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Three models for interpreting resonance Raman (RR) spectra of conjugated polymers are compared
for the example of a strictly one-dimensional infinite or finite bond-alternating chain: the amplitude-
mode model (AMM), the effective-conjugation-coordinate model (ECCM), and the conjugation-length
model (CLM). The most characteristic behavior for the RR spectra of conjugated polymers is the
change of line shape and line position of Raman modes with laser excitation energy, which is called a
dispersion effect. This effect is considered to originate from inhomogeneities in the effective electron-
phonon coupling constant X (AMM), in the effective force constant fJ, (ECCM), or in the effective con-

jugation length N (CLM). Generalizing the CLM, we give a unifying picture for the three models men-

tioned above. The m.-electron system is described by the Longuet-Higgins —Salem Hamiltonian, which
includes the cr compressibility; and the RR cross section is evaluated with Albrecht's theory. By calcu-
lating X(N) and fJ, (N), it is shown that all inhomogeneities originate from a distribution in N For.
correct calculations, no cyclic boundary conditions should be used. Extending Albrecht s theory to an
infinite linear chain, we show the connection between the molecular-physics approximation (CLM) and
the solid-state-physics approximation (AMM) for the RR intensity. There are two peaks in the excita-
tion profile: one for the incoming and another for the outgoing resonance. Finally, we show that the
usual Franck-Condon analysis is not appropriate for medium-long linear chains because of the dramatic
difference in the shape of the total-energy hypersurface for ground and excited states.

I. INTRODUCTION

Raman spectra of conjugated polymers show some
unique features. They have one or more strongly reso-
nance enhanced bands (RR bands) which exhibit a
characteristic behavior in a sense that their shape and in-
tensity depend on the quantum energy of the exciting
laser light. ' If the polymer is in a state of high enough
order these RR bands consist of two peaks: a primary (P)
at lower and a satellite (S) at higher wave number. With
decreasing laser frequency, the S peak shifts toward
lower wave numbers (dispersion effect) whereas the P
peak remains on the same position but gains intensity.
The intensity ratio between the P and S peaks for a given
laser excitation is sample dependent. Creating defects in
the sample leads to a lowering of the P peak and a shift of
the S peak for a given laser excitation. " A good quali-
ty trans-polyacetylene has, e.g., a well-separated double-
peak structure if excited with a blue laser. The P-S sepa-
ration is about 60 cm '. For excitation with a green
laser a strong P peak with a shoulder on the high wave
number side appears and for red laser excitation a very
strong and single peak at the primary position is ob-
served. Although this peculiar behavior was most inten-
sively investigated for trans-polyacetylene, other conju-
gated polymers, such as poly(1, 6-heptadiyne), '

poly(diacetylene), ' poly(isothianaphtene), '

poly(methylthiophene), ' poly(octylthiophene), ' and
poly(dihexylsilane) ' exhibit similar properties.

The observations described above can be understood
immediately if the bands for the resonance enhanced
modes are assumed to originate from sample inhomo-
geneities. The exciting laser selects resonantly only a
part of the sample and different laser lines select different
parts of the polymer. The details of the inhomogeneities
are model dependent. Three models have been suggested
to explain the unusual resonance behavior: the
conjugation-length model (CLM), ' ' ' the amplitude-
mode model (AMM), and the effective-conjugation-
coordinate model (ECCM).

The CLM is based on a molecular quantum size pic-
ture. The conjugation length plays the central role in this
model. A characteristic difference is assumed between
the conjugation length and chain length"' in a sense
that the former is defined as the length of an unperturbed
segment between defects which can be much shorter than
the real chain length. The CLM considers the polymer as
built up by chains with different conjugation length and
this is the origin of the inhomogeneity. For example, the
excitation energies depend on the segment length. For a
given length the smallest excitation energy value is the
HOMO-LUMO (HOMO: Highest Occupied Molecular
Orbital, LUMO: Lowest Unoccupied Molecular Orbital)
transition energy in the one electron MO picture. This
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corresponds to the energy gap in the solid-state limit.
Other parameters as transition probabilities and vibra-
tional frequencies depend also on segment length. The
RR band is the envelope of the difterent contributions
from the various segments. The model concentrates
mainly on intensities whereas the vibrational frequencies
are extrapolated empirically from short oligomers. '

The intensities are calculated using Albrecht's theory.
Electronic transition energies and matrix elements are
calculated on the Hiickel level, Franck-Condon (FC)
overlaps are calculated with the usual linear mode ap-
proximation ' with FC parameters extrapolated from FC
analysis of short oligomers. With an appropriate pa-
rameter set and with a distribution function for the con-
jugation length the measured RR line shapes can be well
fitted for laser excitation in the whole visible range.

