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Several experiments on a variety of magnetic multilayer and sandwich structures have revealed
an indirect exchange coupling between layers of ferromagnets separated by nonmagnetic spacer
layers. This coupling oscillates from ferromagnetic to antiferromagnetic depending on the thickness
of the spacer layers, with an anomalously long period. We study a simple model to explain the
long period and compare our results with the Ruderman-Kittel-Kasuya-Yosida theory of indirect

exchange coupling.

I. INTRODUCTION

The discovery of “giant magnetoresistance”
in  molecular-beam-epitaxy- (MBE) grown Fe/Cr
multilayers! conjures up an abundance of technologi-
cal applications and has spurred the study of other
magnetic-nonmagnetic metallic multilayers. The “giant
magnetoresistance” has now been observed in sputtered
multilayers composed of essentially any of the transi-
tion metals,?3 and MBE-grown multilayers of Fe/Cu.*?
Magneto-optic Kerr effect measurements have demon-
strated an enhanced optical rotation in Fe/Cu commen-
surate with the magnetoresistance anomalies.® This is ex-
citing to workers seeking to improve the quality of optical
storage systems based on the magneto-optic effect.

All of the systems studied thus far share a long pe-
riod oscillation in the exchange coupling J(r) between
ferromagnetic layers as a function of nonmagnetic spacer
layer thickness ». Measurements of the saturation field of
the magnetoresistance? probe J(r), which may also be
measured via Brillouin light scattering,®® ferromagnetic
resonance, magneto-optic rotation,*%7 or spin-polarized
secondary electron emission.® In general, these measure-
ments show that J(r) oscillates around zero for r in the
range 0 — 50 A. Cons1de11ng the strength of the cou-
pling (|J| ~ 5 erg/cm” in Co/Ru,? for example), some
sort of indirect exchange mechanism must be operat-
ing; magnetostatic interactions are an order of magni-
tude smaller. The period of the oscillation varies [A ~ 7
A in Fe/Cu (Ref. 5) and A ~ 18 A in Fe/Cr (Ref. 2)] but
is substantially longer than the period predicted by the
Rudermann-Kittel-Kasuya-Yosida (RKKY) theory of in-
direct exchange coupling.® In the RKKY theory the pe-
riod is fixed at the reciprocal of twice the Fermi wave
vector, i.e., a lattice constant.

Is this coupling simply related to the RKKY interac-
tion, or does it represent a new type of indirect mecha-
nism? This paper presents a calculation of J(r) within

44

a simple mean-field model of itinerant electrons. The
J(r) calculated using this model has a long period of
oscillation. We also calculate the corresponding RKKY
coupling, and show that our result is indeed a close cousin
of the RKKY phenomenon.

1I. MODEL

We are motivated to study a simple model!® by the
wide variety of systems in which qualitatively similar os-
cillatory couplings have been observed. This suggests
that details of the electronic structure which vary among
these systems will not be crucial for understanding the
interlayer coupling. Accordingly, our model includes the
bare minimum description of layered ferromagnetic and
nonmagnetic transition metals.

Our model has a tight-binding spectrum in the z di-
rection, perpendicular to the layer planes. Motion along
the z direction is governed by the Hamiltonian

'H:—-th}acja ZJ,]S - S; +Zp,nz, (1)

(i5) e (i5)
where c¢; destroys an electron in atomic plane 7 with spin
projection «, the spin operator S; 3 Eaﬁ maapc,ﬁ
(0ap are the Pauli matrices), and n; = CfTC,T + c 1Cil-
The spacially varying chemical potential y; is chosen to
enforce uniform density, (n;) = 1.

