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We study the ground-state phase diagram of the extended Hubbard model through the Lanczos
method using change-density-wave order-parameter distribution functions and finite-size scaling. We

confirm the presence of a tricritical point, and estimate the phase boundary to occur at V =2.92+0.04 at
U=5.5 and at V=1.65+&0& at U=3.0. We estimate the tricritical point to occur above U=3.5.
Despite the restriction to small lattices, the increased accuracy of the Lanczos approach appears to pro-
vide a more precise estimate of the phase boundary and tricritical point than use of the Monte Carlo
simulation.

I. INTRODUCTION

The extended Hubbard model is a simple many-body
model that has a rich phase structure. It consists of
spin- —,

' fermions that may hop between sites on a lattice,
and which interact with each other via on-site and
nearest-neighbor potentials. It is given by the Hamiltoni-
an

8= t g (Ct C+, +C—+, C; )

+Up n, tn, i+ Vg n, n, +, ,

n, =n;&+n,
&

.

Here, C; and C, are the creation and annihilation
operators for a fermion of spin o. at the ith spatial site,
n; =C,- C, is the number operator, U is the on-site in-
teraction strength, V is the nearest-neighbor interaction
strength, and t is the hopping strength.

In this paper we are interested in the half-filled-band
case, with U, V & 0. At T=0, this has two ordered
phases: a charge-density-wave (CDW) phase and a spin-
density-wave (SDW) phase. The CDW phase has a
discrete symmetry, and exhibits true long-ranged order,

while the SD%' phase has a continuous symmetry, and
consequently, by the Mermin-Wagner theorem, cannot
have true long-range order. Rather, it is a critical state in
which the staggered spin-density correlation function de-
cays algebraically. The important questions concerning
the model are as follows: where is the boundary between
the two phases located, and what is the nature of the
transition between the two phases' ?

Monte Carlo simulation indicates that the phase
boundary occurs at values of V greater than the U=2V
values given by weak-coupling renormalization-group
(RG) (Ref. 4) and Hartree-Pock calculations, and that
the transition is second order for small values of the cou-
pling constants and first for large values. Earlier RG and
finite-size scaling calculations predicted the shift in the
phase boundary, but not the tricritical behavior. '

The Monte Carlo calculations were performed using
the "checkerboard breakup*' method of simulating fer-
mions in one spatial dimension. While this method has
been proven reliable, it suAers from statistical errors and
slow convergence near the phase boundary. Further,
there are uncertainties associated with extrapolating re-
sults calculated at finite temperature to T=O, and to zero
value of the discretization step, b,r=I3/N (I3 is the in-
verse temperature and N is the time dimension of the lat-
tice simulation). Therefore, it is desirable to study the
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model by an independent method that is essentially exact,
and explicitly works at zero temperature.

The paper is organized as follows. In Sec. II we review
our numerical methods. In particular, we describe how
we obtain the order-parameter distribution function. In
Sec. III, we present the results of calculations to deter-
mine the phase boundary and tricritical point. These in-
clude results obtained from the order-parameter distribu-
tion function and finite-size scaling. We also compare the
results of this Lanczos calculation with earlier results
based on the Monte Carlo method by two of us. Section
IV presents our conclusions.

II. COMPUTATIONAL METHOD

Our method is to obtain the ground-state wave vector
(via the Lanczos method), and determine the phase dia-
gram from the wave vector by analyzing the CDW
order-parameter distribution function following the
method of Ref. 3. In addition, we perform finite-size
scaling of the CDW and SDW structure factors and the
parameter g, which is related to the fourth-order cumu-
lant of the distribution. We will now brieAy describe our
method of obtaining the wave vector and the order-
parameter distribution using the Lanczos method.

A. Calculation of the ground-state wave function
and the COW order-parameter distribution function

using the Lanczos method

The Lanczos method creates a tridiagonal matrix by
successive applications of H to a starting wave vector f, .
The beauty of the Lanczos method is that, while in prin-
ciple the tridiagonal matrix should have a dimension
equal to the size of the basis, the principal eigenvalue can
be accurately calculated after a much smaller number of
applications of H. " Thus, we can obtain the ground-
state energies to problems with very large bases by di-
agonalizing moderate-size matrices. For example, we
found that 20 applications of 0 were sufhcient to obtain
the ground-state energy to six decimal places in a Hilbert
space whose dimension was nearly 10 .

