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We present a Green’s-function formalism generalized to treat arbitrary time-dependent systems initial-
ly prepared with an arbitrary density matrix. On the basis of a simultaneous expansion of the usual
real-time development operator and the density matrix, we define a Green’s function ordered along an
extended contour. In this way we are able to treat real-time many-particle Green’s functions and initial
correlations on the same footing. Both can be decomposed by Wick’s theorem. Thus we may utilize fa-
miliar diagrammatic analysis for evaluating the Green’s function, and finally arrive at a generalized
Dyson’s equation. The Green’s function can be represented by a (3X3) matrix, which includes the
Green’s functions used in the Feynman, Matsubara, and Keldysh theories, if the corresponding statisti-
cal average is taken. From a matrix representation of Dyson’s equation, a basic set of five coupled equa-
tions is derived, which explicitly shows the corrections to the Keldysh theory due to an arbitrary initial

many-particle density matrix.

I. INTRODUCTION

Green’s-function techniques usually rely on an expan-
sion of the Green’s function in question in an infinite
series of higher Green’s functions and a subsequent con-
traction into products of one-particle Green’s functions.
This decomposition is greatly simplified by the use of sug-
gestive diagrammatic representations. The rigorous
foundation of this procedure is known as Wick’s
theorem. Up to now several Green’s-function formalisms
are available (such as those of Feynman, Matsubara, and
Keldysh) and their procedures of contraction and the
corresponding diagrams seem to be very similar. Howev-
er, the validity of these contractions depends on the phys-
ical properties of the system in question. This is due to
the restricted range of validity of Wick’s theorem. The
most general proof of this theorem as given by
Danielewicz! has clearly shown the strict necessity for
the statistical average to be taken over a one-particle den-
sity matrix only. This property of the density matrix is
assured differently in the Feynman, Matsubara, and Kel-
dysh theories. Matsubara’s approach is only valid for a
thermal density matrix, whereas in the Feynman theory
as well as in the Keldysh theory an adiabatic switching
on of the many-particle interactions is assumed. As a re-
sult of the various restrictions imposed, none of these
theories includes all the others. Fujita®® was the first
who suggested in his pioneering work important im-
provements. In essence, he used initial correlation func-
tions Y; to describe the many-particle contribution of the
density matrix not accounted for in Wick’s theorem.
This led to a set of “generalized equations of Kadanoff
and Baym.” Later, Hall* simplified this theory by utiliz-
ing the concept of Keldysh Green’s functions. However,
these Green’s functions and the initial correlation func-
tions were still treated differently. It is the purpose of
this paper to develop a coherent and systematic contrac-
tion theory, which treats these functions on an equal
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footing. The corresponding Green’s-function formalism
will be applicable to arbitrary nonequilibrium systems
with arbitrary initial density matrices. The main advan-
tages are a further simplification of the theory and the
fact that the common theories of Feynman, Matsubara,
and Keldysh may be shown to be special cases of the gen-
eral theory presented here.

The paper is organized as follows: In Sec. II we devel-
op the foundation of a Green’s-function formalism valid
for arbitrary nonequilibrium systems. It is based on a
Green’s function suitably defined on a contour c*. The
main result is an exact diagrammatic expansion of this
Green’s function and the corresponding generalized
Dyson’s equation. Then, in Sec. III, we present a
(3X3)-matrix representation of the Green’s function.
Writing Dyson’s equation in this representation, we
derive a basic set of five coupled equations in Sec. IV. In
particular this set contains the well-known equation for
the spectral density and a transport equation modified by
initial correlations of the density matrix. In Sec. V we
conclude this paper by discussing our theory’s connec-
tions with the other time-path theories of Feynman,
Matsubara, and Keldysh.

II. THE CONTOUR-PATH FORMALISM

In order to work out the underlying concept we start
by reviewing some basic facts. The formal description of
an arbitrary experiment may be divided into two parts.
In the first place, one has to specify the initial state of the
system at a given time #,. We will refer to this procedure
as the “preparation of the system at ¢,.”” However, the
information usually given at this point is not sufficient to
determine the exact state. Instead, the initial preparation
has to be described with a probability distribution func-
tion p, which associates with each state |n) a certain
weighting factor p(n), where 0<p(n)<1and 3, p(n)=1.
This leads to the well-known concept of the density ma-
trix
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ptg)=3, |n(15))p(n){n(zy)] . (1)

The expectation value of an arbitrary observable O at ¢
is then given by

(O(ty)) =Tr[p(ty)0(ty)]
=3 (n(ty)lp(n)0(t)n(ty)) . 2)

We may therefore state that the preparation of the sys-
tem at ¢, corresponds to a determination of p(¢,). Since
we will use the Heisenberg picture, where the density ma-
trix is time independent, we will frequently drop the ar-
gument #.

The second part of the experiment is a monitoring of
the response of the system, i.e., its development in time,
which is governed by the Hamiltonian #(¢). For its
description we choose the Heisenberg picture. There the
states are time independent and the observables obey the
equation of motion

d d
—0g(t)= t), +i— t) . 3
o 2 (1) =[O0 #(2),H(1)] latOj{( ) (3)
This picture is particularly useful, since it distinguishes
the preparation of the system at ¢, and its following time
development most clearly. The time-dependent expecta-
tion value is then given by

(0(1)=T (n(tx)lp(n)O(1)|n (1)) . 4)

In this paper we will focus our interest on the evalua-
tion of two-point functions

(0(4,t"))=(0,()0,(t")) , (5)
such as the correlation functions
iG12(1,1)=— (Vi1 (1)) ,
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iGH(1,1)=( W 1)WI(1)) , ©
which are also known as G< and G~. Here 1=(x;,¢;)
and ‘P},, ¥4, denote creation and annihilation operators in
the Heisenberg picture. From these functions every one-
particle property may be derived. Unfortunately, we are
faced with two serious problems when trying to calculate
these two-point functions for an interacting system with
an arbitrary initial preparation. The first crucial point is
that in solid-state physics the system is usually an in-
teracting many-particle system at time t,. Hence the
states |n ) occurring in the definition (1) of the density
matrix are many-particle states, i.e., p(¢,) is a many-
particle density matrix. This is an important difference
to the ordinary scattering theory, where the system is
generally assumed to be noninteracting at the time of
preparation and the interaction is adiabatically switched
on afterwards. Though this procedure is well established
in scattering theory, its application to solid-state physics
is doubtful. And secondly, the time-development opera-
tor corresponding to the equation of motion (3) involves
many-particle contributions via the Hamiltonian #(¢). A
straightforward evaluation of the correlations (6) is only
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possible for a noninteracting system. This is a system ini-
tially prepared with a one-particle density matrix pg,
which, moreover, evolves in time according to a nonin-
teracting Hamiltonian #(¢)=H,. In this very special
case, however, we may even calculate higher (i.e., many-
particle) correlation functions by using Wick’s theorem.
It states how such a many-particle correlation may exact-
ly be decomposed into sums and products of one-particle
correlations. The most general proof of Wick’s theorem
is due to Danielewicz.! He showed rigorously the
equivalence of the two statements ‘“Wick’s theorem holds
exactly” and “The operators to be averaged are nonin-
teracting and the initial density matrix is a one-particle
density matrix.” These circumstances suggest to search
for an appropriate expansion of the correlation functions
which allows for the use of Wick’s theorem. This will be
our next task. To begin, we notice that the restriction of
Wick’s theorem necessitates a twofold expansion. We
have to take care of the initial density matrix and the
time-development operator. Formalisms suitable for
some special initial density matrices have already been
developed by Feynman, Matsubara, and Keldysh. How-
ever, we will allow for an arbitrary initial density matrix.
The connection to the theories of Feynman, Matsubara,
and Keldysh will be discussed in the last section.

