiments.

For the electron density consisting of the core elec-
trons that are tightly bound to the central nucleus, the
temperature dependence of the Fourier components is
well explained by the ordinary Debye-Wailer factor for
the core. However, it cannot be applied simply to the
valence electrons, because they do not move with the cen-
tral nucleus and deform their distribution according to
the ion motion.

Yin and Cohen calculated the valence-electron density
for Si and Ge by using the first-principles pseudopotential
method for a static lattice. However, they took the tem-
perature effect into account by the ordinary Debye-
Waller factor for the core. Using the same method, Van
Camp, Van Doren and Devreese calculated the pressure
variation of 222 components of C and Si also in the static
lattice, but they did not consider the temperature effect.
The thermal reduction of the bond charge was calculated
by Chelikowsky and Cohen, using energy-dependent
nonlocal pseudopotentials averaged over ion-core vibra-
tions. Further, in order to take account of the bond
thermal motion, they multiplied the calculated Fourier
components by the Debye-Wailer factor with one-half the
ion-core value: the Debye-Wailer factor for the core of Si
used in their work is too large when it is compared with
the recent analyses, ' as discussed in Ref. 11. The pseu-
dopotentials used in their theory are empirical and are
thought to be less suitable for calculating the valence-
electron density than the more recently developed first-
principles ones.

However, in order to correctly take into account the
temperature effect, the valence-electron density should be
averaged over all possible ion configurations at tempera-
ture T. As will be shown in this work, the temperature
dependence is related to the nonlinear valence-electron-
density deformation about the ion displacement mode at
the I point. In the present paper we have calculated the
valence-electron densities in C and Si at a finite, nonzero
temperature based on the procedure mentioned above us-
ing the first-principles pseudopotential method. The ob-
tained Debye-Wailer factor for the valence electrons con-
tains the self-correlation and nearest-neighbor-pair corre-
lation parameters of the ion displacement, which have
been calculated using a proper lattice-dynamical model.
We will describe the formalism for the calculation of the
valence-electron density at a finite, nonzero temperature
in Sec. II and give the method of calculation and results
in Sec. III. Our results will be discussed and compared
with experimental data in Sec. IV.

II. FORMALISM

At a finite, nonzero temperature T the Fourier com-
ponent of the valence-electron density with a reciprocal-
lattice vector G can be written as

p, (Cr)= I (p„(r, Iu„ I))e p( —'Cx r)dr .1

C

where p, (r, Iu„ I ) is the valence-electron density in the
ion-core configuration given by IR„+r,+u„ I where
R„, r, and u„„denote, respectively, a lattice vector of
translation, the atomic position, and the displacernent of
the vth ion in the nth primitive unit cell with volume 0,
The diamond structure has two ion positions in the prim-
itive unit cell and they are specified by v=O or 1 in the
following. We assumed the adiabatic approximation
which is a reasonable assumption because the thermal en-
ergy k~ T under ordinary experimental conditions is
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much smaller than the energy band gaps and the
electron- to ion-mass ratio is very small. Therefore the
valence-electron density is a function of ion displace-
ments j u„]. In Eq. (1) ( ) denotes a thermal average
taken over the lattice vibrations at temperature T. In the
following we will express the subscripts (n, v) collectively
as i for brevity.

We now expand the valence-electron density up to
second order in [ u; ] as

~put;])=p.o( )+X X
iA

A p(G)+B p(G) = —
&i G~Gppuo(G) ~ (10)

where we use Eq. (2) and the underlying assumption.
If the valence-electron clouds around an ion move with

it leaving the shape unchanged, B &(G) becomes zero
and Eq. (8) is reduced to the ordinary Debye-Wailer form
of the core,

p„(r, tu;=at)=p„(r —a, (u;=0]) .

Expanding both sides of Eq. (9) in the Taylor series of a
and comparing the equal-power terms of a ap, we have

~Pv+ —,'gg u, up
~ p i icx ip

~Pv+ g g u, ~ujp,
ap (ij) ~~ jj3

(2)

Dc(G) =
—,'CJ'B, .

