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This paper introduces local porosity distributions and local percolation probabilities as well-
defined and experimentally observable geometric characteristics of general porous media. Based on
these concepts the dielectric response is analyzed using the effective-medium approximation and
percolation scaling theory. The theoretical origin of static and dynamic scaling laws for the dielec-
tric response including Archie s law in the low-porosity limit are elucidated. The zero-frequency
real dielectric constant is found to diverge as e (0) ~ ( I —P) in the high-porosity limit, where P
denotes the porosity and m' is analogous to the cementation exponent. Model calculations are
presented for the interplay between geometric characteristics and the frequency-dependent dielec-
tric response. Three purely geometric mechanisms are identified, each of which can give rise to a
large dielectric enhancement.

I. INTRODUCTION

A long-standing problem of considerable scientific and
technological importance is to improve the understand-
ing of geometric-dielectric correlations in porous materi-
als. The scientific problem is to find out which properties
of the complicated random geometry of the pore space
have a significant inhuence on the electrical and dielectric
properties. The engineer, on the other hand, is interested
in the inverse problem of how to infer geometrical
features of the porous medium from its dielectric
response. The most prominent example for the techno-
logical importance of this question arises in the context of
well-log interpretation for petroleum or water explora-
tion. '

My objective in this paper is to present a simple
theoretical framework which allows a systematic study of
how the pore-space geometry of an insulating porous ma-
terial influences the low-frequency dielectric response
when the pore space is filled with a conductor. The ap-
proach is based on a novel geometric characterization of
porous media via local porosity distributions and local
percolation probabilities which will be defined in Sec. II.
These geometric quantities are conceptually well defined
and experimentally observable. The dielectric properties
will be calculated directly from the geometric charac-
teristics using mean-field theory, scaling theory, and nu-
merical techniques. The results are intended to be applic-
able to the physics of water- or brine-saturated clay-free
rocks. Such rocks can have very large relative dielectric
permittivities, sometimes exceeding those of the constitu-
ent materials by a factor of 10 or more. ' As a second
hallmark for the dielectric response of water-saturated
rocks, many investigators report a power-law behavior
for the dc conductivity with porosity known as Archie's
law. Holwech and N@st have recently measured the

frequency-dependent response of water-filled sintered
glass beads and showed that strong dielectric dispersion
and Archie's law can arise as a purely geometrical effect.
It will be assumed throughout this paper that electro-
chemical effects are absent.

Despite numerous efforts, no theoretical framework
has been found to date which encompasses both aspects,
strong dielectric enhancement and Archie's law, simul-
taneously. Recent theoretical approaches can be divided
into two categories: The first class' ' attempts to cal-
culate the dielectric properties starting from highly
simplified or indirect geometric models for the pore
space. The difficulty is that most models are too idealized
to be compared even to the simplest experimental model
system. The second category does not attempt to in-
corporate the pore-space geometry, but concentrates in-
stead on a sometimes sophisticated phenomenological ap-
proach.

Geometrical theories fall again into two families: per-
colation theories' ' and grain mixture models. '

Percolation theories predict a finite porosity below which
the conductivity vanishes. Such models are attractive be-
cause they capture to some extent the geometry of a ran-
dom network of pores, and they give rise to a strong
dielectric enhancement near the percolation threshold.
However, they have been ruled out by the argument'
that the pore spaces of realistic systems appear to remain
connected down to zero porosity (Archie's law). In addi-
tion, strong dielectric enhancement does not appear to be
correlated with a particular porosity threshold. Grain
mixture models, on the other hand, concentrate on the
connectedness of the pore space. They are attractive be-
cause they incorporate to some extent the consolidation
processes though which porous rocks are formed. Simi-
lar to abstract resistor network models, ' they are usually
not very explicit about the microgeometry underlying a
specific model. %'hile predicting grain-shape-dependent
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exponents for Archie's law the grain mixture models need
to assume the presence of strongly platelike grains to ob-
tain dielectric enhancement. It was pointed out by
Wong, Koplik, and Tomanic' however, that the cemen-
tation index in Archie's law is not determined by grain
shape. On the experimental side, it was concluded for
the case of White stone that the spheroidal grain model
cannot account simultaneously for the observed
frequency-dependent conductivity and dielectric con-
stant.

Let me conclude the brief discussion of recent theories
with phenomenological approaches which form the
second large category. Most approaches' ' are based
on the spectral representation of the complex dielectric
fUnctions developed by Fuchs and Bergman. These
theories start from an abstract pole spectrum which can
be adjusted to reproduce the features of experimental
data. Unfortunately, the pole spectrum or its properties
cannot be related to the pore-space geometry without pri-
or geometric modeling. Therefore, the theory by itself,
while separating material and geometric aspects, does not
lead to a better understanding of geometric-dielectric
correlations in porous media.

To develop a better understanding of geometric-
dielectric correlations in porous media, it is first neces-
sary to develop a suitable geometric characterization as a
starting point. Instead of considering the different
"sizes" of pores as the fundamental source of randomness
in porous media, the present approach suggests to consid-
er the porosity itself as the fundamental random variable.
This leads immediately to suggest local porosity distribu-
tions and local percolation probabilities as partial
geometric characterizations of the complex pore space.

Based on these new geometric characterizations, the
following questions will be discussed in this paper: validi-
ty and theoretical origin of static and dynamic scaling
laws, including Archie s law, and the universality of scal-
ing indices (Sec. V), geometric mechanisms of dielectric
enhancement (Sec. VI), model calculations for the inter-
play between geometric characteristics and frequency-
dependent dielectric response (Sec. VI), and theoretical
aspects of how to obtain geometric information from the
dielectric response (Sec. VII). It must be emphasized
again that dielectric dispersion in this paper results only
from the randomness in the pore-space geometry. In par-
ticular, electrochemical effects, which are important in
real rocks, are not considered. The dielectric response is
found to be surprisingly sensitive to the geometrical
features encapsuled in local porosity distributions, and it
is hoped that the present investigation might be a step to-
wards developing ultimately a "dielectric spectroscopy"
of porous media.

II. GEOMETRIC CHARACTERIZATION
OF POROUS MEDIA

The porosity P of a porous medium is defined as the
volume of pore space divided by the total volume. The
complement of the pore space will be called the matrix.
The porosity is the most important geometrical quantity
characterizing a porous medium. Clearly, P alone, being

0 if r lies outside the set Ay„(r)=
1 if r lies inside the set 2 . (2.1)

The local (or cell) porosity P(R, L) at the lattice position
R and length scale L is defined as

just a single number, cannot suSce to characterize the
complex pore-space geometry. On the other hand, a
complete equivalence class of atlantes for the pore-space
boundary considered as a two-dimensional continuous
manifold contains too much (possibly irrelevant) geome-
trical information. Similar to many instances in statisti-
cal physics, the task is to find a suitable distribution func-
tion such that a finite number of its moments give a faith-
ful approximate representation of the system.