Let us first consider the initial density matrix p(¢,) and
expectation values at 5. We search for an expansion of
the many-particle density matrix of Eq. (1) in terms of a
one-particle density matrix p,. To this end we will now
develop a formalism very similar to that used in Matsu-
bara theory.’ The basic idea is that Matsubara’s expan-
sion procedure only relies on the fact that the thermal
density matrix is an exponential function. However,
since the density matrix is positive definite and Hermi-
tian, it may always be written as an exponential function

p(to)Z%exp[—MB(to)], Z =Trexp[ —AB(ty)] (7)

with B as an arbitrary Hermitian, particle-conserving
many-particle operator and A as a real parameter. In
particular, we notice that B is in general not equal to
F—upN. In analogy to the Matsubara theory we then
define for an arbitrary operator O a Heisenberg picture
with respect to B as

Oz(T)ECXp[iTz(to)]Os(Io)exp[_iTﬁ(to)] . (8)

Here the index S denotes as usual the Schrédinger picture
and the argument 7 is purely imaginary. We stress that
the notion ‘“Heisenberg picture” used here is only due to
the formal analogy to that picture known in quantum
mechanics. In the present context 7 should not be con-
fused with the time or viewed as an imaginary time; it is
simply a parameter. Now we split off a one-particle den-
sity matrix from p. For that purpose we choose an arbi-
trary one-particle operator B. It is useful, but not man-
datory, to do it in a way that the difference

B'=8—B, )

is small. The density matrix is then rewritten as
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p= %exp( — ABy)exp(ABg)exp( —AB)
Z, '
= 7poexp(AB0 Jexp(—AB) , (10)
where
pozé;exp(—kBo), Z,=Trexp(—AB,) (11

is a one-particle density matrix. The operator

S.(7,0)=expliTB)exp( —iTB) (12)
satisfies the differential equation

. 0 ,

IESCr(T,O)zBBO(T)SC'(T,O) . (13)

Here B 1’;0 is given in the interaction picture with respect
to B, which is defined for an arbitrary operator O as

OBO(T)ECXp(iTBO)OS(ZO Jexp(—iTB,) . (14)
Equation (13) may formally be integrated as

S.(7,0)=T,exp —ifonT'B;;O(T')] , (15)

where the operator T, orders along the contour
¢'=[0,—iA] (compare Fig. 1)

0,(11)0,(7y),

—O0,(1,)0(1y), T =Ty0nc’.

Ti>T,onc’
Tc:01('r1)02(7’2)5

(16)
Inserting this into Eq. (10) we eventually get for the ini-

tial density matrix

=20, s (—in0)=20
P="7PoSc(—iA0)=—"peSe - (17

With this expansion we have reached our first goal. We
now may write an arbitrary expectation value at ¢ as

Z
<0(t0)>=—232 (ng(20)|peS.0 (t)|nglty)) (18)
"o

This has the same form as Eq. (2), if we regard p, as the
initial density matrix and the product (Z,/Z)S_0(t,) as

—iA

FIG. 1. Generalized contour ¢’ of Matsubara.
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the operator to be averaged. The advantage is that p,is a
one-particle density matrix and that S.O(t,) contains
noninteracting operators (i.e., in the interaction picture)
only. Hence Wick’s theorem holds for each term in the
expansion of the S, matrix. Finally we notice that one
recovers the Matsubara theory for the special choice of a
thermal density matrix, where B=% —u/N and A=0.

Now we turn to the evaluation of two-point functions
at times t,¢' > t,. There we have to deal, moreover, with
the second restriction of Wick’s theorem, which is that
the time-development operator has to be a one-particle
operator. However, the evolution in time is described by
a time-dependent Hamiltonian #£(¢), which usually in-
cludes many-particle interactions. To utilize Wick’s
theorem, though, it is necessary to perform an expansion
of the time-development operator similar to the treat-
ment of the initial density matrix. An appropriate
method has already been introduced by Keldysh.® Nev-
ertheless, for the sake of completeness let us summarize
its main features here. The formal expansion will be seen
to be very similar to that used for the initial density ma-
trix.

The two-point function (5) contains products of opera-
tors at two times. To simplify matters let us start by con-
sidering an operator O(t) with a single time argument
only. The generalization for products of operators with
several times will be simple. We begin with the Heisen-
berg picture according to Eq. (3). It is easily verified that

O4(t)= |Texp

i [ dr 7o | |05
x [Texp =i [ arstn] (19)

is a formal solution of Eq. (3). Here T and T are the
time- and antitime-ordering operators for real time

01(t1)02(t2), ty>t,
) Uy ), Ty =0,
(20)
_ 0,(£1)0,(t,), t,<t,
TO(t)0,(t,)= 060 (2) -
205)0 ), 2L, .

However, in the long run it is not easy to deal simultane-
ously with ordering and antiordering operators. A con-
venient way to memorize the ordering is the use of the
contour ¢ shown in Fig. 2. This contour runs on the
upper branch from ¢ =¢, to ¢ and on the lower branch
back to ¢y =t,. Nevertheless, both branches are still ly-
ing on the real time. The vertical offset in Fig. 2 is only a

\{/

tO t time

FIG. 2. Keldysh contour c.
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graphical method to demonstrate the different sense of
ordering. On the upper branch the ordering and the
direction of time integration are chronological, whereas
they are antichronological on the lower one. This per-
fectly suits the time development as given by Eq. (19).
The upper branch corresponds to the exponential expres-
sion on the right-hand side, while the lower one matches
the one on the left-hand side. Hence the procedure of or-
dering may be simplified if we use a contour integral
along ¢ and an operator T, ordering along this contour.
Then we may abbreviate Eq. (19) as

Oy (t)=T,exp [—if drH(7) ]OS(t) . (21)

To account for Wick’s theorem we now start by ex-
panding the time-development operator in terms of a de-
velopment operator corresponding to a noninteracting
system. To this end we decompose the total Hamiltonian
into two parts

H(t)=H,+H'(t), (22)

where H, is a time-independent, noninteracting but oth-
erwise arbitrary Hamiltonian. In the interaction picture
with respect to H, the operators obey the differential
equation

.d .9
20 (D =[0p (1), Ho | +i-Op (1) . (23)

The Heisenberg and the interaction picture are synchron-
ized at the initial point ?,, where the system has been
prepared

O?l(to)IOHo(to) . (24)
With that the operators evolve in time as
OHO(Z)Zexp[i(t —ty)H]Og(t)exp[ —i(t —ty)H,] .
(25)
Combining this with Eq. (21) yields
Oj,(t)=Sc(t3’,t)OHO(t)SC(t,té\ ), (26)
where we have defined the S, matrix on the contour c as
S (1my, 7)) =expli(my—ty)H,]
X T exp [—if:zd'r?{('r) ]
1
Xexp[—i(r;—ty)H,] . (27)
It obeys a differential equation similar to Eq. (13)

igi—zsc(‘rz,ﬁ)=H1’,0(72)Sc(r2,7-1) , (28)

which is readily integrated to
S (75, 7)=T_,exp [—ifTZdTHI’,O(T)] . (29)
1

So, finally we have expressed the operator in the Heisen-
berg picture in terms of operators in the interaction pic-
ture
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Oﬂ(t)=TcSCOHO(t) R (30)
where the S, matrix along the whole contour c is given by
S.=8,(t ,td) . (31)

Up to now we have considered an operator O (¢) depend-
ing on a single time argument only. The result (30) is
easily extended to the case of the two-point function (5).
There we have

Oy (t,t')=T.S Oy (1,¢') , (32)

where the contour ¢ has to go through ¢ and ¢’ in the or-
dering given by the operators O,(¢) and O,(¢t’).