We would also like to obtain the ground-state eigenvec-
tor. Often, rnernory limitations make it dificult to obtain
the eigenvector in a Lanczos calculation. The vectors of
the tridiagonal basis, g;, are normally discarded after be-
ing used in the calculation to save computer memory. To
understand why this is done, consider the fact that each
g; has a number of components i equal to the total num-
ber of states in the Hilbert space. This is (~&2), or
853776 for %=12. Thus, storing the g; would require
about one-million words storage per application of the
Hamiltonian, which very quickly exceeds most computer
memories. One method to overcome this and obtain the
eigenvector is the "modified Lanczos algorithm" of
K)agotto et al., ' which diagonalizes after two applica-
tions of the Hamiltonian, and repeats the procedure using
the eigenvector obtained in the diagonalization as the
new starting wave vector. However, we found the "two-
pass" method described below to be less susceptible to
numerical instabilities, and to converge faster than

"modified Lanczos. "
We make two passes through the Lanczos algorithm.

In the first, we obtain the ground-state energy, and the
components n, in the expansion of the ground-state wave
vector %'0,

'Po= pa;g;

in the tridiagonal basis P;. In the second, we explicitly
construct %o by sequentially recreating the f; and per-
forming one term of the sum in Eq. (2) at each step. This
allows us to express the ground-state eigenvector in terms
of our basis vectors with only a small increase in memory
over that needed to obtain the ground-state energy. The
cost of this is that our computation time is doubled.
However, since Lanczos calculations are normally
memory intensive rather than time intensive, this is ac-
ceptable.

B. Determining the CD& order-parameter distribution
using the Lanczos algorithm

The CDW order parameter mo=g;(Vol( —1)'n, l+0)
=(%'Dlml%'0) of the ground-state wave function has a
unique value (aside from degeneracies). However, within
the real-space (or occupation number) basis that we do
our calculations, we may think of it as being the sum over
a distribution of possible values of m:

(3)

In these equations, we made use of the fact that m is di-
agonal ( ( P, l

m l P1 ) =m, 5, ~
). Defining

P(m)= y l(%,ly„& l'5 (6)
k

allows us to re~rite the sum as

mo= g mP(m ) .

This formulation of mo is closely related to a path-
integral formulation, where the amplitude l (0'olPk ) l is
the relative amount of time that the system in its ground
state will spend in Pk when viewed from our real-space
basis.

III. RESULTS

A. Results using order-parameter distribution functions

Calcu1ation of the phase boundary

Following an earlier paper, we infer the nature and
position of the CDW-SDW transition by calculating the
CDW order-parameter distribution function, and inter-
preting it according to the phenomenological theory of
Landau. In the thermodynamic limit, the order parame-
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TABLE II. Estimate of the position of the phase boundary at
U=3.0 using the CDW order-parameter distribution for vari-
ous values of N, and extrapolated to N = ~. The estimates indi-
cate the value of V for which the maximum of the distribution
becomes nonzero. The last two rows show the values obtained

by extrapolating the measured values to the thermodynamic
limit. The terms shown in parentheses are the powers of 1/X
used to extrapolate to N= 00.
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12
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8
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Do(1, 1/N, 1/N )

00(1,1/N, 1/N )

1.845
1.875
1.932
2.020
1.685
1.761

FIG. 1. Distribution of the CDW order parameter obtained
by the Lanczos algorithm at U=5. 5 at various V. Note how
the maximum changes from m =0 to m =8 at approximately
3.022, indicating a first-order transition.

ter will take a value that minimizes the free energy (i.e. ,
the maximum of the measured distribution). To infer the
phase boundary we note the values of coupling constants
where the maximum of the measured distribution be-
comes nonzero, and extrapolate to large lattices. In addi-
tion, we obtain the nature of the transition by noting
whether the order parameter changes continuously
(second order) or discontinuously (first order).