We emphasize the difference between the one-
dimensional case, Eq. (1) treated with one atom per
atomic plane, and the quasi-one-dimensional case, in
which the electrons move freely in the transverse direc-
tions. The exchange coupling is sensitive to this dif-
ference; for example, the asymptotic envelope of J(r)
decays as 1/r in the one-dimensional case, but 1/r? in
the quasi-one-dimensional case.!’ The magnetic multi-
layers we are discussing cannot be treated simply as one-
dimensional magnetic systems. We have incorporated

5977 ©1991 The American Physical Society



RAPID COMMUNICATIONS

5978 D. M. DEAVEN, D. S. ROKHSAR, AND M. JOHNSON

motion in the transverse directions by allowing the elec-
trons in each atomic plane to occupy two-dimensional
free-electron states with constant density of states 1/W.
Thus the single-particle states in our model are products
of the solutions of (1) and plane waves in the z and y
directions.

The tight-binding part of (1) combined with the trans-
verse free-electron states describes a metal with a Fermi
surface that is roughly spherical when W = 4¢. Increas-
ing W/t makes the Fermi surface more prolate, with a
larger cutoff wave vector in the z direction. A typical
transition-metal bandwidth is 5 eV, corresponding to a
hopping matrix element ¢t & 1 eV.

We treat the nearest-neighbor exchange term in (1)
with the Hartree-Fock approximation, using a self-

consistent mean-field magnetization M; = (S;). The
second term in (1) then becomes
ZJij(Si‘Mj'i"Mi'Sj—Mi'Mj): (2)

(é5)

with the self-consistency condition 8(H)/O0M; = 0. The
phenomenological exchange couplings J;; are permitted
three different values between neighboring atomic planes,
depending on location in the multilayer. If atomic planes
i and j are both magnetic, J;; = Jup. If planes ¢ and
J are both nonmagnetic, J;; = Jo. Finally, if plane i is
magnetic and plane j nonmagnetic, then J;; = J;. We
use Jps simply to create a stable self-consistent magnetic
layer. Inside a magnetic layer our bands are completely
rigid Stoner bands, which have saturated magnetization
when Jps 2 t, and zero magnetization when Jp < t.
Apart from this inequality, the magnitude of Jps is ir-
relevant and our results do not depend on the particular
value of Jps. We have set Jo = 0, and we will vary
the remaining phenomenological exchange coupling J;
between Jg and Jjs in a crude investigation of the effects
of local exchange at the magnetic-nonmagnetic interface.
When J; = Jjs the situation is identical to the case when
Jr = Jo and one atomic plane of magnetic material has
been added.

In our model an indirect exchange coupling between
magnetic layers occurs due to hybridization of magnetic
and nonmagnetic states at the interfaces. This hybridiza-
tion occurs via the hopping matrix element ¢ connecting
states in the magnetic and nonmagnetic planes and po-
larizes the nonmagnetic layer, leading to an indirect cou-
pling. By calculating the coupling directly, we gain a
useful reference point for evaluating the validity of per-
turbation theory.

By comparing the total energies of the self-consistent
solutions with the magnetic layers aligned either ferro-
magnetically (FM) or antiferromagnetically (AFM) we
obtain J(r) = E(FM) — E(AFM) for r = na. The inset
in Fig. 1 illustrates our magnetic unit cell. There are
two magnetic layers composed of m atomic planes each,
alternated with two nonmagnetic layers composed of n
atomic planes each. We have used values of m ranging
from 2 (the minimum number for which a self-consistent
magnetic layer is possible) to m = 5. Changing the num-
ber of magnetic planes does not significantly affect our
results. This indicates that the interaction between the
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FIG. 1. Indirect exchange coupling function J(r) between

magnetic layers in the unit cell (inset) and calculated nonper-
turbatively using Hamiltonian (1) in units of ¢. (a) W/t = 3.5,
Jr = 0 (open diamonds) and Jr = t/2 (filled triangles). (b)
Same as (a) except W/t = 3. Positive values of J corre-
spond to antiferromagnetic coupling. There are two kinds of
layers, coupled by three different near-neighbor phenomeno-
logical exchange couplings: black (magnetic) couples to black
with Jas, white (nonmagnetic) to white with Jo, and black to
white with Jr.

magnetic and nonmagnetic layers occurs at the interface
between the two, making our coupling independent of the
magnetic layer thickness, as observed experimentally.?