Combining this with the corresponding expansion of
the initial density matrix we may eventually write an ex-
pectation value of an operator O (¢,t') as

Z
<0(t,t')>=7° 3 (ng(10)|peS. TS, Oy (1,1")no(20)) -

L)
(33)

The twofold expansion of the initial density matrix and
the time-development operator may conveniently be com-
bined to one single expansion. To this end we utilize the
striking similarity between the treatment of the initial
density matrix and the time-development operator, both
of which are exponential functions. We link the two con-
tours ¢’ and c together, ¢ * =c’c (compare Fig. 3), and in-
troduce a ¢ *-contour-ordering operator T « as

T =TT, , (34)

which orders along c*. Hence a point on c¢ is always
“earlier” than a point on ¢’. A similar contour has also
been proposed by Mills.’

Furthermore, we define a Heisenberg picture with
respect to

FH(7r), Tonc
H(r)= B(r), Tonc’ (35

which is a combination of the Heisenberg pictures defined
in Egs. (21) and (8). Similarly the transformation to the
interaction picture is performed with respect to K,
where

* T
to ¢ o

=

0 t

time

—iA

FIG. 3. The contour c* starts at ¢, and ends at —iA. How-
ever, note that the x-y plane used to illustrate this contour can
in general not be viewed as a complex-time plane. This depic-
ture is only a guide to the eye for better revealing the ordering
and integration along the contour.
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Ho(T),
Bo(’T),

T70NnC

Ko(m)= (36)

Tonc .

We collect the expansions of the initial density matrix
[Eq. (17)] and the time-development operator [Eq. (30)] in
the S_4 matrix

S o =8 o(—ik, 1§ V=8 —iX,0)8.(ty ,t{)

=T _«exp [—if *d‘TKII(O(T)] , (37

where
H},O('r), Tonc
Kg ()=
Ko B,’;O(T), Tonc . (38)
With these definitions we may write Eq. (33) as
Zo

(O(t,1)) =— (T 48, +0p (1,1"))o, (39)
where ,{ ), denotes an average with respect to p,

o{0o=Tr(p,0) . (40)

The crucial point about the representations (33) or (39) is
that they meet all requirements for the validity of Wick’s
theorem: Firstly, the average is taken over a one-particle
density matrix p, and secondly, all operators are given in
an interaction picture corresponding to a noninteracting
system. So Wick’s theorem holds for each term in the ex-
pansion of the Sc* matrix. Unfortunately, the applica-
tion of this theorem immediately reveals that such an ex-
pansion will contain other functions than the real-time
correlations (6) as well. That means that for the real-time
functions the system of equations is not closed. The
reason is that the Sc* matrix is defined on c¢*, whereas
the operator OHO(t,t’) is defined for real time only. How-
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ever, by performing the contraction procedure we en-
counter averages of all possible pairings of two operators
defined on the whole contour c¢*, and therefore we have
to continue OHO(t,t’) to ¢*. A convenient way of han-

dling this problem is to inspect one single function, which
comprises all the functions occurring in the expansion,
since then no distinction of different cases is necessary.
This basic function is the c¢*-contour-ordered Green’s
function, which is for fermions defined as

iG(1,1N=( T« Wy (HW(1')
(W (D)W1), 7,>7 on c*
T = (wL()W(1), 7 <7 onc*.
1)

Here both arguments 7,7, lie on the whole contour c¢*
and the field operators are defined in the Heisenberg pic-
ture with respect to . Obviously this function covers all
possible pairings of a creation and an annihilation opera-
tor defined on c*. For example G is equal to the real-
time correlations (6) for one argument lying on the upper
branch of ¢ and the other one on the lower one. We also
notice that the field operators are continuous functions of
their contour arguments, since we have the synchroniza-
tion

044(t5)=04(0) . (42)

However, at the connection between c and ¢’ their deriva-
tives are in general not continuous.

By using the representation (39), we have for the c*-
contour-ordered Green’s function

. 2o f
iG(1,1)=""o( T,oS,« Wi (1NW (1) . 43)

The expansion of the S 4 matrix yields for the first terms

Z .
iG(1,1")= 7" of T+ Wy (W (1))~ % fc*dno( T, K, ()% (D¥E (1)),

1 ’ ’ ’
—’Efc*d’rzfc*d’r:;o(TC*KKO(Tz)KKO(T3)‘I’KO(l)\I’I(O(l Vot v | . (44)

The very first term is called the free ¢ *-contour-ordered
Green’s function

iGo(1,1)=( T, «Wg (D (1)), . 45)

To determine the higher terms we now specify the in-
teraction operator K ,’<0. According to (38) we have to dis-

tinguish its behavior on ¢ and ¢’. On c it describes physi-
cal many-particle interactions of the considered particles.
On ¢’, however, the “development” operator B is deter-
mined by the initial density matrix and is in general not
given by the Hamiltonian #. Hence B 1’,0 does not neces-

[
sarily describe physical many-particle interactions. Nev-

ertheless it has formally the same structure as a many-
particle operator. Therefore we may write K ,}0 as a sum

over generalized one-, two-, etc., particle interactions
Vi,(1/20V,, ...

Ki (1)= -lledxl\I/}()(l)V,(l)\yKO(l)
1
+op Jdn [ drdxVl ()W (DV,(1,2)

XWe (VW (2)+ -+, (46)
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where V,,V,, ... are arbitrary functions defined on the
contour ¢* (and in x space), which are assumed to be
symmetric with respect to an interchange of their argu-
ments. We do not need to know their exact specification,
which depends on the considered interactions and on the
initial density matrix p(z,). We point out, however, that
these functions are in general not continuous at the con-
|
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nection between ¢ and ¢’. Since K ,'(0 contains at least two

field operators, the terms in the expansion (44) involve
¢ *-contour-ordered many-particle Green’s functions of
arbitrary order. Now Wick’s theorem states that each
¢ *-contour-ordered n-particle Green’s function may ex-
actly be decomposed into products of n one-particle
Green’s functions as

Gy (1,2, ym 1,2, n )= (=i o T Wy (1DWh (1')Wg ()W (2) - Wy (m)Wh (n'))o

(_1)!p|+lp’|

pp

where p (i),p'(i") are permutation functions. For exam-
ple, the two-particle Green’s function can be contracted
to

G, (1,2,1,2')
0
= — o T,«Wg (VW (1')Wg (2% (2)),
=G,y(1,1)G¢(2,2')—Gy(1,2)G4(2,1') . 48)

With that each term of the expansion (44) is equal to a
sum over products of one-particle Green’s functions. The
resulting vast number of terms in each order in the in-
teraction may conveniently be described by diagrammatic
methods. We show in the Appendix that the diagrams
are identical with those introduced by Feynman. More-
over, the notations of connected and disconnected, topo-
logically distinct, etc. diagrams are the same and they are
used in the same way. This is not surprising, since it
reflects the basic mathematical structure of the expansion
(44), which is the same in the Feynman, Matsubara, and
Keldysh theories, and the fact that Wick’s theorem holds.
The “only” difference lies in the fact that the diagrams
are evaluated differently in each theory. Here we use ¢ *-
contour-ordered Green’s functions and integrate each
vertex over the contour ¢ *.