To show an example of this, a series of Lanczos-
generated CDW order-parameter distributions is shown
in Fig. 1. These calculations were made at %=10 and
U= 5. 5 for various values of V. In Fig. 1(a), calculated at
V=3.0, the central peak is largest, indicating that the
system is not in a CDW state (and is therefore in a SDW
state). As V increases, however, the outer peaks increase,

TABLE I. Estimate of the position of the phase boundary at
U=5. 5 using the CDW order-parameter distribution for vari-
ous values of N, and estimates of the position of the phase
boundary at N= Oo. The estimates indicate the value of V for
which the maximum of the distribution becomes nonzero. The
last two rows show the values obtained by extrapolating the
measured values to the thermodynamic limit. The terms shown
in parentheses are the powers of 1/N used to extrapolate to
N= oo.

and at approximately V=3.022 [Fig. 1(c)] there is a
discontinuous change in the maximum of P(m ), as the
two outer maxima exceed the m =0 peak. This behavior,
if it persists with increasing lattice size, signals a first-
order transition. Note the signature of a first-order tran-
sition, the characteristic three-peaked distribution, aris-
ing from the presence of metastable states.

To estimate the position of the phase boundary, we
must extrapolate the position where the maximum of
P(m ) changes to large N. We do this by performing a
least-squares fit of the sequence of estimates to a series in
1/N. We choose this method of extrapolation, because
we expect the finite-size dependence of m to be an analyt-
ic function, and therefore to be representable as a series
in 1/N. Since we do not have enough data to find more
than a couple of terms of such a series, and we have no a
priori basis for choosing the powers of 1/X, we have ex-
trapolated to large X using several different functions of
1/N, and show the results of two of these here:
f, (N) =a +b /N +c /N, and f2 (N) =a +b /N +c /N4

(a, b, and c are constants). The difference in the num-
bers obtained with these functions provides a qualitative
estimate of the uncertainty. We find that the answers are
not sensitive to the choice of function.

Table I shows the sequence of V values where the max-
imum of the distribution shifts, and estimates of the
phase boundary obtained for f, and f2. The two func-
tions imply a phase transition at V=2. 89 and 2.93, re-
spectively. Table II shows the results of similar calcula-
tions, performed at U=3.0. Our estimated values are
1.68 and 1.76.

Size

12
10
8
6

~(1,1/N, 1/N )

~(1,1/N, 1/N )

2.993
3.022
3.064
3.150
2.892
2.836

2. Position of the tricriticai point

As stated earlier, the distribution of m allows us to cal-
culate the position of the tricritical point. To do this, we
measure a series of distributions along the indicated
phase boundary (the position where the maximum
changes), and locate the position where the three-peaked
distribution characterizing a first-order transition ap-
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finite-size effects, there should be a fixed point where
ScDw does not depend on N. In practice, finite-size
effects modify the scaling so that various pairs of lattice
sizes have different fixed points, making it necessary to
extrapolate to large N.

Similar arguments also apply for the SDW structure
factor and the quantity g =

—,'(3 —( m ) /( m ) ) used by
Binder. The SDW cannot have true long-range order
since it has a continuous symmetry, which by the
Mermin-Wagner theorem cannot be broken. However„
its correlation functions are long ranged at T=O, where
these calculations are made, and, therefore, manifest the
same behavior as described for the CDW. We find the
fact that the method of cumulants can be used here some-
what surprising, considering that the quantity g was de-
rived assuming continuous Gaussian peaks in the distri-
bution function, and is supposed to detect the departure
from a Gaussian distribution in a continuous system.
This is quite different from the small discrete distribu-
tions here (m =0,+2, +4, . . . , +N).

Normally, finite-size scaling can also be used to deter-
mine the exponents associated with a second-order transi-
tion. However, it is not possible here because of the pres-
ence of two relevant operators in the neighborhood of the
phase boundary. This situation was discussed extensively
in Ref. 3.