It is often suggested to use a "pore-size distribution" as
a possible geometric characterization for porous media,
and mercury injection is suggested to measure it. Al-
ready Scheidegger, however, pointed out that the pore-
size distribution is mathematically ill defined. It depends
on an arbitrary identification of cylindrical pores and
their diameters. It is now well appreciated that the
result of a mercury injection measurement cannot be in-
terpreted without having already a faithful geometrical
model of the pore space, which itself requires knowledge
of the pore-size distribution. Without such a model, no
reliable geometrical information such as the pore-size dis-
tribution can be extracted from the measurement.

This paper suggests a different characterization of
porous media. Purely geometric quantities will be intro-
duced which are well defined and readily accessible to
direct measurement. The characterization is based on
viewing the local geometry on a mesoscopic scale as the
fundamental random quantity. To define "local
geometries, " consider a porous medium with a homo-
geneously and isotropically disordered pore space. The
points of a Bravais lattice (in practice a simple cubic lat-
tice) are superimposed on the porous medium and an ar-
bitrary (in practice cubic) primitive cell is chosen. The
local geometry around the lattice point R is defined as
the intersection of the pore space and the primitive cell at
R. The volume of the primitive (or measurement) cells is
VMC= I/p, where p is the density of Bravais lattice
points. This defines the length scale of resolution L as
L =p '~ =( VMc)'~ . For the simple cubic lattice with
cubic primitive cell, L is the lattice constant. The preced-
ing definition of local geometries is valid for topologically
and continuously disordered pore spaces. For a porous
medium with substitutional disorder, the measurement
lattice is given by the underlying lattice.

The local geometry inside the measurement cell will
become increasingly complex as the length scale of reso-
lution L is increased. A full geometric characterization
at arbitrary I is dificult. However, at every L the local
geometry may be partially characterized by two simple
properties. One is the cell porosity; the second is whether
the pore space percolates or not.

Consider first the local (or cell) porosity. To define it,
the characteristic function (indicator function) of an arbi-
trary set A is introduced as
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$(R,L)=p fgMc(r;R, L)Xps(r)dr, (2.2)

(2.3)

independent of R and L. Higher-order distribution func-
tions can be defined similarly. The n-cell local porosity
distribution function p„(P&,Ri, g2, Rz', . . . ,P„,R„;L) at
scale L measures the probability density to find P, in the
cell at Ri, Pz in the cell at R2, etc. The full information
about the statistical properties of the porosity distribu-

where yMc(r;R, L) is the characteristic function of the
measurement cell at R having size L, yps(r) is the charac-
teristic function of the pore space and the integration ex-
tends over the porous medium. One can now define local
porosity distribution functions in analogy to atomic dis-
tribution functions. Thus p(Q, R;L) measures the proba-
bility density to find the local porosity P in the range
from P to P+dP in a cell of linear dimension L at the
point R. The assumption of homogeneity implies that
p(Q, R;L)=p(P;L) must be independent of R. The func-
tion p(P;L) will be called the local porosity density at
scale L. The bulk porosity P can be thought of as the in-
tegral over a large volume or as the average over a statist-
ical ensemble of measurement cells, and thus, assuming
"ergodicity, "

p2(pi, Ri, pq, R2, L) =92(pi, p2, R;L) . (2.4)

The porosity autocorrelation function at scale L is
defined as

tion at scale L is contained in the local porosity probabili-
ty functional pI Q, L I at scale L which is obtained as the
limit n~~ of p„.

The local porosity distribution p(P;L) depends strong-
ly on L. There are two competing effects. At small L the
local geometries are simple, but they are highly correlat-
ed with each other, and the one-cell function p(P;L) does
not contain these complex geometric correlations. At
large L the local geometries are statistically uncorrelated,
but each one of them is nearly as complex as the
geometry of the full pore space. There must then exist an
intermediate length scale g at which, on the one hand, the
local geometries are relatively simple, and on the other
hand the single-cell distribution function has sufficient
nontrivial geometric content to be a good first approxi-
mation. In this paper this length will be taken as a length
of the order of the characteristic pore or grain size of the
porous medium. More precisely, g is determined from
the two-cell distribution function p2( P„R,; $2, R2, L ).
The assumption of isotropy implies that the two-cell dis-
tribution function depends only on the distance 8, i.e.,

I (41 W)(42 0)P'2(41~02~+ ~L)d lid 02
C(R,L)=

J (P —P) p(P;R;L)dg
(2.5)

and the porosity correlation length g is obtained from
C(R,L) as

fR' C(R, )0dR

IC(R, O)d R
(2.6)

In the following the "local porosity distribution" is
defined as p(P)=p(P;g), the single-cell local porosity
density at scale g. Simultaneously with this convention it
will be assumed that the local geometries at scale g are
"simple. " This is called the "hypothesis of local simplici-
ty, " and it will be made more precise in Sec. IV. For sys-
tems with an underlying lattice symmetry, the length g
has to be replaced by the lattice constant.

The most important aspect of p(P) =p(P;g) is that it is

readily measurable using modern image-processing equip-
ment. In the following a simplified and approximate pro-
cedure to observe p(P) in homogeneous and isotropic
porous media is discussed. This procedure measures p(P)
from photographs of two-dimensional thin sections
through the pore space. These photographs must be
colored such that pore space and matrix are clearly dis-
tinguished. The quality of the pore-space visualization
should be such that a high-resolution digitization of the

image allows each pixel to be assigned unambiguously to
either pore space or matrix. An approximate correlation
length might be calculated by noting that limI 0$(R,L)
corresponds to the pixel value 0 or 1, according to wheth-
er the pixel at position R falls into matrix (0) or pore
space (1). The porosity autocorrelation function C(R, O)

can be calculated from the pixel power spectrum using
the Wiener-Khintchine theorem, and the correlation
length g is obtained from C(R, O) using Eq. (2.6). Having
determined the correlation length, the photograph is sub-
divided into cells by placing, e.g. , a square grid with
squares of length g over it. The cell porosities are then

gP;(R), (2.7)

where P, (R ) is the pixel at position R within cell i The.
resulting probability density is averaged over different
ways of placing the measurement lattice, over many
choices of the primitive cell, and over all available photo-
graphs of two-dimensional sections to obtain the local
porosity density p(P).

The result of the measuring procedure described in the
preceding paragraph will in general lead to a local porosi-
ty distribution of the form
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p(P;L ))g)=5(P —P) (2.9)

is expected to result. The geometric information in this
case is reduced to P. At the same time, the local
geometries are nearly as complex as the bulk geometry.
If, on the other hand, the cells are chosen very small, i.e.,
L ((g, then the measurement procedure above could still
be applied and is expected to yield

(2.10)

Again, the geometrical information in p(P) is reduced to
one number. The geometrical complexity has gone into
the correlations between cells contained only in the full
porosity probability functional, but not in the single-cell
quantity p(P). In this sense choosing L =g is optimal.

The local porosity distribution p(P) is easily calculated
for ordered or substitutionally disordered porous media,
but very dif5cult to obtain for topological or continuum
disorder. For ordered or substitutionally disordered
cases, the measurement is given by the underlying lattice,
and g is the lattice constant. One finds immediately
p(P)=5(P —P) for the ordered case, in agreement with
Eq. (2.9). For substitutional disorder the local porosity
density follows directly from the distribution of the indi-
vidual geometrical elements which occupy the lattice
sites.