Next we notice that this infinite series of diagrams has
the same self-similar structure as in the Feynman theory.
This is the graphical correspondence to the fact that the
¢ *-contour-ordered Green’s function obeys a Dyson’s
equation

G(1,1)=G,(1,1")
+ [ drdx,dTidx;Go(1,2)2(2,3)G(3,1')

(49)

where the self-energy = is as usual defined as a sum over
all topologically distinct proper self-energy diagrams.
With that we have obtained an exact set of equations,
namely Dyson’s equation (49), and the exact (diagram-
matic) representation of the self-energy. It is closed for
the c¢*-contour-ordered one-particle Green’s function G
in the sense that no higher Green’s function occurs. The
price to be paid is the infinite number of diagrams
defining the self-energy. The set of equations is valid for
arbitrary initial density matrices p(¢,) and arbitrary

al Go(p(1),p'(1"))Gy(p(2),p’(27)) - - - Go(p (n),p’(n")), (47)

Hamiltonians #(¢). Once the one-particle Green’s func-
tion is determined, we may extract from it the real-time
correlation functions (6) and the physical information
contained in them. Equations similar to Eq. (49) have
been derived by several authors (Fujita,>® Hall*), who
have used other definitions for the Green’s functions and
self-energies, as well as another contour of ‘“time” in-
tegration. We will compare their approach with our
theory in Sec. V.

In this paper we will not discuss schemes for deriving
approximate solutions for the c¢*-contour-ordered
Green’s function G, since they are formally very similar
to those used in the Feynman, Matsubara, and Keldysh
theories. In essence they rely on a suitable choice of a
subset of diagrams for the self-energy. And finally we re-
mark that the expansion procedure developed here is not
restricted to the treatment of one-particle Green’s func-
tions. We may treat higher Green’s functions in the same
manner.

III. A MATRIX REPRESENTATION

For practical calculations it is more convenient to use a
matrix representation for the ¢ *-contour-ordered Green’s
function, which we will now introduce. For this purpose
we decompose the contour into three parts (compare Fig.
3). The first one consists of the upper branch of ¢, which
runs from t; in positive time direction, the second one is
given by the lower branch leading back to ?; and the
third one is the hook ¢’. The ¢ *-contour-ordered Green’s
function has two parameters, 7; and 7. on the contour
c¢*. Thus there are nine different possibilities to distri-
bute these two parameters over the three branches, which
can naturally be grouped in a (3X3) matrix

G'(1,1) 61,1 G¥(1,1)
G(1,1)=|G?(1,1)) G*(1,1") G¥3(,1)|. (50
G'(1,1) 61,1 G¥3(1,1)

The row index denotes the position of 7; on the three
branches, whereas the column index refers to the position
of 7. The matrix elements are evaluated by determining
the effect of the contour-ordering operator 7 « on the
product w(1)¥(1’) for each configuration 7,7, on the
contour ¢ *.
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The first four possibilities with real-time arguments ¢,,t, are well known in the Keldysh theory

iGN(1,1)=(T¥(1)¥(1))=

i62(1,1)=(Tw(1)¥'(1))=

iG2(1,1)=—(¥'(1"Hw(1)) ,
iG2(1,1)=(w()¥'1)) .

The contour-ordering operator T« works chronological-
ly on the upper branch and antichronologically on the
lower one. Therefore the diagonal elements G'! and G2
are, respectively, the time- and antitime-ordered Green’s
functions. In contrast to that, for the off-diagonal ele-
ments, the ordering of the field operators is fixed, since
their arguments are lying on different branches of the
contour. Therefore we have as off-diagonal elements the
real-time correlation functions G'? and G 21 which have
already been introduced in Eq. (6).

The component G** has both of its arguments VI=T,
vy»=1 on the hook ¢’ and is given by
iG3(1,1)=(T,¥(1¥'(1"))

(w(H¥w'(1)), v;>v, onc’
= ¥Hw(1)); v <wvpon e (52)

By using the properties of the trace it is easily verified
that G3? obeys periodic boundary conditions

G¥(1,1)=—G6%(1,2)| (53)

Xy =X, vy =V —iA

(the negative sign is for fermions) and depends on v;— v,
only

GP(1,1=6P(x;,x,v;— V) . (54)

Last but not least there are some mixing matrix ele-
ments with one real-time argument and one on ¢’

iG1(1,1)=i6G%(1,1")
=—(¥'(1"Hw(1)), v, on ¢’

iG3(1,1)=iG*(1,1")
=(w(1)¥'(1)), v,onc’.

(55)

Since they have arguments on different branches of the
contour, they are again correlation functions with a fixed
ordering of the field operators.

The matrix representation of the self-energy is a little
bit more complex. We will see in the following investiga-
tion that there are two main types with different repre-
sentations, namely the regular and the irregular self-
energy. This notation has been introduced in the Kel-
dysh theory by Danielewicz.! A decomposition of the
self-energy into two parts, however, was already used by
Kadanoff and Baym?® for the electron-electron interac-
tion. They denoted them as ZHF and 3C, respectively.

(w1 =i62(1,1"), ¢, >1,
—(ww(1)) =i6"2(1,1"), ¢, <t,
(wwh(1))y=i6?(1,1), 1, <t
— (U)W =iG'(1,1"), ;21

(51)

The regular self-energy is, for example, due to the
electron-phonon interaction. It has a representation
similar to the ¢ *-contour-ordered Green’s function

S,y £2(1,1) £8%(1,17)
Sreg(1,1)=|22(1,1) £2(1,1) $2(1,1) | . (56)
$31, 1) $32(1,1) $3(1,17)

The matrix elements obey the relations

—$2(1,1), t; >t
SNL=1 _sny ), 1<ty

—3$24(1,1), ¢ <ty
222(1’1'):|—312(1,1'), e 7

$13(1,1)=—2%(1,1"), v, onc’
$3(1,1)=—5%%(1,1"), v,onc’.

These relations are very similar to those obeyed by the
¢ *-contour-ordered Green’s function. In fact, the rela-
tions of the matrix elements of the product 73377,
where

1 0 0
=10 —1 0], (58)
0 0 1

are identical with (51) and (55).

The irregular self-energy describes, for example, exter-
nal potentials and effective one-particle potentials due to
the electron-electron interaction. It does not have the
properties of a c¢*-contour-ordered Green’s function,
since it contains a & function on the contour, i.e.,

8(t—ty) 0] 0
8(rj—r)= 0 —8(¢,—1,) 0
0 0 S(vi—vy)

(59)

Hence its matrix representation is diagonal and given by

S, 1) 0 0
girreg( 1’ 11)= 0 322( 1’ 1/) (4] 5 (60)
0 0 £3(1,1)
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where

SN(1,1)=3,(1,1"8(¢, —¢t,.) ,
$2(1,1)=—3,(1,1"8(¢t, —t,) , 61)
$3(1,1)=34(1,1"8(v, —v,)) .