Djjc(G) = ,'G B,+ ,'G—B—2. (12)

On the other hand, if the valence-electron clouds move
with the bond center, then

p„r(r) =p,o(r)+B,TrA (r)+B2TrB(r), (4)

where we used the relation {u;)=0 and Tr means the
trace, which is taken over a 3X3 matrix in Cartesian
coordinates and the elements of matrices A (r) and B(r)
are given, respectively, as

8 p„ ~Pu
A p(r)= —,

' g +g, (5)
={) + + p =$ + a +ip

8 PuB p(r)= g
(i j) ia jp

From the Fourier transformation of Eq. (4), we can write

p, z-(G) =p,o(G)[1—D(G)]-p,o(G)exp[ —D(G)],
(7)

TrA(G) TrB(G)
P.o«) P.o«)

For a uniform translation a to every ion position, it is
readily understood that the following relation holds:

where p, o(r) is the valence-electron density in the static
lattice and derivatives are taken at all u; =0 and a and P
denote the Cartesian components of u;. In the last term
of Eq. (2) we take only the nearest-neighbor pairs because
as the valence-electron density has large amplitudes near
the bond center, the density is a6'ected strongly by the
motion of the ion pairs related to the bond. We neglected
other second-order terms.

We assume that the self-correlation and nearest-
neighbor-pair correlation of the ion displacement can be
written as

{u; u;&) =B,5
f3 (same ion),

(3)
(u; uj&) =B25 & (nearest-neighbor pair) .

The oA-diagonal correlation of the nearest-neighbor pair
is neglected. The neglect is justified for the special case
when the valence-electron density consists of spherically
symmetric clouds moving with the bond centers. Using
Eqs. (2) and (3), we get the valence-electron density at
temperature T as

When the Einstein model, i.e., Bz =0, is assumed for the
lattice vibration, D~c(G) is reduced to one-half of
Dc(G), which is used in Ref. 7.

As is seen in the preceding discussions, the present
method gives an improved method for the calculation of
the temperature dependence of the valence-electron den-
sity and it does not include the uncertainty of whether
the valence-electron clouds move with the center of the
ion or with the bond center in contrast to previous treat-
ments. This formalism can be applied to other simple
crystals with some modifications.

III. METHOD AND CALCULATION

In calculating TrA(G) we adopt the following pro-
cedure. We calculate the valence-electron density in the
lattice where the fcc sublattice of the v=1 ion is fixed
and that of v=O ion is displaced. There is no contribu-
tion from nearest-neighbor terms in Eq. (2) in this
configuration because the nearest neighbor of the v=0
ion is the v=1 ion. Then we calculate second-order
derivatives of the density with respect to the displace-
ment of the v=O ion and obtain TrA(G) by adding the
contribution of the v= 1 ion using inversion symmetry.

In practice, we have calculated the valence-electron
densities in the following configurations:

(b„0,0) for v= 1 ions

(
—b., 0,0) for v=O ions,

where we take 6 to be the sets of values —0.10, —O.OS,
0.00, 0.05, and 0.10 a.u. for C, and of —0.10, —O.OS,
0.00, O.OS, and 0.10 A for Si. In Ref. 12 similar
configurations are used to calculate the anharmonic cou-
plings at the I point.

The densities in the lattice where the v=1 ions are
fixed and the v=0 ions are displaced can be obtained by
coordinate transformation from them. Using these elec-
tron densities, we constructed the fourth-order polynomi-
als of 6 which express the Fourier components of the
densities as functions of A. From the second-order parts
of the polynomials, we can get TrA(G). The quantity
TrB(G) is obtained through Eq. (10). The lattice con-
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TABLE I. Fourier components ofp,o(G), Tr A {6),and Tr8(G) for three forbidden rejections.