The second geometric property to characterize local
geometries is whether the pore space percolates or not.
For cubic cells each cell is classified as percolating or
nonpercolating according to whether or not there exists
at least one face of the cube which can be connected to
any of the other faces via a path contained completely in-
side the pore space. For noncubic cells the classification
has to be modified appropriately. Let A.(P) denote the
fraction of percolating cells with local porosity P. A,(P)
will be called the "local percolation probability. " It is an
important geometric quantity for all physical properties
of porous media such as conduction or Quid flow because
it determines whether volume elements are permeable or
not.

The two functions p(P) and A(P) constitute only a par-
tial and approximate geometric characterization of the
pore space. However, A, and p have a rich geometrical
content. This becomes obvious from the difficulty of cal-
culating them even for the simplest models of homogene-
ous and isotropic porous media. At present, no experi-
mentally observed local porosity distributions or percola-
tion probabilities are available to the author. However,
I believe that the general shape of p, (P) for pore spaces
resulting from spinodal decomposition may be similar to
the order-parameter distribution of a two-dimensional

P(0) =Ho&(0)+(1 Po Pl )P(0)+Pl&(0

Its bulk (average) porosity P is obtained as the expecta-
tion value P= Jog@(P)dg, in agreement with Eq. (2.3).
The local porosity distribution p(P) contains very much
geometrical information about the pore-space geometry.
Its definition as p(P;g) is optimal in the sense that it con-
tains the maximum amount of information based purely
on the porosity concept. If the cells were chosen much
larger than g, then the simple form

Lennard-Jones Quid measured in a recent computer ex-
periment.

III. DIELECTRIC RESPONSE

loc co, ER & 68, G 6 co
dp(6)=0 .

s e„,(o~;eii, e„,;6)+2@(co)
(3.1)

Here ei„(co;ez,ez, ,'6) is the local effective dielectric con-
stant, which depends on the constituent materials eR and
e~ and the local geometry G. The integration is per-
formed over the space 9 of all possible local geometries
G, and the probability measure dp(6) on 0 represents a
complete description of the statistical pore-space
geometry.

It was discussed in Sec. II that a complete geometric
description such as dp(6) is not known, and that in the
present paper the local porosity distribution p(P) and the
local percolation probability A.(P) will be used as approxi-
mate descriptions. This implies that the local effective
dielectric constants e„,(co;eii, eii;G) must be replaced
simultaneously by an approximate effective local dielec-
tric constant e(co;P). It depends on the local porosity P
as the only geometrical quantity. As a consequence of
the basic hypothesis of local simphcity discussed above,
e(co;P) can later be approximated by simple geometric
models of the pore space. Note that the dependence on
eR and e~ as well as the index "loc" have been
suppressed to shorten the notation. With these
simplifications one arrives at the simpler equation

i &ii(~;P)—e(oi)+ f [I—A(P)]p(P)dg=0 .

The low-frequency dielectric response of a porous
medium is inAuenced by the randomness in its pore-space
geometry. Given the geometric description of the pore
space developed in the last section, two questions arise:
One is how the geometrical information encapsuled in
p(P) and A, (P) expresses itself in the effective complex
dielectric constant e(o~), where co is the frequency. This
will be called the direct problem. The inverse problem is
the question what geometric information can be obtained
from a measurement of the frequency-dependent dielec-
tric constant.

To study these two questions, standard effective-
medium theory is an appropriate tool for a first approxi-
mate investigation. Consider again the subdivision of the
porous medium into cells of length g. Let ei, and eii, be
the complex frequency-dependent dielectric constants of
the constituent materials where the index R stands for
the rock matrix and the index W stands for water (or
brine) filling the pore space. Because all cells are statisti-
cally independent, standard one-cell effective-medium
theory can be employed to write a self-consistency
equation for the efFective dielectric constant e(co) of the
medium, which reads
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Here ec(co;P) and ez(co;P) are the local effective dielec-
tric constants. The index C stands for conducting (per-
colating) local geometries and the index 8 for blocking
(nonpercolating) cells.

Equation (3.2) represents the starting point for the
present investigation, and it is appropriate to discuss
briefly its content. Mathematically, Eq. (3.2) is a compli-
cated integral equation involving five different functions.
The average local dielectric properties e~, e~ are as-
sumed to be known. According to the hypothesis of local
simplicity, their precise form is not sensitive to geometric
properties other than porosity, and thus they will in prac-
tice be determined from very simple geometrical models
of the local pore space. The important assumptions im-
plicit in using Eq. (3.2) are twofold: The first is that local
geometries are uncorrelated. The second says that the
important geometric features giving rise to dielectric
dispersion can be described using local porosity distribu-
tions and local percolation probabilities. With e~ and e~
known, Eq. (3.2) can be written as F(e,p, A, )=0. The
direct problem is to determine e given X and p as geome-
trical input. The inverse problems are to calculate p
from e and k or to find A, given e and p.

Before embarking on the discussion of these problems,
some notation and conventions must be established for
the subsequent treatment.

frequency of water, and this also fixes e'~ =o'~.
The average local dielectric constants eii(co;P) and

ec(co;P) at porosity P are in general unknown. Neverthe-
less, some general statements can be made. The relation

oui(co=0;P) =0 (4.6)

must hold for all P. It expresses the fact that the block-
ing geometry is nonconducting. The following relations
for the low- and high-porosity limits are also obvious:

cr'c(co;/=0)=o~ =0,
~c(~'y =1)=o'w

e'c(co;/=0)= e'ii(co; /=0) =e'R

ez(co;/=1) =ez(co;/=1)=e'@, ,

(4.7a)

(4.7b)

(4.7c)

(4.7d)

and they are valid for all frequencies m.

Finally, the local simplicity hypothesis will be cast into
mathematical form by requiring that o c(co=0;P) can be
expanded for small P as

o'c(0;P)=P(C, +C~P+ . . ) . (4.8)

Correspondingly, for the blocking geometries the real
dielectric constant diverges as P —+ I, which is a thin-plate
effect. Local simplicity is assumed to imply that the ex-
pansion

IV. NOTATION AND CONVENTIONS
I &a(0'4)l '=(1—0)l&i+&2(1 0)+ —

) (4.9)
The time variation of electrical fields is taken propor-

tional to exp(

idiot).

The co—mplex dielectric constant e is
written as

. 0E'=E +LE =E +E (4.1)

o =o'+io"=o'+ice(1 —e') . (4.2)

where e' (e") are the real (imaginary) parts of e, and o' is
the real part of the complex conductivity o.. SI units will
be used. Values for e are given in multiples of
so=8. 8542X10 ' F/m, the permittivity of free space,
and the units for o. ' are then S/m. The conductivity is
written as

A(/=0)=0,
A(/=1)=1 .

(4.10a)

(4.10b)

The first equation states that there are no conducting
geometries with porosity 0, and the second says that
there exist no blocking geometries at porosity 1.

is valid for P (1. Note that Eq. (4.7d) implies a discon-
tinuity at P = l.