The AMM is a solid-state approximation. The central
quantity is the effective electron-phonon coupling con-
stant k which enters the equations of motion of "bare"
normal modes which are coupled to m electrons via
strong electron-phonon interaction. X describes the re-
normalization of vibrational frequencies due to this cou-
pling. Normal mode vibrations induce oscillations in the
amplitude of the combined lattice and charge distortion
(charge density wave) which can be referred to as an
amplitude mode (AM). The AMM considers the polymer
as built up from infinite long one-dimensional chains. In-
homogeneities are introduced by assuming that various
chains have various A, although all are infinite long. The
RR band is again the envelope of the contributions from
various chains. The intensities can be calculated by usual
diagrammatic technique. With a proper distribution
function for A, one can again reproduce the experimental
RR bands.

The ECCM reformulates the AMM on the molecular
physics level. The chains are quasifinite (cyclic) in this
model. An e6'ective conjugation coordinate QJ, is intro-
duced, which describes a deformation with strongest
coupling with the m. electrons, practically the bond alter-
nation of the polymer backbone. The QJ, mode, the os-
cillation of the QJ, coordinate, in the ECCM corresponds
to the AM in the AMM. This is a fictive mode which is
in general not a normal mode. Any of the vibronic
modes will participate to a certain amount to this mode.
However, in a strictly lD system the Qz, mode can be as-
signed to an eigenmode of the system. A, of AMM can be
expressed by a microscopic force constant in the ECCM.
The dominant role in the force constant matrix is played
by the force constant fz, of the eff'ective conjugation
coordinate. fJ, is the renormalized bond stretching force
constant which is different for different chain lengths.
The calculations are based on a reduced version of the
well-known GF method. The ECCM concentrates
mainly on the positions and on the relative intensities of
various RR bands.

The aim of this paper is to compare the three models,
find connections between them, and analyze advantages
and disadvantages for special applications. Another goal
was to study the approach of the molecular description to
the solid-state limit in detail. In order to do this
Albrecht's theory was extended to quasi-infinite chains.

Because the resonance Raman phenomenon is complicat-
ed by itself, a very simply system consisting of an ideal-
ized strictly linear bond alternating chain was chosen in
order to obtain quantitative results. For an infinite num-
ber of bonds this is the well-known Peierls chain.
The m electrons were described by the Longuet-
Higgins —Salem (LHS) model which takes the o compres-
sibility into account and thus allows geometry optimiza-
tion. The LHS model allows one to compute all
electronic and vibronic parameters which are needed to
describe the resonance Raman effect. The RR intensity
was calculated by a general second-order perturbation
treatment according to Albrecht's approximations.
Some preliminary results were published recently. '

In this paper we first summarize the main points of
Albrecht's theory. In Sec. III we apply it to the finite
LHS chain and then extend it to the infinite Peierls chain.
In Sec. IVA we review the AMM, compare it with
Albrecht's results for infinite chains, and discuss the pos-
sibility to use it for finite chains. This, together with the
results of Sec. III, can be regarded as a generalization of
the CLM. In Secs. IV B and IV C we summarize the con-
cept for the ECCM and for the original CLM and com-
pare them with results of Sec. III. Section V discusses
the question which model is closest to real polymer sys-
tems and summarizes the results.