In the following we will extend the notion “regular” and
“irregular” to arbitrary matrices. A regular matrix has
elements obeying the relations (57), whereas an irregular
matrix is diagonal like (60) and (61). The reason for dis-
tinguishing them is their different transformational be-
havior.

The convenience of this matrix representation becomes
evident when we inspect products of ¢ *-contour-ordered
(Green’s) functions. There are two different types of
products to be investigated. Firstly, we have the so-
called serial product or convolution

F(1,1N= [ ,dr,dx,4(1,2)V(2)B(2,1') . (62)

We encounter this product in Dyson’s equation in the
term 2G and at the vertices of many interactions, for ex-
ample potential scattering. Secondly, we have the paral-
lel product

F(1,1")=A4(1,1")B(1,1") . (63)

This product is needed for describing the interaction of
electrons with phonons or photons. There, let us say, 4
corresponds to an electron diagram (i.e., it has one elec-
tron line running in and one out) and B to a phonon (pho-
ton) Green’s function. Another important application is
an instantaneous two-particle interaction like the
Coulomb interaction. Here we have to insert the
Coulomb potential, which contains a & function on the
contour ¢ *, for B.

Let us first investigate the serial product. Considering
all possibilities for the inner contour argument 7,, the
matrix representation of F is given by the matrix product

Fa,i= ([ e+ [ dv, |
0
X [dx,4(1,2)P0(2)B(2,1) , (64)

where the vertex matrix

Vi, (2)P:(2) 0 0
Po(2)= 0 — Vg, (2)P.(2) 0
0 0 Vi, (2)P(2)

(65)

has to be inserted between the matrices 4 and B. Here
we have simplified the integration along the three
branches as d7,=(dt,, —dt,,dv,), and the projectors P,,
P_. defined on the contour c* as
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1, 1yonc

P.(l)= 0, rponc’
(66)

0, ronc

PC'(I)E :1’ 7_1 on cl

are used to restrict the contour integrals properly.

The matrix representation of the parallel function is
quite simple. Since the arguments 7,7, of the functions
A and B are the same, the representation of their product
is given by

Fi(1,1")= 49(1,1)BY1,1') . (67)

It should be noted here that this derivation of the repre-
sentation of products of c¢*-contour-ordered functions
does not rely on any special properties of c¢*-contour-
ordered functions. Especially they do not need to be
Green’s functions. This reflects the fact that strictly
speaking the matrix is a representation of two arguments
on the contour, but not of the ¢*-contour-ordered func-
tion itself.

It is easy to see that regular and irregular matrices
transform in a different way when the representation is
changed. It is therefore important to know whether a
given diagram is regular or irregular, if its components
are known to be regular or irregular. To decide this ques-
tion we note that each diagram can be decomposed into
nested serial and parallel products, which may be investi-
gated one after another. It is easily proved that the serial
product 73F7; is irregular only if both of its components
A and B are irregular; otherwise it is regular. Similarly
one shows that the parallel product 73F7; is regular only
if both of its components 4 and B are regular; otherwise
it is irregular. Hence, if the basic constituents (.e.,
Green’s functions and vertices) are regular or irregular,
then all resulting diagrams are either regular or irregular.
With that we have proved that the decomposition of the
self-energy into a regular and an irregular part is exact.

By now we have derived a (3X3)-matrix representa-
tion for two-point functions defined on the contour c*.
With the representations of the c¢*-contour-ordered
Green’s function G and the self-energy X it is possible to
write the Dyson’s equation (49) as a matrix equation

G(1,1)= Gy(1,1")
+ [ (dt,+dv,)dx,
X [ (dty+dvy)dx,
XGo(1,2)2(2,3)6(3,1") . (68)

From this set of nine equations we will extract in the fol-
lowing section a subset of five independent equations,
which may be interpreted physically.

IV. A MINIMAL SET OF EQUATIONS

To avoid the cumbersome notation of four-dimensional
integrals let us first adopt a notation similar to that used
by Rammer and Smith.” We define the (fourfold) convo-
lution for ¢ *-contour-ordered functions as
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(A®C)1,1)= [ ,drdx,A(1,2)C(2,1) , (69)

and the combination of this convolution with the com-
mutator as

[ACTH(1,1)=(ARC)1,1)H(CRA)1,1') . (70)

This is readily extended to the case of the matrix repre-
sentation. There the projectors P,,P,. occurring at each
vertex [compare Egs. (64)—(66)] lead to

(A &)(1,1')
[ dt,dx, A(1,2)8%2,17), j=1,2

T [dvidn A, 08421, j=3. 7P

With the help of notion (69) Dyson’s equation (68) can be
written as

(G7'—2)86G =5 (72)
and its adjungate as
Ge(G,;'—%)=58. (73)

The right-hand side & denotes the four-dimensional &
function defined in Eq. (59). The inverse free Green’s
function G ! is defined to be

-1 " . a _ S 1
Gy, 1) = I'_aﬁ Ko(1) [8(1—1")
= =% k(1) [B1—19) (74)
oty 0 ’

However, the inverse free Green’s function @6‘ 1 and
the irregular self-energy transform in the same way, since
both contain 8§ functions on the contour. To simplify the
following equations, it is therefore useful to combine
them by redefining

Gol(1,1)=

i_ R — 17— Sirreg ’
“ar K0(1>]5(1 1)—Sireg(1,1')

= [—i—a——~—K0(1‘) ]3(14')—2“%(1,1’) )

a7y
(75)
Then we have the modified Dyson’s equation
(Gy1—S8)e G =§ (76)
and its adjungate
Ge(Gy1—Sr8)=5§ . a7

This matrix representation of the Dyson’s equation
yields a set of nine coupled equations for nine matrix ele-
ments. Unfortunately, it has two disadvantages. Firstly,
some of the matrix elements are not directly related to
physical quantities. And secondly, by inspecting the
definitions we notice that there are only five independent
matrix elements in the (3X3) matrix. It is therefore
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desirable to transform the matrix so that the number of
nonvanishing matrix elements is minimized. A con-
venient way to do this is the following (nonunitary) trans-
formation:

G(1,1)=L#6(1,1)LT. (78)
Here
Lo
=—11 1 o0 |. (79)
Vv a
2o 0 v2

The resulting matrix is
G"(1,1")  GX1,1)  v2613(1,1")
G(1,1)= 0 G%1,1") 0
0 Vv2634(1,1)  G*¥(1,1)
(80)

The Keldysh part of the matrix has been transformed
into the rak representation,!® which as matrix elements
has the retarded and advanced Green’s function and the
Keldysh function

G'(1,1)=G6"(1,1"—G'%(1,1")
=0(1,—1,)[G*(1,1)—G%(1,1)],

G%(1,1=G6"(1,1"—6%(1,1")
=—0O(t,—t,)[G*(1,1)—G*(1,1)], (81)

GK1,1N=6"2(1,1)+G6*(1,1") .