For the local porosity distribution, it will be assumed
that pa=pi=0 in Eq. (2.8) and thus p(P)=P(P). The lo-
cal percolation probability has to assume the limiting
values

The relationship between o. and e is also written as
V. DIRECT PROBLEM

(4.3)

where the notation u =i' has been used.
The constituent materials are assumed to be rock form-

ing the matrix and water filling the pore space. Their
dielectric constants are

(4.4)

for water, and

(4.5)

for rock. In calculations the values e'~ =79eo and
e~ =7@0 will be used. Dimensionless frequencies are in-
troduced by setting coo=o.~/e'~=1 for the relaxation

Consider now the direct problem with X(P) and p(P)
given. The problem is to calculate e(co). The nonlinear
integral equation (3.2) is too diflicult for an analytical
treatment, and numerical solutions must ultimately be
sought. Some analytic information can be obtained, how-
ever, by exploiting the similarity to the well-known per-
colation problem. The analogy arises from the
classification of local geometries into percolating and
nonpercolating ones. The first question is then whether
there indeed exists a percolation threshold.

A. Solution for strongly peaked local porosity distributions

For strongly peaked p(P), Eq. (3.2) can be expanded
around P. The lowest-order approximation (a "mean-
field approximation to a mean-field approximation")
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leads to a quadratic equation for e(co) which is easily
solved. For low frequencies (co—+0), one finds

cr'(0) =
2
o.c(0;P)[3A(P)—1], (5.1)

for A, (P))—,', and o. '(0) =0, for A, (P) &
—,'. Thus a percola-

tion transition with control parameter A,(P) is predicted
for strongly peaked local porosity distributions. Al-
though the prediction of a percolation transition remains
correct for arbitrary p, (P), the control parameter is in
general not A, (P). This will be seen in the next subsection.
The percolation transition leads to a diverging dc dielec-
tric constant, which is given within the present approxi-
mations as

for A, (P)) —,', and as

e's (0;P)e'(0) = (5.2b)
1 —3A,(P)

for A.(P) & —,'. Note that Eqs. (4.9) and (5.2) identify al-

ready two possible mechanisms for dielectric enhance-
ment, one from the necessity of a thin-plate effect for lo-
cal geometries in the high-porosity limit, the second from
the percolation threshold.

In the high-frequency limit (co—+ ~ ), the results are
1/2

8ec( ca;P)es( oo;P)e'(~)= —1+ 1+ (5.3a)
4 g2

9A, ( ) A, ( ) —1]es(0; )
e'(0) =

—,
' [3A(P) —1]ec(0;P)+

2[3k,(P)—1]

where

B =[3k(P)—1]ec(~;P)+as( ~;P)[2—3A(P)], (5.3b)

(5.2a) for the real dielectric constant, and

&(P)o c( ~;P)~'( ~ )
(y'( co ) =

A(P)ec( ao;P)+ [1—A(P)]as( ~;P){[ec( ~;P)+2m'( ~ ) ]/[es( ~;P)+2m'( ~ )] )

(5.4)

for real part of the conductivity. The sign in Eq. (5.3a)
has to be chosen such that o. ' remains positive.

B. Low-frequency limit

In this subsection it will be shown that Eq. (3.2) does
indeed imply the existence of a percolation threshold,
also for general p(P). But contrary to previous percola-
tion theories for porous media, the bulk porosity P is not
the control parameter of the transition. Therefore, a
transition can or cannot occur as P is varied.

To identify the percolation transition, consider the
low-frequency limit. Expanding Eq. (3.2) around co=0
leads to

) oc(0;P)—cr'(0)
&( )p( )d

0; +2

) o.~(0;P)—o.'(0)
+ f [1—A(P)]p(P)dP=O,

o cr~(0;P)+2o'(0)

(5.5)

for the effective dc conductivity o '(0) of the system. In-
serting Eq. (4.6) into (5.5),

o. '(0)f dP = —
—,'+ —,

' f A(P)p(P)dg
o o c (0;p)+ 2cr'(0) ' ' o

(5.6)

is found. This equation for cr'(0) has no positive solu-
tions if foA($)p(P)dg , & —,'. This identifies the control pa-

rameter for the transition as

p = f A(P)p(P)d(t, (5.7)

and the effective-medium value p, =
—,
' for the percolation

threshold. The control parameter p is the total fraction
of percolating local geometries.

For the effective real dielectric constant e'(0), two
equations are obtained. Ifp &p„ the equation reads

s(0)
—1

& [ —~(4)]V(0) d 2( )
o [e~(0;P)] '+[2m'(0)]

(5.8)

For p )p, the solution to Eq.(5.6) must be inserted into

,
( )

A+B
C

where

A =[4o'(0)] ' f es(0;$)[1—k(P)]p(P)dP,

ec(0;P)o '(0)B=, , k( )p( )d
o [a c(0;p)+2o. '(0)]

oc(0; )

o [(yc(0;p)+2o'(0)]

(5.9)

(a) f P 'A(P)p(P)dP & ~, (5.10a)

Equation (5.2) can be treated analogously to the case of
ordinary percolation. ' ' The effective conductivity
o'(0) will be small for p —+p, or whenever $~0, i.e., in
the low-porosity limit. In this case the integral on the
left-hand side of Eq. (5.6) is dominated by the small P be-
havior of A(P)p(P). The following three cases for
A, (P)p(P) must be distinguished:
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(b) A(P))M(P)~const for $~0, (5.10b)

(c) A(P))M(P) ~P for $~0 and 0&a(1 . (5.10c)

For case (a) the solution of Eq. (5.6) is obtained as

o.'(0) =cr'+(p —p, ),
where o.+ is defined by

y»(P))ct((t ) d
crc(0;P)

(5.1 1)

(5.12)

The integral exists because of Eq. (4.8) and condition
(5.10a). Note that Eq. (5.11) is valid for all p for $~0
and for all P for p —+p, . The conductivity exponent t= 1

has its expected rejective-medium value. The result of
Eq. (5.11) is universal in the sense that the value of t does
not depend on the specific geometry contained in A, (P)
and p(p) as long as condition (5.10a) remains fulfilled.

The situation is very different for case (c). If
A(P))M(P) ~M/ and o c(0;P) is given by Eq. (4.8), then
to leading order in cr' the solution to Eq. (5.6) is

of porous media. The control parameter for the transi-
tion is neither the bulk porosity P nor A,(P) as suggested
in Sec. VA, but the total fraction of conducting local
geometries. Another result is that the underlying transi-
tion is expected to become relevant both in the low-
porosity limit ($~0) and in the high-porosity limit
($~1). Having identified the transition using mean-field
theory, the next step is to apply the results of scaling
theory in the present context.