From the analysis we found that the intensities com-
puted by Albrecht's theory in the limit of infinite chains
reproduce the intensities computed by AMM if in the
latter the phonon frequency is not neglected as compared
to the characteristic electronic energies (energy gap).
The use of the AMM for finite chains is conceptionally
problematic because the model is intimately connected
with translational symmetry which does not exist in finite
systems. For the same reason the ECCM is correct only
qualitatively since it only simulates finite chains by re-
stricting the interaction between unit cells to a finite dis-
tance but using translational symmetry. However, we
show that it is possible to define the QJ, mode for real
finite chains without periodic boundary conditions. The
CLM is conceptionally the most realistic among the three
models. It uses explicit calculations for the FC approxi-
mation to evaluate the Raman intensities. However, we
show that at least for the simple case of a strictly one-
dimensional chain investigated in this paper, a conven-
tional FC approximation cannot be performed for medi-
um long chains because the total energy hypersurface for
the excited states differs very much from that of the
ground state. The reason for this behavior is most prob-
ably the strong tendency of the geometry in the excited
state to relax into a completely different geometry con-
taining a soliton-antisoliton pair.

II. GENERAL PERTURBATION TREATMENT
OF THK RESONANCE RAMAN PROCESS

Because we want to investigate whether the molecular
physics description of the resonance Raman process in
the infinite limit converges to the solid-state description
we brieAy summarize the main assumptions and results of
Albrecht's theory for Raman processes in molecules.
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Figure 1 shows a generalized Raman process, which is an
inelastic scattering of light on an arbitrary microscopic
system. " The latter is in the energy eigenstate ~2) and
9') before and after interaction with light, respectively.

There is one photon with energy co& (iri= 1 is used) before
and another one with energy co& after the interaction.
The interaction Hamiltonian between a charged particle
and electromagnetic field is in the nonrelativistic limit the
sum of k, and E» where

2

p A and E«= A
7' C 2plC

The vector potential A of the radiation can be expanded
into plane waves:

A~ g e,(&,e'q'+&, e (2)
q, s

, and 8 ~, are the annihilation and creation operators,
respectively, for a photon with wave vector q and polar-
ization vector e, . It can be shown that in Coulomb
gauge and for interaction of visible light with electrons
bounded in molecules E« is much weaker than 2, and
can be neglected. " Then, the probability of the process
illustrated on Fig. 1 is the square of the amplitude with
K& which can be expressed as a perturbation series with
the leading terms

(o,vlt, l, s& v y '
e, ,p'"'e"" s),

+COD k mk

where the sum runs over the particles with charge ek in
the molecule. In the dipole approximation the exponen-
tial term is 1 for molecules with a size much smaller than
the wavelength of the incident light. In the case of a
strictly linear chain it is even exactly correct since light
polarization must be parallel to the chain and thus light
propagation is perpendicular to the chain. Using the
well-known identity

and after some algebra one obtains the well-known ex-
pression for the intensity I of scattered light with polar-
ization p, if the incoming light has intensity Io and polar-
ization o.

I o-Io copra

where a is the transition polarizability of the molecule

&V/M, /V &&V/Si. /S&
a

(E~ E~)—co~+i —I ~
& co~; 9'~ It,

~ 0;V & & 0;V
~ E, ~

~„J&
E~ (E~+cog)—

(3a) & VfQ. /V&& V/4, /S)+
(E~ E~)+—co&+i I &

(7)

and

& ~,;V~t, ~~,~,;V & &~„~,V ~t, ~~,;S)
(E~+coq+ cop) (Eg+ cog)—

(3b)

For strictly linear chains only a, is nonzero where z is
the chain direction. In Eq. (7) is the sum of the elec-
tronic and nuclear dipole moments

M=M, i+M„„,i=e g r '" —e g ZiR ' ' (8)
k I

with the corresponding diagrams Figs. 2(a) and 2(b), re-
spectively. With E&+co&=E&+co& th—e sums in Eqs. (3a)
and (3b) consist of individual terms of the form
I/[(E~ E~)—

co&] an—d I/[(E~ E&)+co&]. I—n Eqs.
(3a) and (3b) V) denotes an arbitrary excited state of the
microscopic many-electron —many-nuclei system. The ex-
pressions contain matrix elements of the type

Equation (7) is a general result from the perturbation
theory.