The representation (80) still has more than five nonvan-
ishing matrix elements, but anyway, it seems to be the
best one attainable. Accordingly, the regular self-energy
is transformed into

sM1,1)  =RH1,1) 0 v28Ba1,1)
(1,1)=| 0 =91,1') 0 (82)
0o V281,11 £3(1,1)
with
711,1)=8"(1,1"+£'%(1,1")
=—0(t,—1,)[22(1,1)—£%(1,1")]
341,1)=—25"2(1,1)—£2(1,1')
=0(t, —1)[£2(1,1)—2%(1,1")] (83)
351,1)=—2"2(1,1")—22(1,1') .

The transformation of the irregular self-energy is easy

zirreg( 1’ 11)
S1(1,1) 0 0
= 0 —$2(1,1) 0 . (84)
0 0 $33(1,1)

As a set of five independent matrix elements we choose
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the c¢’-ordered Green’s function 633, the correlations G!3
and G*!, the Keldysh function G, and the spectral densi-
ty A, which is defined as

A(L,1)=i[G"(1,1')—G%1,1)] . (85)

This function is independent of the correlation functions
G'%(1,1') and G2(1,1')—at least in the lowest order in
the interaction. We see, for example, that the commuta-
tion rules give for ¢, =¢,

AL, = =8(x,—x) . (86)

The Keldysh function G* contains information about the
distribution function, i.e., about the occupation of the
states described by the spectral density 4. With Eqgs. (81)
and (85) we have

Gk1,1"=26"(1,1")—iA(1,1'), (87)

where n (1)=—iG'%(1) is the particle density in x space.
To show the qualitative behavior of the correlation func-
tions G'* and G*! let us inspect, for example, G'3(1,1')
[compare Eq. (55)]. It contains two operators. The first
one has a real-time argument, whereas the second one has
its argument on the hook ¢’. However, we can associate
a real time even to the second operator if we utilize the
fact that the interaction picture on the real time (with
respect to Hy) and that on the contour ¢’ (with respect to
B,) coincides for t;,=t, and v;,=0 [compare Eq. (42)].
Therefore we can qualitatively take the real time ¢, for
operators on the contour ¢’, and the correlation is rough-
ly a function of t; — ¢,

GB(L 1) =F(t;—t,) . (88)

Hence these correlations measure the long-time effect of
the many-particle contributions in the initial density ma-
trix p(ty). They are therefore called ‘‘initial correla-
tions.” The c¢’-ordered Green’s function G*? generates in-

J
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itial conditions on the (real-time) Green’s functions and
correlations at #,. With Egs. (42) and (52) we have
lim lim 633(1,1')=62‘(1,1')|,l:,1,=,0,

vi—0v;,—0
(89)
lim lim G¥(1,1)=G6"%1,1)|, _, _,
vp—>0v,—0 1 1 0
Before deriving differential equations for these five in-
dependent quantities, it is convenient to define some oth-
er related functions such as the symmetric parts of the
Green’s function

G (1,1 =L[G"(1,1)+G%1,1')] (90)

and of the self-energy
3L 1) =431, 1)+ 3241,1)] . 91)

These quantities are well known; they describe renormal-
ization effects. In the gradient approximation they are
equal to the familiar functions ReG and ReZ, respective-
ly. (In general, however, they are not real.) Finally we
define the linewidth function I" as

r',1)=i[2711,1")—2%1,1)] . (92)

Now the 33-component of Dyson’s equation in the rep-
resentation (78) immediately yields

(Gy -2 G¥=5 (93)

for the c’-ordered Green’s function G33. [According to
Eq. (71) the convolution ® is restricted to ¢’.] It is im-
portant to notice that (93) is an equation for G** only,
since other components of our (3X3) matrix do not
occur in an expansion of $¥. Since parallel products do
not mix the matrix elements, it is sufficient for showing
this to consider the 33-component of a typical serial
product of two functions A4 and

FR(1,10= [ " dtdx Ve [ A7(1,28°2,1)~ 221,082, 1)1+ [ dvidx, 231,275 BF2,1) . 94)
0

With Egs. (57) and (60) we have the identities
AN=_ 332 pB—_pj2 (95)

irrespectively of A and B being regular or irregular ma-
trices. With that the first two terms in (94) cancel each
other and only the term

PR, 1= [ 4,671,275 20672,1) 096)

remains. Hence the equation for the 33-component, i.e.,
@33, is closed, regardless of the initial density matrix
p(ty) used for averaging. The physical reason is causali-
ty: The initial preparation does not depend on the fur-
ther time development of the system. Once Eq. (93) is
solved, the real-time correlations and Green’s functions
at t;, corresponding to the chosen density matrix p(z,),
are determined via Eq. (89). The evaluation of G*(1,1')
may take advantage of the periodic boundary conditions

[
(53) and of the fact that G¥(1,1’) depends on v, —v,. only
[Eq. (54)].

The 32- and 13-components of Dyson’s equation yield
eq;}ations of motion for the initial correlations G'* and

(QO—I_EI‘)®GI3__$13®G33=O ,
(97)
(G '—$3¥)e G -S89 G*=0 .

These equations couple the initial correlations to the
Green’s function G and to the real-time development of
the system.

This real-time development is described by two further
equations. We arrive at an equation for the spectral den-
sity 4 by performing some algebraic manipulations on
the 11- and 22-components of Dyson’s equation and its
adjungate
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(Go'—=T)® 4] —[IeG ] "=0. (98)

Here the integrals are with Eq. (71) restricted to the real-
time domain and therefore the equation does not explicit-
ly depend on the initial preparation at #,. It has formally
the same structure as the corresponding equations dis-
cussed by Kadanoff and Baym® or Rammer and Smith.’
However, in general it is coupled to Eq. (97) and the fol-
lowing transport equation for G*, which can be derived
from the 12-components of Dyson’s equation and its ad-
jungate

[(Q()_I“‘Er+a)®Gk]__[2k®Gr+a]7
i
2
+2(G1e$M+31eG) . 99)

The left-hand side and the first two terms of the right-
hand side involve, according to Eq. (71), integrals over
real time only. They describe the evolution of the system
in time due to physical interactions and have extensively
been discussed in literature (for example Refs. 8 and 9).
The last two terms are connected with the initial correla-
tions; therefore ® denotes an integral over ¢’. These
terms are not known in the Keldysh theory. They are the
reminiscence of the initial preparation of the system at #.

The set of equations (93) and (97)-(99) constitutes a
complete description of a system with an arbitrary initial
preparation at ¢, [described by B(z¢,)], and a following
transient behavior governed by a time-dependent Hamil-
tonian ##(t). The determination of the five independent
quantities eventually yields the real-time correlations (6),
from which every one-particle property of the system can
be deduced.

To calculate the stationary state for lim,_, , we often
may utilize a considerably simplified system of equations.
If for one reason or another we assume the initial correla-
tion functions to be exponentially decaying with

([Z*® 41T —[FeGK]T)

F(t —ty)xexp[—alt —ty)], (100)

then they will damp out in the transport equation, and
the stationary state can be calculated with the reduced
transport equation

[(go—l_zr+a)®Gk]~_[Ek®Gr+a]*
= L([z*e 41" [T GH]")

(101)

and the equation for the spectral density, Eq. (98). With
that we only have to determine a self-consistent solution
for the Keldysh function G* and the spectral density 4,
which satisfies the two equations (98) and (101).