/E+
~=~+ Ip p, I'f-

p pc
(5.17)

C. Scaling theory

In this section the scaling theory for the percolation
transition ' is applied in the present context. There-
fore, the present section goes beyond the effective-
medium equation (3.2). Sealing theory starts from the as-
sumption that the complex dielectric constant can be
written as

cr'(0) ~ C,
1 —a

sin(ma)(p —p, ) (5.13a)
with the scaling function

f (z ) = A () + A iz + A 2z + (5.18a)

where the conductivity exponent

1
t =

1 —a (5.13b)

is now no longer universal. It depends on the behavior of
A,(P)p(P) for small P. For the marginal case a=O [case
(b)], logarithmic corrections to Eq. (S.ll) are obtained,
and

cr'(0) ~ (p —p, ) ln
pc

(5.14)

For the real dielectric constant, Eq. (S.8) is valid below
p, . This equation has the same form as Eq. (5.6) for the
conductivity. However, it is now the behavior of A.(P)
and p(P) that high porosities P —+I that is relevant.
From Eq. (5.8),

~'(0)=~' (p —p, )

is obtained, where

~'—= J ea(0'0)l 1 —~(0)]p(0)d0
0

(5.15)

analogous to Eqs. (5.11) and (5.12). Again, the expected
value s=1 for the superconductivity exponent is univer-
sal as long as the integral in Eq. (5.16) exists. The asymp-
totic solution is valid for all p if $~1, and for all P when-
ever p~p, . If [1—A(P)])M(P) ~(1—P) ~, with 0&P& 1,
then the superconductivity exponent becomes nonuniver-
sal and has the value

in analogy with Eq. (5.13b) for the conductivity exponent

The central result of this section is the identification of
a percolation transition underlying the random geometry

for
I zI « I and p )p„
f (z) = A "z+3 "z +

for
I
z

I
« 1 and p (p„and

f ( ) g iii t/(t+s)+

(5.18b)

(5.18c)

for IzI )) I and all p. Here e+ is the complex dielectric
constant of a good conductor, and e is the complex
dielectric constant for the poor conductor. p is the
volume fraction of good conductor, p, is the percolation
threshold, and t and s are the conductivity and the super-
conductivity exponents. For co~O, Eqs. (5.17) and (5.18)
yield the well-known results

cr'(0) = A ocr'+ Ip
—p, I'+ (5.19)

for p )p„and cr'(0) =0, for p &p, for the conductivity.
For the dielectric constant, one obtains

e'(0) = A", e' Ip
—p, I

'+. . .

for p &p„and

(5.20a)

e'(0)= Roe'+ Ip
—p, I'+ A Ie' Ip

—p, I

'+, (5.20b)

for p )p, .
For one-dimensional systems, the effective-medium ap-

proximation is known to be asymptotically exact for class
(a) distributions. If this remains true in higher dimen-
sions, then the scaling theory can be applied to porous
media by identifying the prefactors o.+ and e' above as
those given in Eqs. (5.12) and (5.16). The important new
aspect of Eqs. (5.19) and (S.20) applied to porous media is
that they are universally valid in the low-porosity limit of
systems having A,($))Lt($) which obeys condition (5.10a).
Naturally, they are also valid whenever p ~p, at finite P.

Consider now the case of finite frequencies co&0. The
condition IzI «1 in Eqs. (S.18) is always satisfied for
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su%ciently small ~. On the other hand, the condition
lzl )) 1 is always satisfied if either p =p, or e' /e'+ ))1.
The latter condition does not apply for the systems con-
sidered in this paper, and thus lzl )) 1 is always interpret-
ed as p ~p, . Equations (5.17) and (5.18) imply, for the
case p &p„

o'(co)= —AI2io'+lp —p, l

" 'co2+ (5.21)

for the conductivity, and

E+gii i
l p l

—2s t— '2
+ ~ ~ ~

(5.22)

for the dielectric constant, where to+ =0 '+ /e'+ For.

p =p, one obtains

o.'( co ) = A "'o '+

. t/(t+s)- t/(t +s)

X cos yt
t+s

(Pt+ — sin
Q)+ t +S

+ (5.23)

. t/(t+s)
E CO+

E (to)= A E+
CO

s/(t +s)

X sin
CPt co cPt

t+s co+ t+s + ~ ~ ~

(5.24)

e'(co ) = A 0 e'+ p —p, l

'+ A ', e' p —p, l

where y=arg(e /e+ ). Finally, the case p )p, leads to

o.'(c)=oo' (+A' lpo—p, l' —Azlp —p, l

' 'to + .
)

(5.25)

a'(0) ~ P (5.27)

called "Archie's law, " which is usually written in terms
of the formation factor F =[o.'(0)] '. The widespread
acceptance of Eq. (5.27) as a fundamental law for the
physics of porous media is rather surprising in view of
the fact that most experimental data' ' ' ' rarely span
more than a decade in porosity. Correspondingly, the
cementation exponent m is found to scatter widely be-
tween m =1 and m =4. Having found it necessary to in-
troduce two functions to only partially characterize the
pore-space geometry, it may be understandable that the
present author has strong reservations to accept P and m

as su%cient geometric information to predict cr, as is
done in the well-logging literature. ' However, he feels
compelled to admit that Eq. (5.27) receives a certain
amount of theoretical justification from his own investi-
gation, if it is interpreted not as a relation between
geometry and electrical resistance, but as a statement
about physical processes which reduce the bulk porosity.
Let me explain this in more detail.

Sedimentary and related rocks arise from sedimenta-
tion and subsequent compactification, cementation, and
other physicochemical processes. The bulk porosity P
changes during the sedimentation history of the rock.
The Anal specimen s porosity may be primary, i.e., inter-
particle porosity, or secondary, i.e., resulting from disso-
lution of grains or cements, shrinkage, fracturing, etc.
The diagenetic processes change the local dielectric and
geometric properties. Within the present formulation, it
might be assumed that primarily A, (P) and p(P) are
affected. This implies that 0.'+ and p become implicitly
dependent upon P, and consequently o'(0) will change
with P. To discuss these changes one needs a physical
model for the changes of A, and p, but this is not the ob-
jective of the present investigation. Nevertheless, it is of
interest to discuss the general consequences of the scaling
approach presented above. Clearly, tr'+(P) should tend
to zero as $~0, and it should approach o. 'II, for $~1. It
seems also plausible that p(P) should decrease as P is
lowered. If one assumes that o '+(P) and p (P) can be ex-
panded around /=0 as

+A'2e' lp
—p, l

2

+ ~ ~ ~

o+(P)=D '+(0)$+ —,'a '+(0)P +

p (P)=p (0)+P(0)P+
then Eq. (5.19) implies that

(5.28)

(5.29)

These results predict a divergence of e'(to) as co~0 with
an exponent s/(s+t) whenever the control parameter p
approaches criticality. Simultaneously, the conductivity
will also exhibit power-law behavior with exponent
t/(t +s). Outside the critical region, the frequency
dependence is quadratic.

o'(P)=A'o ' (0)P[p(0)—p +P(0)$+ . ]' (5.30)

This already resembles Eq. (5.27). In particular, if it hap-
pens that p(0)=p„ i.e., if one approaches criticality as
$~0, then Eq. (5.30) yields Archie's law with a cementa-
tion exponent,

m =1+t, (5.3 la)

D. Archie's law

as long as condition (5.10a) remains satisfied during the
cementation process. if the system falls under condition
(5.11c),however, the cementation index becomes

Most publications on the electrical properties of
porous media discuss the phenomenological relationship
between dc conductivity and bulk porosity:

m =1+t+ a(d)
1 —a(P)

(5.31b)
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Note that a and thus I may explicitly depend on the
bulk porosity. Even more complicated results for I are
obtained if A(P) and p(P) change with P such that
0'+(P) ~P and p(P) ~p, +p(0)P '. In such cases,

geometry is spherical. For conducting local geometries, a
water-coated spherical rock grain will serve as the local
model. For blocking geometries a rock-coated spherical
water pore is employed. In the notation of Sec. IV, this
means

m =m +I t+ ~(p)
1 —a(P)

(5.31c)
ec(u;P) =ew 1— 1—

(1 —&z«w) ' —
—,'0 (6.1)

The surprising result is that the simplest form for I,
namely, Eq. (5.3la), predicts an exponent in the range
from m=2 for p )&p, to m =1+t=3 for p =p, . Never-
theless, the cementation exponent will in general be very
different for different compaction processes, and without
physical models for such processes even a nonmonoto-
nous behavior of cr'(0;(f ) is possible. The important re-
sult of this section is that it provides a general framework
inside which the apparent phenomenological universality
and scaling properties of Archie's law might be under-
stood.