1. Results using finite size sca-ling

Scow(~)
6-

(a)

2

i I

2.6
I I

2.8 3.0
V

sow
-2.0

-I.5
(b)

2.6
V

2.8

9.2
V

FIG. 3. Finite-sized scaling results obtained at U=5. 5.
The three plots show the CDW structure factor (a), the SDW
structure factor (b), and the ratio of cumulants

[g =
2 (3 —( m ) /( m ) ) ] (c) plotted vs V for lattice sizes

N=4, 6, 8, 10, and 12. The intersections of the curves, which
are used to estimate the phase boundary, are shown in Table IV.

Figures 3 and 4 show the results of finite-size scaling
calculations at U =5.5 and 3.0 for various values of V.

In addition, Tables IV and V show the intersections of
the scaling parameter versus V curves (the fixed points) in
each of the three scaling plots, the quantities that allow
us to estimate the fixed point.

Considering the U=5. 5 ScDw data, we see in Fig. 3(a)

cow(~)

I.2 I.4 I.6 1.8
V

TABLE IV. Finite-size scaling results at V=5.5. The table
shows the values of V where ScD~(~), SsD~(~), and g, respec-
tively, are equal for lattice sizes N& and N, (i.e., the fixed

points). If there were no finite-size effects, all intersections
would occur at the same value of V. Extrapolation of the inter-
sections to large N should eliminate finite-size effects and give
the CDW-SDW phase boundary.

(b)

1.2 l.4 l.6 l.8

l.4.-

1.2--

Ni

12
12
12
12
10
10
10

8
8
6

N2

10
8
6
4
8
6
4
6
4
4

ScD~(w)

2.803
2.782
2.752
2.716
2.762
2.735
2.697
2.714
2.656
2.609

SsD~(m)

2.945
2.951
2.962
2.983
2.958
2.972
2.998
2.988
3.021
3.056

2.919
2.926
2.935
2.949
2.935
2.946
2.964
2.957
2.980
3.006

l.2 I.4 l.6 l.8
V

FIG. 4. Finite-sized scaling results at U=3.0. The intersec-
tions of the curves, which are used to estimate the phase bound-

ary, are shown in Table V.
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N,

12
12
12
12
10
10
10
8
8

6

10
8

6
4
8

6
4
6
4
4

ScDw(~)

1.408
1.387
1.351
1.305
1.366
1.334
1.285
1.314
1.258
1.224

SSD~(m)

1.755
1.770
1.793
1.830
1.784
1.809
1.848
1.828
1.873
1.910

1.766
1.785
1.810
1.851
1.802
1.829
1.874
1.854
1.905
1.952

TABLE V. Finite-size scaling results at U=3.0. The table
shows the values of V where S&D~(~), SSD~(~), and g, respec-
tively, are equal for lattice sizes N& and N2 (i.e., the fixed

points). If there were no finite-size effects, all intersections
would occur at the same value of V. Extrapolation of the inter-
sections to large N should eliminate finite-size effects and give
the CDW-SDW phase boundary. Note that the SCD~(m) inter-
sections occur at considerably smaller V values. We believe this
occurs because the CDW correlation length is larger than the
lattices, making finite-size scaling with this parameter less reli-
able here.

ous as at U=5. 5).
The ScDw(vr) estimates are lower (1.48 to 1.59). We

believe the reason for this is that the CDW correlation
length is greater than the size of our lattice. In this situa-
tion, we may be measuring the point at which the correla-
tion length exceeds the lattices we are working with,
which may not be close to the phase boundary. This
should be expected to occur more strongly for the CDW
scaling than the SDW scaling because the CDW has a
discrete symmetry, and is therefore stiffer against fiuctua-
tions than the SDW, which has a continuous symmetry.
Considering that the ScDw(rr) curve intersections, shown
in Table V, column 3, occur between 1.2 and 1.4, com-
pared with V=1.75 to 1.95 for SsDw(vr) and g, it is re-
markable that the CDW estimate differs by only 15%%uo

from the other estimates. The consistency of these num-
bers, despite the differences in raw data, provides evi-
dence for the reliability of our extrapolation to larger lat-
tice sizes.