The complete set of five equations is necessary, howev-
er, if we are interested in the transient behavior of the
system a short time after the preparation, or if the initial
correlations do not decay (due to symmetry and conser-
vation laws). For example, the initial correlations will
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not decay in systems where a many-particle interaction
induces various metastable ground (or steady) states.
Here the initial correlations determine which of these
metastable states will be the final state.

V. CONNECTIONS TO OTHER
GREEN’S-FUNCTION THEORIES

It is instructive to inspect the matrix representation for
the ¢ *-contour-ordered Green’s function a bit further, be-
cause we will then find that it comprises the Green’s
functions defined by Feynman, Matsubara, and Keldysh.
The Green’s-function formalism most often used is the
one introduced by Feynman.!! It is employed to calcu-
late ground-state properties of time-independent systems.
The Green’s function utilized there is the expectation
value of the time-ordered product of an annihilation and
a creation operator taken in the ground state of the sys-
tem. Approximations are derived by expanding the
time-development operator in an interaction picture with
respect to a noninteracting Hamiltonian H,. This treat-
ment is based on two crucially important theorems. The
first one is the Gell-Mann and Low theorem concerning
the adiabatic time development of the states;!? and
secondly, Wick’s theorem (in its original version) is
used.!?

The component G!! is also a real-time-ordered Green’s
function [compare Eq. (51)] and therefore very similar to
that defined by Feynman. They only differ in the density
matrix used for averaging. Due to the matrix structure
of the Dyson’s equation, the 11-component is generally
coupled to the other components. A Dyson’s equation
closed for G!! may be set up if the initial density matrix
is a projector on a pure one-particle state, py=|n ), {nl,
and the theorem of Gell-Mann and Low applies. Firstly,
we notice that in this case the components 5 13 G 23 @31,
and G do not contribute to G'!, since for p=p, no ex-
pansion of p is necessary. Therefore we have

iGM(1,1)=o(n|S ' TSV ()W} (1')n ),
:2 o<n|S;1Im )0

Xo{m| TSy (VW] (1|1, (102)

where the S matrix is restricted to the upper branch of
the contour, i.e., S =S(+ o, — ). Now the theorem of
Gell-Mann and Low says that the states |+ o) and
| — « ) are the same up to a phase factor, i.e., the summa-
tion is restricted to |m )o=|n ),. This yields

o n| TSV ()W} (1)]n),
0(”1S|” )o ’

iG1(1,1)= (103)
which allows for an expansion closed for G'!. We recov-
er the special case of the Feynman Green’s function if the
average is taken over the ground state, i.e., [1n ), =10),,.
In 1964 Keldysh proposed a Green’s-function tech-
nique for explicitly time-dependent systems in nonequili-
brium.® (The Keldysh theory is reviewed in some excel-
lent articles, for example Refs. 1, 14, and 15.) It relies on
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a Green’s function defined as the contour-ordered prod-
uct of an annihilation and a creation operator averaged
over an arbitrary one-particle density matrix. The order-
ing is done along a contour which runs from an initial
point ¢, to infinity and back to ¢, again (this is our con-
tour ¢). The contour-ordered Green’s function may be
represented by a (2X2) matrix. As in the Feynman for-
malism, approximations are derived from an expansion of
the time-development operator in terms of a noninteract-
ing Hamiltonian H,. Wick’s theorem holds, since in the
Keldysh theory an initial one-particle density matrix is
assumed. Therefore the resulting many-particle Green’s
functions may again exactly be contracted to one-particle
Green’s functions.

It is easily proved that our (3X3)-matrix representa-
tion includes the (2X2) matrix of the Keldysh formalism
in the left upper edge. If the statistical average is taken
over a one-particle density matrix as given in Eq. (11),
then B’ vanishes according to Eq. (9), since no expansion
of p is necessary. Hence the vertices V3 which connect

0
the Keldysh matrix to the correlations G 13 @23, G 31 and

2 are zero, and the Dyson’s equation for the (3X3)
matrix decouples into a Dyson’s equation for the usual
(2X2) Keldysh matrix and a Dyson’s equation for G¥.
With that we only have to solve the equation for the spec-
tral density 4 [Eq. (98)] and the reduced transport equa-
tion (101).

The arguments for using one-particle density matrices
at t, (usually for tj— — o) in the Feynman and Keldysh
formalisms have their origin in scattering theory. If the
many-particle interactions are assumed to be switched on
adiabatically, then the time-development operator may be
traced back to t — — oo, where the interaction eventually
vanishes and a one-particle density matrix may be used.
However, this approach is strictly speaking not applic-
able in solid-state physics. An adiabatic switching on of
interactions such as the electron-electron interaction ap-
pears to be quite artificial. Nevertheless it is usually ar-
gued that this procedure is sufficient to calculate steady-
state properties a long time after the initial preparation.

The proper way to deal with initial many-particle den-
sity matrices has already been shown by Matsubara.’ His
theory does not rely on any assumptions about time-
development operators being switched on or off. Instead
he resorts to a mathematical device by expanding the
many-particle density matrix in terms of a one-particle
density matrix. Matsubara’s method may be used to cal-
culate equilibrium properties of time-independent sys-
tems. His Green’s function is defined as the 7-ordered
product of an annihilation and a creation operator aver-
aged over an equilibrium density matrix
p=(1/Z)exp[ —B(H—uN)]. Here the quantity 7 has
formally the same structure as a negative imaginary part
of time. The determination of this Green’s function is fa-
ciliated by three facts. Firstly, the Green’s function de-
pends on its relative 7 arguments only. Secondly, it obeys
boundary conditions periodic in B3, which lead to a
discrete Fourier transform. And thirdly, a generalized
Wick’s theorem has again been derived for the contrac-
tion of many-particle Green’s functions in the interaction
picture.>
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Our last diagonal component G3* is a Green’s function
ordered along the hook ¢’=[0,—iA]. It therefore much
resembles the T-ordered Green’s function introduced by
Matsubara, which is ordered along c¢’=[0, —if], where
B=1/(kT) is the inverse temperature. And indeed, they
coincide for the special choice of a thermal initial density
matrix

p(t0)=%exp[ —B(FH—pN)] (104)
with

Z =Trexp[ —BFH —uN)], (105)
i.e., B=F —puN and A=p. Then we have

G¥(1,1)=8(x,iv;,xphivy) , (106)

where § is the Matsubara Green’s function and iv,,iv,
are real. We mention at this point that most of the com-
putational methods developed for the Matsubara Green’s
function are based on the periodic boundary conditions
and on its dependence on iv,—iv,. However, since we
have seen that both of these properties are valid for an ar-
bitrary operator B [compare Egs. (53) and (54)], it is to be
expected that these methods may be utilized to calculate
G¥(1,1') in the general case as well.

We have already noticed that the system of equations
is closed for the 33-component, i.e., G, alone, regardless
of the initial density matrix p(¢y,) used for averaging.
This property and the fact that a complex-time plane
may be introduced are utilized in Matsubara theory.
There only G¥is calculated, while the other correlations
and Green’s functions with real-time arguments are de-
rived from G by an analytical continuation. However,
the latter is only possible for a thermal density matrix,
where the contour-development operator is generated by
a time-independent Hamiltonian # and does not change
along the whole contour ¢* (i.e., where # is continuous).
In general, the link between the two parts ¢ and ¢’ may
not be differentiated continuously and the Green’s func-
tions on ¢ and ¢’ are not related by an analytical con-
tinuation. In this case there is no complex-time plane.