A second interesting consequence of this section is that
it predicts similar scaling laws for the dielectric constant
in the high porosity-limit P —+1. This is a consequence of
the thin-plate effect [Eq. (4.9)] and analogous assumptions
about the corresponding dilution process. More precise-
ly, it is predicted that

e'(0) ~ (1—P) (5.32)

Here the "dilution exponent" m ' is given in the simplest
case as

m'=1+s, (5.33a)

where s is the superconductivity exponent, and in the
general case as

m'=m' +m' s+ ( )

1 —13(P )
(5.33b)

VI. MODEL CALCULATIONS

The exponents m
' and I ' characterize the behavior of

E and p as P~ 1, and /3(P ) is the exponent governing
A, (P)p(P) as $~1. The behavior predicted by Eq. (5.32)
might be experimentally observable in water-filled pore
casts of systems obeying (5.27).

e~(u;P) =ez 1—
&w1—

(6.2)

In the low-frequency limit, one obtains for the conduct-
ing geometry

0'c(0'4) =o w
= 3& we(1+ 34+ ' (6.3)

thereby identifying C& in Eq. (4.8) as C& = —', o'w. The real
dielectric constant is found as

&c(o'0) =&'w—
(1—

—,'P)' (6.4)

For the blocking geometry, the dc limit gives
o z(0; P) =0, in agreement with Eq. (4.6), and

1+2/
&a(0 0)=em (6.5)

for P ( 1, identifying B
&

= I /ez in Eq. (4.9), and
e~ (0;P ) =e'w, for P = 1. Note the presence of the thin-
plate divergence in the $~1 limit.

B. Local porosity distribution

It was mentioned repeatedly that no experimental data
for p(P) are available to the author at present. A qualita-
tive guideline for porous media resulting from spinodal
decomposition might be the shape of the order-parameter
distribution calculated fn Ref. 28, which suggests in par-
ticular that p(P) can be bimodal.

For the subsequent calculations, a simple mixture of
two 13 distributions has been used. The analytic expres-
sion reads

This section returns to Eq. (3.2) and presents numerical
solutions. This is intended as a case study exploring the
relationship between the statistics of local geometries and
bulk dielectric behavior. The main focus will be on
dielectric enhancement. To solve Eq. (3.2) for e(co), one
must know the geometric input functions p(P), A, (P) and
the local dielectric responses ec(co;P),es(co;P). Unfor-
tunately, no experimental data are available at present,
and geometric modeling has to be used instead.

V) VpP=w +(1—w)
Pi+~j I 2+~2

(6.7)

r(l, +v, )+(1—w) (1—P) '
P ', (6.6)I (p, )1 (,)

where 0~w ~1, p&0, v&0, and I (x) denotes Euler's 1
function. The bulk porosity is then given as

A. Local dielectric response

The hypothesis of local simplicity states that the local
geometries are simple and that the effective local dielec-
tric constants are insensitive to geometrical details other
than local porosity. The simplest isotropic local

For p, v& 1, the Ii densities are bell shaped, and for
p, v ( 1 they diverge at the limits.

Eight different local porosity distributions are com-
pared in the calculations. All of them are chosen such
that they give the same bulk porosity /=0. 1. The values
of the parameters are listed in Table I, and the densities
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conducting. In addition, the case p =
—,
' will also be inves-

tigated.

2. Central pore model

/=a +3b (1 —a)=a (1 3R )+3R—a (6.9)

According to the definitions in Sec. II, the cell is called
percolating if there exist at least one path within the pore
space connecting a face to a face different than itself. To
obtain A,(P) the probability that either no or exactly one
face is pierced has to be calculated. This probability
equals 1 —

A, (P). Clearly,

1 —
A, =(l —a) +a(l —a) =(1—a) (6.10)

Thus, in the central pore model,

A(P, R ) =1—[1—a(P, R )] (6.1 1)

where a(P, R ) is that root of Eq. (6.9), which fulfills
O~a ~1 for all 0~/~1 and O~R ~1. For R =1 i.e.
b =a, it follows that P ~ a and thus a o- P'~, resulting in
A, (P) ~ P' for small P. Qn the other hand, for R ~0 one
finds a ~P' for $~0 and thus A(P) o-P' for $~0.
Thus the general conclusion for the central pore model is
that

A, (p) ~fr,
where y can range between —,

' and 3.

(6.12)

3. Graf n consolidation model

The grain consolidation model was proposed as a sim-
ple geometrical model for diagenesis. " Its main observa-
tion is the existence and smallness of the percolation
threshold in regular and random bead packings when the
bead radii are increased. In fact, the model has recently
been modified such that the critical porosity at which

Consider a cubic ce11 of volume 1 filled with rock. In-
side the cubic cell a centered cubic pore of side length a
(O~a ~ 1) is cut out. Now a random process is used to
drill cylindrical pores with square cross section from the
faces of the cube toward the central pore. Sometimes
these pores will connect to the central pore, and some-
times not. The random process starts with the choice of
an arbitrary face of the cube. Now choose a random
number r between 0 and —,'. lf r )—,'(1 —a), a pore with

square cross section of side length b (0~ b ~ a ) is drilled
from the center of the face all the way to the central pore.
The central pore had volume a, and the connection pore
has the volume —,'b (1—a ). If the random number fulfills

f (—,'(1 —a), then the face is not pierced, but instead the
same volume —,'b (1—a) is removed from the wall in such
a way that the resulting pore space remains disconnected
from the pore space connected to the central pore. This
process is repeated for all six faces of the cube. The cubic
symmetry is not essential, and a model with different
symmetry can be defined similarly.

The result of the process described above is a cubic cell
whose porosity can be expressed in terms of the side
length a of the central pore and the ratio R = 6 /a as

conduction ceases can be arbitrarily small. ' For regular
bead packings, this implies

0 for P(P,"&)='I f-y)y', . (6.13)

For random packings A,(p) will be smoothed out around
p, . For simplicity, in this paper Eq. (6.13) will be used
with P, =0.05.