C. Comparison of Lanczos and Monte Carlo results

that the intersections occur at nearly the same point as
expected. From column 3 of Table IV, we see that the in-
tersections occur between V=3.057 and 2.945. Again,
these values must be extrapolated to large X. Extrapola-
tion using the method of Sec. I indicates a phase bound-
ary between 2.91 and 2.93. The same procedure per-
formed on the scaling of the SsDw(m. ) and g indicates a
phase boundary between 2.87 and 2.92 [SsDw(vr) j and
between 2.88 and 2.89 (g). These results compare ex-
tremely well with the value from the distribution func-
tions, obtained earlier, of between 2.89 and 2.93. These
estimates, and those obtained at U=3.0, are shown in
Table VI.

At U=3.0, extrapolation of the intersections of the
SsDw(m) and g curves yield estimates of between 1.65 to
1.69 and 1.61 to 1.70, respectively (see Table IV). Once
again, these values are consistent with the results ob-
tained from the CDW order-parameter distribution (be-
tween 1.69 and 1.76). The greater spread in these num-
bers reAects the fact that the transition is not as sharp at
U =3, which we have estimated to be below the tricritical
point (and therefore continuous rather than discontinu-

In an earlier paper, two of us reported the results of
Monte Carlo simulations using the "checkerboard break-
up" method of simulating fermions in one spatial dimen-
sion. Our conclusion in this paper was that the tricritical
point occurred at approximately U=1.5. Since submis-
sion of the paper, we have performed additional Monte
Carlo simulations. We have found that the value of A~
used for the calculations was too large (0.5), resulting in
systematic errors. While the tricritical phenomena per-
sist, the indicated position of the tricritical point in-
creases as hv decreases. Unfortunately, we find that low
acceptance rates for calculations with small h~ and large
inverse temperature (P), combined with the presence of
metastable states, make reliable calculation of the order-
parameter distribution function difBcult, and hinder sys-
tematic extrapolation to large N. Calculations on lattice
s'izes of 8, 16, and 24 sites with A~ as. low as 0.125 show
that, at constant P, the indicated position of the tricritical
point increases as A~ decreases and as lattice size in-
creases. While extrapolation of these numbers is prob-
lematic, they indicate a tricritical point between U=2. 5

and 3.0. Note that even for the largest lattice, N=24,
the Monte Carlo data are still significantly lower than
that indicated by the exact Lanczos calculations. Since
both Monte Carlo and Lanczos results show that the in-

TABLE VI. Summary of estimates of CDW-SDW phase boundary at U=5. 5 and 3.0. The numbers
in parentheses give the range of possible V values estimated by each method. The column labeled
mcD~ was obtained from the CDW order-parameter distribution function (see Sec. III A), and finite-
size scaling of SCD~, S»~, and the quantity g developed by Binder (see Ref. 15).

5.5
3.0

SCD~(~)

(2.907,2.915)

(1.572, 1.596)

SsD~(m)

(2.919,2.924)
(1.655,1.656)

(2.878,2. 888)
(1.605,1.647)

~CDW

(2.926,2.944)
(1.750, 1.623 )
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dicated tricritical point increases with increasing lattice
size, it appears that the Monte Carlo results have not
converged to the low-temperature, small-(b, r) limit.

IV. SUMMARY

We have calculated the position of the CDW-SDW
phase boundary and the tricritical point of the one-
dimensional extended Hubbard model using the Lanczos
algorithm. Estimates of the phase boundary using the
CDW order-parameter distribution functions, and finite-
size scaling of the CDW and SDW structure factors and

g yield consistent answers. We estimate the phase bound-
ary to occur at roughly V=2.92+0.04 at U=5. 5 and
V=1.65+& O5 at U=3.0. The uncertainties reAect the
range of values indicated by the various methods we have
used rather than a statistical confidence level. Through
use of the CDW order-parameter distribution function
we estimate the tricritical point to occur above U=3. 5

and possibly as high as U =5.0 although we were not

able to establish the upper bound with confidence.
The accuracy of the Lanczos calculations provides a

complementary technique to earlier Monte Carlo calcula-
tions, which can be performed on larger lattices. We find
extrapolation to the thermodynamic limit to be more reli-
able with the Lanczos numbers despite the small lattices
that are accessible to us. This is due to the fact that in
addition to extrapolating to large lattices, the Monte Car-
lo data must also be extrapolated to low temperature, and
small A~.
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