We conclude that the c*-contour-ordered Green’s
function as defined in (41) or (50) contains the well-known
Green’s functions used in the Keldysh, Matsubara, and
Feynman theories, if the proper corresponding density
matrix for averaging is used. We may summarize these
results graphically as

F |
G~ | K

M

(107)

Besides these contour-path formalisms some other
Green’s-function formalisms based on other approaches
exist, which we will not, however, discuss in detail here.
Kadanoff and Baym?® were the first who set up a closed
set of two equations for the correlation functions G < and
G~ (“equations of Kadanoff and Baym”). Fujita®*® gen-
eralized these equations by including matrices x;, =2, to
account for arbitrary initial correlations of the density
matrix at t,. These matrices ); had to be provided as in-
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put parameters. In our approach we used instead the pa-
rameter B’ which led, roughly speaking, to an exponen-
tial representation of the y; [compare Egs. (17) and (15)].
Hall* introduced to the work of Fujita the concept of the
Keldysh Green’s functions, which simplified the notation
considerably. To our knowledge, he was the first who
pointed out that initial correlations may be described by
three additional quantities, but he did not set up the cor-
responding closed set of equations. The theory developed
by Fujita and Hall is equivalent to our theory; however,
their approach is totally different. The main point is that
they used different expansion schemes for the usual
Green’s function and the density matrix. This results in
new graphic elements such as cluster bonds, which are
not known in common Feynman diagrams. We do not
need these new elements, since we used one expansion
scheme for both the usual Green’s function and the densi-
ty matrix. However, the price to be paid is a set of five
instead of two equations to be solved.

VI. CONCLUSION

We have presented a contour-path formalism for none-
quilibrium Green’s functions which comprises the Feyn-
man, Matsubara, and Keldysh formalisms as special
cases. In contrast to these theories neither the initial
preparation of the system, i.e., the density matrix, nor the
subsequent time development are restricted. In particu-
lar, no assumption about an adiabatic switching on of
many-particle interactions is necessary, since we have
used an appropriate expansion of the initial density ma-
trix. With that Wick’s theorem is valid for our Green’s
function defined on an enlarged contour ¢*, and common
diagrammatic analysis can be used. The diagrams are to-
pologically identical with those introduced in the Feyn-
man theory, but evaluated differently by using the c¢*-
contour-ordered Green’s function and suitably modified
vertices. Similarly to the Keldysh theory we have de-
rived a (3X3)-matrix representation for this Green’s
function which explicitly contains the Feynman, Matsu-
bara, and Keldysh Green’s functions as diagonal block
matrices, if the proper density matrix for averaging is
used. Moreover, for a general density matrix a closed set
of five coupled equations have been derived from a gen-
eralized Dyson’s equation. In particular this set
comprises an equation for the spectral density and a
transport equation, both well known in the Keldysh
theory. However, the consideration of arbitrary initial
many-particle correlations leads to additional terms in
the transport equation which have to be determined with
the help of the remaining three equations. The formalism
presented here may be used to study corrections to the
theories of Feynman, Matsubara, and Keldysh. Possible
applications are the investigation of the transient behav-
ior of a system shortly after its preparation or systems
where the initial many-particle correlations do not decay.
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APPENDIX

We will show in this appendix that the expansion (44)
may conveniently be described by diagrams which are
essentially identical with Feynman diagrams. To this end
let us consider an arbitrary term to nth order in the in-
teractions. This order is defined as n =n;+n,+ - -,
where n,n,, ... are the orders of the one-particle, two-
particle, etc., interactions. First we draw the outer in-
dices 1,1’ and the #=n,;+2n,+ - - vertices 2,...,2,
corresponding to the interactions. Then we draw a
directed solid line from i to j for each of the 1+# one-
particle Green’s functions G(i,j) occurring in the prod-
uct. We will thus end up with a diagram where at each
vertex one solid line is going in and one out. Then we
represent the interactions V connecting the vertices with
dashed lines. Depending on the nature of the interaction,
i.e., one-particle (V' =V,), two-particle [V =(1/21)V,],
etc., these lines connect one, two, etc., vertices. To evalu-
ate a given diagram we do the reverse. We associate to
each directed solid line from i to j a ¢ *-contour-ordered
Green’s function G(i,j). For each dashed line connect-
ing m vertices i, -:i, we insert an interaction
(1/mWHV, (iy,...,i,). To take the permutation factor
(—1)""”7"| into account we add a factor —1 for each
closed fermion loop. Finally we have to integrate each
vertex 2; over space and over the contour. The nth order
is then given by the sum over all possible diagrams with
n,+2n,+ - - vertices (so that n =n,;+n,+ - - ) divid-
ed by n! and multiplied by Z, /Z.

The number of diagrams to be calculated is drastically
reduced by noticing that the vertices 2, - - -2, may be
permuted within one sort of interaction without changing
the result. The corresponding diagrams are topologically
the same. It is simply a counting problem to show that
there exist n!(1)"(2!)"2 - - - such permutations. Hence, if
we consider topologically distinct diagrams only, the fac-
tor 1/n! in the nth order is canceled and only the factor
(1)"1(20)"2 - - - remains. This factor is in turn canceled if
we use the vertex functions V,V,,... instead of the
functions (1/1)¥,,(1/2)V,, ... . Then the nth order is
given by the sum over all topologically distinct diagrams
with n dashed interaction lines and vertex functions
Vi,V,, ... finally multiplied by Z,/Z. A further reduc-
tion is achieved by considering the disconnected dia-
grams. These are diagrams which may be split into two
parts without cutting any solid or dashed line. By utiliz-
ing arguments similar to those used in the Matsubara
theory it is easily seen that the entire class of disconnect-
ed diagrams only contributes a factor Z /Z, to the result
given by the class of connected diagrams. This factor for-
tunately cancels the prefactor Z,/Z in Eq. (44). Hence
the exact ¢ *-contour-ordered Green’s function is finally
given by the sum over all topologically distinct connected
diagrams with #=0"-- o vertices and vertex functions
VisVaoon



4 EXPANSIONS OF NONEQUILIBRIUM GREEN’S FUNCTIONS

We conclude that the diagrams used for describing the
expansion (44) are similar to those introduced by Feyn-
man. They only differ in the Green’s and vertex func-
tions used. It is therefore not surprising that the notion
of a self-energy may be introduced. A self-energy dia-
gram of order n =n;+n,+ - - - is defined as a connected
diagram with n, +2n,+ -+ vertices, two of which are
outer vertices and the other inner vertices subject to
(four-dimensional) integrations. The vertices are con-
nected by —1+n;+2n,+ --- directed solid lines and
n=n,+n,+ - interaction lines. A proper self-energy
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diagram may not be split into two parts by cutting only
one single solid line.

So far we have constructed diagrams with free Green’s
functions G, only. We may reduce the number of self-
energy diagrams by performing partial summations thus
contracting the diagrams to irreducible diagiams. The
resulting diagrams are based on dressed Green’s func-
tions G. There every self-energy insertion within an ir-
reducibe diagram is removed in order not to count a dia-
gram twice.
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