The most important aspect of A, (p) is that it determines
the control parameter p. According to Eq. (6.12), its be-
havior near /=0 can influence the exponent a in (5.10c).
Note that for the grain consolidation model the form of
A, (P) always implies that condition (5.10a) is fulfilled, and
universal behavior is expected. The half-connected mod-
el in the uniformly connected model class is included to
demonstrate the inhuence of the thin-plate effect. The
shape of A,(P) in all other cases gives extremely small
probability to blocking geometries with high porosities.
This is expected to be generally true for interparticle
porosity. However, the secondary pore space in real
rocks may contain a significant fraction of high-porosity
blocking geometries.

B. Numerical resu&ts

Numerical solutions to Eq. (3.2) were obtained using an
iterative technique. The iteration was stopped whenever
~e„(co)—e„ i(c0)~ (10 . In Figs. 2—5 selected results
for e(co) are presented. Figure 2 presents the uniformly
connected model with p=1, Fig. 3 the uniformly con-
nected model with p= —,'. Figure 4 gives the results for
the central pore model with R =0.922, and Fig. 5 those
for the grain consolidation model with P, =0.05. In each
figure the line styles correspond to the line styles of the
local porosity distributions displayed in Fig. 1. Part (a) of
each figure shows log, oe'(co) as a function of log, oco in the
upper graph and logioa'(co) in the lower graph. In addi-
tion, the inset in the upper right-hand corner displays the
local percolation probability A,(P) for 0 ~ P ~

—,'. The vert-
ical scale for the inset is always O~A, ~2. Part (b)
displays in the upper graph —d[log, oe'(m)]/d(log, oem)

versus logioco and d [log, oo'(co)]/d(log, ohio) in the lower
plot. These quantities give a more sensitive representa-
tion of the dispersion and show at the same time the
values of "local exponents. " In all figures frequency is
measured in units of the relaxation frequency of water as
discussed in Sec. IV. All plots are given over ten frequen-
cy decades with a resolution of five points per decade.

The absolute dispersion for all figures is collected in
Table II. b,e is defined as b,e= e'(0) —e'( ~ ), while
Ao =o'( ~ )

—o '(0).

E. Discussion

It is obvious from Figs. 2—5 [especially part (b)] that
the low-frequency dielectric response depends sensitively
on the details of p(P) and A, (P). A general discussion is
diScult, because the response is always a mixture be-
tween three basic mechanisms each of which can give
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FIG. 2. (a) Real part of the complex dielectric constant
(upper graph) and real part of complex conductivity (lower
graph) vs frequency in a doubly logarithmic plot. Each graph
contains eight curves whose line style corresponds to the local
porosity densities displayed in Fig. 1. The inset shows the local
percolation probability A.(P) used in the calculation, in this case
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axis of the inset ranges from A, =O to 2, the horizontal axis from

P =0 to 0.5. (b) Derivatives of the curves in (a).

3

—~ 0.80

0.48

-7.0 -5.0 -3.0 -1.0
logto( )

FIG. 3. Same as Fig. 2 for the uniformly conducting model
with p =—.1

2'
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FIG. 4. Same as Fig. 2 for the central pore model with
R =0.922.

FIG. 5. Same as Fig. 2 for the grain consolidation model
with P, =0.05.

TABLE II. Numerical values for Ae=e'(0) —e'( ao ) and ho. =o'( Oo ) —o.'(0) obtained in the model
calculations of Figs. 2—5.

Curve No.

Ae (Fig. 2)
Ao. (Fig. 2)
AE (Flg. 3)
Ao. (Fig. 3)
he (Fig. 4)
Ao. (Fig. 4)
Ae (Fig. 5)
Ao. (Fig. 5)

0.798
0.298

19.197
1.585
5.996
1.105
2.119
0.595

0.053
0.035

13.819
1.370
3.835
0.801
0.053
0.035

3.716
1.067

21.956
1.664

16.616
1.974

371.525
3.025

1.863
0.619

25.162
1.674
9.639
1.455
5.498
1.137

3.147
0.889

34.950
1.741

14.204
1.708

11.430
1.604

9.261
1.545

96.046
1.648

52.196
2.176

291.481
2.565

28.793
2.400

186.010
1.751

259.700
2.877

277.396
3.043

20.484
2.029

115.270
1.489

3932.522
2.283

37.691
2.436
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ductivity and bulk porosity (see Sec. VD for a discus-
sion).

A second observation is that in all figures the high-
frequency real dielectric constant e'( Oo ) is not very sensi-
tive to the details of p(P). This is a consequence of the
fact that for low P the local dielectric constants e~ and
ez must both approach e„'.

The first mechanism, dispersion from the form of p(P),
can be studied in pure form when A, (P) = 1, and the corre-
sponding results are shown in Fig. 2. In this case there
are no blocking local geometries; i.e., p =1 according to
Eq. (5.7). If p(P) is highly peaked as in curve 2, then the
system is only weakly disordered, and there is almost no
visible dispersion in the dielectric response. The disper-
sion increases with the amount of disorder contained in
p(P). In fact, distributions with power-law divergences
at $~0 or with percolation structure generate the
strongest dispersion, as can be seen from curves 3 and
5 —8 in Fig. 2. Table II shows that the dispersion varies
almost three orders of magnitude between the different
distributions. Note that relatively similar local porosity
distributions such as curves 6 and 8 can have very
different dielectric response. On the other hand, very
different shapes for p(P) can give similar E(co), as demon-
strated by curves 3 and 5. This shows that the dielectric
response by itself does not contain a full geometric char-
acterization of the pore space, and it needs always to be
complemented with additional physical or geometrical in-
formation. This is not too surprising. Indeed, it is more
surprising that when the dielectric response becomes
large it is also very sensitive to geometric details. This is
the case for dielectric enhancement near the percolation
threshold or as a result of the thin-plate effect.

Consider the thin-plate mechanism. It requires the
presence of blocking geometries of high porosity.
Mathematically, this means A, (P)%1 for large P. As a
simple illustration, Fig. 3 displays the results for the uni-
formly connected model when A, (P) =

—,'. Now p =
—,',

which is far away from p, . Nevertheless, the dielectric
dispersion is much stronger than would be obtained for
solutions to the central pore model or grain consolidation
model with the same p. Compare, e.g. , curve 5 in Fig. 3
with curve 5 in Fig. 5. Moreover, the dielectric disper-
sion becomes sensitive to the details JM(P). It is now pos-
sible to distinguish in Fig. 3(b) the distributions 3, 7, and
8, which have w&1 from the rest for which tU =1. In
particular, curves 3 and 5, which had very similar
response in Fig. 2, appear now very different. The disper-
sion is the stronger the more weight p(P) has at high P.
This can be seen from curve 3, which shows less disper-
sion than curves 4 and 5, while the opposite was true for

Fig. 2. Similarly, e' for curve 7 is depressed below curves
6 and 8 at intermediate frequencies. At very low frequen-
cies, the percolative character of distribution 7 is respon-
sible for stronger overall dispersion than in curve 6. The
degree of asymmetry of p(P) is reflected in the asym-
metry of the response, as best seen in the derivatives plot-
ted in Fig. 3(b).