III. INDIRECT EXCHANGE COUPLING

Figure 1 shows J(r) calculated in our model system.
We find that J(r) oscillates with a period A significantly
larger than w/kp, where kp refers specifically to the cut-
off wave vector in the z direction. Increasing the ratio
W/t increases kr but leads to a longer period, opposite
the trend predicted by the RKKY theory. However, the
asymptotic decay of the envelope is the same as in the
RKKY theory.!! We find that for r = 10a,

sin(27r/A)

J(r) ~ At k) 3)

where A is a constant of order unity. Referring to Fig. 1,
and taking a typical lattice constant to be a ~ 3 A, the
magnitude of the coupling at the second peak is typically
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10-3t/a? ~ 1 erg/cm?, the same order of magnitude as
found experimentally.?

The small-r limit of J(r) is worthy of note. We find
J (a) (coupling through one spacer layer) to be ferromag-
netic in all cases. As shown in Fig. 1, however, J(2a)
(coupling through two spacer layers) may be either fer-
romagnetic or antiferromagnetic, depending on the value
of W/t. Also, the phase of the oscillation depends on the
phenomenological exchange coupling at the magnetic-
nonmagnetic layer interface, Jr. In the experiments
J(r — 0) can be either ferromagnetic (as in Co/Cr),
or antiferromagnetic (as in Co/Ru).? In the limit of a
very thin spacer layer, the detailed electronic structure of
the interface becomes more important. Slight changes in
geometry resulting from interface growth and/or recon-
structions affect the magnetic properties tremendously.!?
Although we cannot do justice to these important details
in our simple model, the phase shift produced by vary-
ing Jr indicates a sensitivity of the coupling in the thin
spacer limit to interface-specific details.

IV. COMPARISON WITH RKKY THEORY

One may well ask why our model should give a period
so different from that of RKKY. Our toy system couples
the ferromagnetic layers by polarizing the nonmagnetic
layers; this is precisely the situation addressed by the
RKKY calculation. In order to clarify the situation, we
have computed the RKKY “range function” ¢(r) for a ho-
mogeneous nonmagnetic host with band structure given
by the tight-binding part of (1). The range function is
proportional to the magnetization induced in the non-
magnetic host by a spin of infinitesimal magnitude local-
ized at the origin. In the RKKY theory the coupling J(r)
is proportional to ¢(r). To obtain ¢(r) one first calculates
the zero-temperature generalized magnetic susceptibility

O(ex) — O(ektq.3)
— 2 q:
x(¢:) = 2p% ; P (4)

Here k is an index representing crystal momentum. The
function ©(z) is the unit step function. The range func-
tion is then a one-dimensional Fourier transform,!?

o(r) = 5“; / dq; x(4:) cos(gsr). (5)

This program is simply second-order perturbation theory
for a contact interaction between an atomic plane of lo-
calized spins and the itinerant electrons in the metallic
spacer layer conduction band, which respond via x(g,).
High-quality band structures have been used with (4)
and (5) to obtain good agreement with experimentally
determined couplings in other multilayer systems such as
Gd/Y.'3 This success suggests that the polarization in-
duced via hybridization at the interface (as in our model)
should be similar to that induced by a contact interac-
tion with a localized spin. The resulting ¢(r) generally
does not closely resemble the result for a free-electron
gas, but contains features traceable to peaks in x(q.)
caused by Fermi-surface nesting effects.!* However, the
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FIG. 2. RKKY “range function” ¢(r) in a homogeneous
system with energy given by the tight-binding part of (1), for
7 in the z direction (arbitrary units). When ¢(r) is sampled
at the discrete set of points r = na, n» an integer, the apparent
period is much larger (filled diamonds). Plotted in the inset
is the generalized magnetic susceptibility x(g.) from which
¢(r) was obtained (solid line), and the susceptibility of a free-
electron gas with the same Fermi cutoff (dashed line).