ReAection

222
442
622

1.977 X 10
—1.411x10-'
—4.858 x 10

Diamond

TrA(G)(A ')

—2.656 x 10-'
5.475 x10-'
2.885 x 10-'

TrB(G ) (A )

—1.025 X 10
2.404x10 '
4.307x10 '

222
442
622

8.854 X 10
—6.769 x 10-'
—1.745 x 10-'

Silicon
—5.667 x10-'

1.832 x10-'
7.386x 10-'

—1.444 x 10-'
—2.010X 10
—2.225 X 10

& u„, u„,p&
=

& u„, u„,p& =8,5 p,
B C C

(13)

&u„, u„,p&= C B2 C

C C B~

where the subscripts 0 and 1 denote the fcc sublattice to
which the ions belong. The correlation parameters
B&, B2, and C have been calculated by using the model

TABLE II. Calculated self-correlation and nearest-
neighbor-pair correlation parameters of ion displacement in
units of 10 A . The number of used special points is 2992.

0
300
500
700
1000

0
300
500
700
1000

B)

0.1630
0.1862
0.2278
0.2804
0.3688

0.2337
0.6060
0.9621
1.3277
1.8819

B2

Diamond
0.026 67
0.044 93
0.069 33
0.095 70
0.136 10

Silicon
0.049 04
0.252 24
0.419 64
0.587 37
0.839 05

0.006 82
0.008 37
0.012 10
0.01649
0.023 34

0.025 54
0.09007
0.149 61
0.209 37
0.299 06

stants of the cubic unit cell are taken to be 6.7403 a.u.
for C and 10.2625 a.u. for Si.

In calculating the valence-electron densities, we used
the first-principles pseudopotential method with the
Bachelet-Hamman-Schluter potential' ' in the local-
density approximation scheme with the Wigner correla-
tion energy. For the k-space integration over the Bril-
louin zone we adopted the special point technique' with
two points ( —,', —,', 4) and ( —,', —,', —,') and included 350 and 348
plane waves' for each k point. The number of the waves
used to expand the electron density is 1989. The calculat-
ed values of p„o(6), TrA(6), and Tr8(6) for the for-
bidden rejections of (222), (442), and (622) for C and Si
are tabulated in Table I.

Due to the cubic symmetry of the diamond-type lattice
the self- and nearest-neighbor-pair correlations of ion dis-
placements are written as

potential given by Goldammer et al. ' In the calculation
we neglected the temperature variations of the lattice
constants and force parameters and used the special point
scheme with 2992 points: we checked the results by com-
paring them with those calculated with 408 points. The
convergence is satisfactory. The calculated values of
B

& B2 and C are tabulated in Table II as functions of
temperature. We confirmed that our values of B& are in
good agreement with those found in recent experimental
analyses ' and the other model calculations discussed in
Ref. 11.

IV. RESULTS AND DISCUSSION

There are some uncertainties regarding the values of
the Debye-Wailer factor for the valence electron as was
mentioned in several works. ' From a simple considera-
tion that the valence-electron clouds are localized near
the bond center and follow its motion with their shapes
unchanged, D(6) is estimated to be —,'Dc(6), assuming
the Einstein model for lattice vibrations. However, in
reality, the valence electrons are not so much tightly
bound to the bond center as are the core electrons to the
central nucleus and so they redistribute accordingly as
the ions move and therefore these effects cannot be in-
cluded in such a simple model. In Table III we tabulated
the values of the ratio D(6)/Dc(6) for the forbidden
refiections. In Table IV we tabulated the ratios of
p„T(6) at T=1000 K to p„T(6) at T=300 K for the
reQections. They are calculated by the last expression in
Eq. (7). In Table V we tabulated F '" (6) in the static
lattice. Note that all the values in this section are taken
in the cubic unit cell with eight atoms. For Si(222), D(6)
above room temperature is about 88% of Dc(6).
Though it is generally believed that ,'Dc(6) &D(6)—
&Dc(6), our results show that it is not the case for
higher-order rejections of Si and that the ratio
D(6)/Dc(6) varies strongly with G.

In the above calculation, we did not consider the varia-
tions of p„o(6) by thermal expansion. We estimated this
efFect to be negligible using the thermal-expansion
coefficients and the variation of p„o(6) due to volume
changes given in Ref. 6.