The percolation mechanism is responsible for strong
dielectric dispersion in Figs. 4 and 5. There is essentially
no dispersion from the thin-plate mechanism in these
cases because in both cases A, (P) = 1 for P )0.5, and thus
there are no local geometries with a high dielectric con-
stant. Figure 4 represents the central pore model with
R =0.922, and results for the grain consolidation model
with P, =0.05 are given in Fig. 5. Contrary to the situa-
tion in Figs. 2 and 3, p is now different for each distribu-
tion. The results of performing the integral in Eq. (5.7)
are listed in Table III. Naturally, the dielectric disper-
sion increases strongly with p ~p, and this effect dom-
inates the dispersion from p itself. In particular, for
p =p, power-law behavior for e(co) as a function of fre-
quency is obtained in agreement with the scaling theory
presented in Sec. V. As an example, scaling theory pre-
dicts the exponent 0.597 for the conductivity of distribu-
tion 8 in Fig. 4 and 0.403 for the real dielectric constants.
These predictions are obtained from Eqs. (5.23) and (5.24)
using s =1 and Eqs. (5.13b) and (6.12) with y=0. 5, and
the exponent v, from Table I. Figure 4(b) shows that
these values are indeed approached at low frequencies.
Similarly, scaling theory predicts the exponent 0.5 for e'
and o. corresponding to distributions 3, 6, and 7 in Fig.
5. Again, these values are approached as seen from Fig.
5(b), although the power-law behavior occurs over a lim-
ited frequency range because p is not sufFiciently close to
the critical region. Note that curve 8 in Fig. 5 has
dropped below the percolation threshold, and thus the
conductivity increases as co for small co.

The complexity and variability of E(co) obtained from
the simple mean-field solutions of this section correspond
to the complexity and variability of possible pore-space
geometries. More approximate analytical investigations
of the solutions to Eq. (3.2) are necessary to identify sim-
ple parameters characterizing p and A, which allow a
better classification of the solutions and thereby the pos-
sible geometries.

F. Sedimentary rock

The present paper deals only with simple homogeneous
and isotropic porous media. Real rocks are highly inho-
mogeneous, but they can also be discussed within the

TABLE III. Calculated values of p corresponding to the eight different forms of p, (Pl for the central
pore model (CPM, displayed in Fig. 4) and for the grain consolidation model (GCM, displayed in Fig.
5). Note that p =1 for all cases in Fig. 1, and p =

2
for all cases displayed in Fig. 2.

Curve No.

CPM
GCM

0.6542
0.7500

0.6940
1.0000

0.5420
0.3399

0.5858
0.6048

0.5341
0.4962

0.4059
0.3415

0.3643
0.3376

0.3334
0.2841
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present framework. Sedimentary rocks exhibit two main
types of porosity. Primary interparticle porosity is the
porosity between the grains of the original sediment.
Often, this pore space is changed during diagenesis of the
sediment. In particular cements between the grains can
exhibit a qualitatively different secondary porosity. This
situation can be treated within the present formalism by
replacing the dielectric constant e~ of the pore-filling
Auid with the effective dielectric constant of the pore-
filling cement. Naturally, the results must be much more
complex, as they contain additional independent geome-
trical information describing the cement.

These modes are used to solve Eq. (7.1). If (7.1) has any
solution, then the inhomogeneity f(co) can be written as

f(~)=g& „;(~)f f(~')C „;(~')d~'
n, i 0

(7.4)

k(P)=+A, „A„;(P)f f(co')4„,(co')den' .
i, n

(7.5)

It is assumed that the two sets Q„- and N„, have been
made orthonormal. Then the solution to Eq. (7.1) is
given as

VII. INVERSE PROBLEM The eigenvalues A,„are the solutions of D(A, ) =0, where

Up to now the direct problem was discussed which
consists in finding e'(co) for given p(P) and A, (P) from the
nonlinear Eq. (3.2). The inverse problem is to determine
A,(P) or p(P) from a knowledge of e(co). This is most im-
portant for applications such as well logging. Particular-
ly important is the problem of determining A, (P) from
e(co) and p(P) in view of the fact that the local porosity
distribution p(P) can be observed much more easily than
the local percolation probabilities.

Consider therefore brieAy the problem of determining
A, (P) from Eq. (3.2) given e(co) and p(P). A general
theoretical discussion can be given based on the observa-
tion that Eq. (3.2) is now linear. It can be written as

K co', k d — co (7.1)
0

where

D(A, )=pa.„A. ",
0

tco=1, K '(x,y) =0,

(n)K„= — K; (x,x)dx
n 0

1

K,.'"'(x,y)= f K, (x, t)K,'" "(t,y)dt+tc„, K, (x,y) .
0

These brief remarks about the inverse problem are in-
tended to outline the general characteristics of the prob-
lem. A more detailed discussion must await the availabil-
ity of experimentally observed local porosity distribu-
tions.

&c(~;P) —~(co)
K(~;P)=p(P)

e'c(co; P)+2e(co)
es(co;P) —e(co)

e~(co;P)+2m(co)
VIII. CONCLUSION

(7.2)

i es(co;P) —e(co)
(7.3)

Equation (7.1) is a linear Fredholm integral equation of
the first kind. Because the kernel K(co;P) is not sym-
metric, define

Ki(co, co') = f K(co, cd)K(co', P)dP,
0

K, (P, P') = f K(co, g)K(co, g')de .
0

General results can be employed to solve Eq. (7.1) iff(co)
is continuous and such that f j'(co) de exists, and if

fof OK;(co; P)dc@ dP exists and K; (co;P) is piecewise con-

tinuous in 0 ~ co ~ 1, 0 ~ P ~ 1. The K, are symmetric and
have eigenvalues A,„. The normal modes called 0„, and
N„. can be chosen orthonormal and satisfy

~„f K(~;ctp)&„;(ctp)dP=C „;(co),

&„f K(co;P)4„;(co)dco=Q„,(P) .

Local porosity distributions and local percolation
probabilities have been introduced as a partial geometric
characterization of the complex pore-space geometry in
porous media. From these well-defined and experimen-
tally accessible geometric quantities, the dielectric
response of general porous media resulting from geome-
trical disorder was calculated using simple effective-
medium theory. It was found that the theory predicts an
underlying percolation transition, which may or may not
appear as a porosity threshold for conduction. As a
consequence, percolation scaling theory can be applied to
the case of porous media. This provides a theoretical
framework inside which Archie's law can be understood
as a statement about the diagenesis of rocks. In particu-
lar, the universal applicability of this phenomenological
relationship appears as a consequence of the universality
of the percolation transition. Simplest mean-field theory
gives the value m =2 for the cementation exponent in the
low-porosity limit. A new scaling law for the divergence
of the real dielectric constant is predicted in the high-
porosity limit. This law should be observable in
conductor-filled insulating pore casts of systems obeying
Archie s law. Numerical solutions for the effective dielec-
tric constant show a surprising sensitivity to geometric
details whenever the dispersion becomes large. The
present theory contains no adjustable parameters or dis-
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tribution functions. The dielectric response is calculated
purely from geometrical quantities. Experimental obser-
vation of local porosity distributions and local percola-
tion probabilities must answer the question whether
they are suitable geometric characteristics for distin-
guishing diff'erent classes of porous media or not.
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