Fermi surface in the tight-binding part of (1) does not
have a spanning wave vector other than the full Fermi
wave vector kp in the z direction, or any other “nesting”
features which could lead to peaks in x(g,). The range
function therefore has a real space period A = w/kp. The
inset in Fig. 2 shows the generalized susceptibility x(g.)
calculated from the tight-binding part of (1) and for com-
parison, xpeg(gq) for a free-electron gas with cutoff wave
vector kr equal to the cutoff in the z direction of our
model. The susceptibilities are clearly different, yet the
cutoff in both occurs at 2kp, leading to range functions
with the same period. The RKKY calculation indicates
a short-period oscillation.

In a multilayer system, however, J(r) is sampled at
discrete points by the multilayer structure. This leads
to aliasing, where short-period components of ¢(r) are
shifted to long periods in the discretely sampled J(r)
(see Fig. 2). The period of the aliased ¢(r) matches
exactly the period found in our nonperturbative calcu-
lation of J(r). Since the amplitude decay is also the
same [Eq. (3)], the RKKY perturbation theory correctly
predicts the qualitative features of J(r) in the strongly
coupled model, when aliasing is taken into account.

To further investigate the applicability of perturbation
theory, we varied the hopping matrix element between
magnetic and nonmagnetic layers, ty, while keeping the
rest of the t’s fixed. Empirically, the coupling strength
A = (tr/t)* when t; < t, eventually saturating to A ~
1 when t; 2 t. The period and envelope decay of the
coupling are accurately described by perturbation theory
even in this saturated regime.

The natural next step is to investigate the aliased range
functions calculated from a realistic band structure. We
believe that the long period in some of the experimen-
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tal systems may be the result of aliasing. A perturba-
tive approach is attractive since even for simplified band
structures!® the accuracy with which the total energy
may be determined is smaller than |J|. A perturbative
calculation has been carried out!® using an accurate band
structure for paramagnetic Cr and yields short-period os-
cillations which have a period slightly longer than 2d.
They are therefore not subject to aliasing. Instead, an
explanation based on interface roughness was employed.

V. CONCLUSIONS

We have presented a calculation of the indirect ex-
change coupling J(r) between ferromagnetic layers in a
transition-metal multilayer using a simple model. The
model incorporates tight-binding bands in both the mag-
netic and nonmagnetic layers, and a phenomenological
exchange interaction in the magnetic layers. We find that
J(r) exhibits a long oscillation period, A ~ 4-6 atomic
layers, similar to that found experimentally.?”® This re-
sult may be understood within the context of RKKY the-
ory as a short-period RKKY oscillation which is sampled
at a uniform set of discrete points, corresponding to the
number of atomic planes in a nonmagnetic spacer layer.
This aliasing effect must be considered in any theory of
exchange-coupled multilayers.

When aliasing occurs, small changes of phase in the
(unobserved) short-period oscillations can lead to large
changes of phase in the aliased long-period oscillations.
Under these circumstances, an RKKY coupling which is
always ferromagnetic in the small-distance limit can lead
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to a coupling across one spacer layer which is either fer-
romagnetic or antiferromagnetic. This is consistent with
the fact that both behaviors are observed experimentally.

We conclude that RKKY perturbation theory is suffi-
cient to understand the qualitative features of our fully
interacting model system. This approach is formally
valid only in the limit of thin, weakly ferromagnetic lay-
ers which interact with the host conduction electrons via
a contact interaction. Although these are not the con-
ditions in our model, perturbation theory is still correct
in predicting the real-space asymptotic period (given the
aliasing effect) and decay envelope of the exchange cou-
pling. This is encouraging because it suggests that a
quantitative perturbation theory may apply to the real
materials. We note that indirect exchange couplings in
other multilayer systems such as Gd/Y (Ref. 13) have
been successfully treated using RKKY perturbation the-
ory, and consider it comforting that this is the case in
our model as well.

Note added. After completing this work we received
a copy of a paper (presently unpublished) describing a
calculation based on aliasing.!”
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