From the experimental results presented in Table II of
Ref. 1, we estimated the ratio of p, T(6) at T= 1000 K to
p„T(6) at T=300 K, of Si(222) to be (90.2+0.9)%. Our
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TABLE III. Temperature dependence of the ratio D(Cx)/Dc(G) for three forbidden reAections. The
values are given in %.

T (K)

0
300
500
700
1000

76.7
78.9
80.6
81.7
82.4

84.0
88.1

88.6
88.7
88.8

74.5
76.8
78.8
79.9
80.7

442
Si

109.7
107.2
107.0
106.9
106.8

89.1

90.1

90.9
91.4
91.8

622
Si

134.6
125.7
124.8
124.6
124.4

TABLE IV. The ratio of the Fourier components of the valence-electron density at T=1000 K to
that at T=300 K for three forbidden reflections. Dc means the Debye-Wailer case, and D~c means the
case in which the valence-electron density consists of the density moving with the bond center and leav-
ing its shape unchanged. The values are given in %.

ReQection

222
442
622

This
work

97.12
91.73
89.01

Dc
case

Diamond
96.66
90.32
88.30

DBC
case

97.49
92.65
91.09

This
work

91.28
72.04
62.85

Dc
case

Silicon
90.26
73.53
68.68

DBC
case

92.79
79.90
76.01

TABLE V. Comparison of the theoretical values of F '" per cubic unit cell with the experimental
ones at room temperature. Parentheses denote the static-lattice values.

Fbond (222)
Fbond (442 )

Fbond
( 622 )

Fbond (222)

Fbond (442)
Fbond (622)

'Reference 12.
Reference 19.

'Reference 11.
Reference 20.

'Reference 21.
Reference 4.

This
work

0.872(0.897)
—0.0591(—0.0640)
—0.0196(—0.0220)

This
work

1.36( 1.42)

—0.0927( —0. 1084)
—0.0223( —0.0279)

Yin
and

Cohen'

1.36

—0.084
—0.020

Van Camp'

(0.896)
( —0.0654)
( —0.0220)

Van Camp'

(1.38)

( —0.1034)
( —0.0273)

Expt.

1.152b

Expt.

135
1.46'

—0.0635
—0.0046'
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V. SUMMARY

We have given a formalism to calculate the valence-
electron density at a finite, nonzero temperature. This
method is more reliable than the previous theories and is
easily applied to other simple crystals. For the Si(222)
reAection, the calculated values of the Debye-Wailer fac-
tor for the valence electrons are nearly equal to that for
the core. This is in agreement with reported experimen-
tal results. However, the calculated valence-electron den-
sities at the bond center are small compared with the case
using the Debye-Wailer factor for the core. This will be
proved experimentally by precise measurements of (222)
rejections.

APPENDIX

center specified by (i,j ). We define p',"(r) and p'b"(r) as

p',"(r)= g p, , (r —R, ),
(A2)

Then using p,o(G)=p',"(G)+p&"(G) and the relation
about the second-order derivatives with respect to
u; [TrA(G) can be expressed by p',"(G) and p&"(G)],
we can obtain

P',"(G)= —p„o(G)— Tr A (G),4

(A3)
p'b"(G) =2p,o(G)+ Trd (G) .4

We try to decompose the valence-electron density to
the part moving with the ion center and that moving with
the bond center. We assume that the valence-electron
density as a function of u; can be decomposed into the
part moving with the ion center and the part moving
with the bond center. That is,

p, (r, [u,. ] ) = g p, , (r —R, —u, )

+ g pb ~;~~(r
—

R;~
—(u;+u )/2},

(i,j )

where R; means the equilibrium position of the bond

They are plotted in Fig. 2 [the G=O component cannot
be determined uniquely in this method and set as

p b"(0)=0]. This decomposition corresponds to the
physical picture of Eq. (14). The term proportional to 8,
in Eq. (14) is the contribution of p, and the term propor-
tional to (8i +82)/2 is the contribution of pb. The den-
sity pb"(r) has a reasonable profile that has a peak at the
bond center. [Note that holes near an ion position are a
superposition of four equivalent contributions of
pi, ~; J)(r)]. We can see that the shape of the part moving
with the ion core is fairly different between C and Si as
discussed in Sec. IV.
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