~
J ), ~

V), and
~
V) are energy eigenstates of the

whole molecule including electrons and nuclei.
Albrecht's theory is the evaluation of Eq. (7) for a system
for which the Born-Oppenheimer approximation is valid.
In this case the total molecular wave function is a prod-
uct of a many-electron wave function and that of a nu-
clear wave function. The nuclear motion is treated as
usual in the harmonic approximation. In the Raman pro-
cess the electronic wave function is identical in the initial
and in the final state: ~g ). In the nuclear final state there
is one vibronic quantum more (Stokes) or less (anti-
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FIG. 1. Generalized Raman process for a system in initial
state J and final state 9 and incident and scattered radiation ~q
and co&, respectively.

FIG. 2. Lowest order diagrams for a generalized Raman pro-
cess described by 2, for the two possible time orders [according
to Eqs. (3a) and (3b)].
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Stokes) than in the initial state. The corresponding states
can be written as ge

I&& = lg;i &
= Ig & I [i]'&,

IV&=le;u&=le& I[vj'&,

I&& = Ig;f &= Ig& IIf j'& .

(9a)

(9b)

(9c)

The nuclear dipole momentum operator has nonzero ma-
trix elements only if there is no change in the many-
electron state therefore it does not play any role in RR
processes where (eAg). The electronic dipole momen-
tum operator acts only on the electronic wave functions
but due to their dependence on nuclear coordinates (nor-
mal modes) the electronic dipole matrix element still acts
as operator for the vibronic normal modes:

&e;ulM, &lg; &=& [v j'IM, ([Q]) [i jg& . (10)

In the Franck-Condon approximation the dipole matrix
element is considered to be constant and replaced with its
value in the ground-state equilibrium nuclear
configuration:

M, ([Qj )=M, g

The remaining overlaps are the so called FC integrals:

FIG. 3. Total energy curves for electronic ground state (g)
and excited state ( e) as a function of a dimensionless ground-
state normal coordinate p. In the simplest case there is only a
shift a between two minima.

quadratic curves in Fig. 3 measured in dimensionless nor-
mal coordinate p=V'mQ Q.

Optical experiments are often analyzed successfully
based on the FC assumption. For a general description
of the Raman processes, however, the assumption of con-
stant dipole matrix element [Eq. (11)] is not good enough.
Thus the next approximation is the Herzberg- Teller ex-
pansion of the matrix element into linear terms in the
normal coordinates:

M, g(IQ])=M, + gM,' .,Q, . (14)

Usually the multidimensional FC integral is factorized
with respect to the ground-state normal modes. Assum-
ing that the only difference between potential energy
curves in the ground state and in the excited state is that
their minimum positions are shifted (see Fig. 3) the FC
integrals can be expressed as

1/2

(Ce gg&
—z /2

tX
P—aLP —a(z2) (13)

where L;" are Laguerre polynoms and z =a /&2 is the di-
mensionless FC parameter. a is the shift between the two

For the case of the linear chain the matrix elements

BM,
e,g;a gQ a

(15)

where

0

can be directly computed. Substituting Eqs. (10) and (14)
into Eq. (7) one can get the A, B, and C terms of
Albrecht's theory:

(a )g, gI= A +B+C=(A + A+ )+B+C, (16)

E, , —E;—coL+il (17a)

E, , —E f +~L+iI, , (17b)

B=(B )= g E, , E; coL+iI (a), (17c)

1

E E+co +il-ev ev gf &L l ev
(a), (17d)

and

g(a)= g [(M ), (M ),' ., ( [f jgl [v j'&([u j'IQ, I[i jg&+(M ),'g. , (M ), g([f jglQ, I [v j'&([v j'I [i] &] .
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These formulas hold for general Raman processes. In the
resonance case one or a few terms in A and 8 dom-
inate for which the denominator is almost zero because
the quantum energy of the light is nearly equal to a real
electronic excitation energy. Thus, for a resonance Ra-
man process C and A + terms can be neglected. Further-
more, for the investigation of small molecules under reso-
nance conditions the 8 term is usually also neglected. On
the contrary, as it will be shown in Sec. III C, for infinite
linear chains only the 8 term differs from zero and thus
describes the solid state approach.

the molecular orbitals with one orbital per site.
Zero overlap between different atomic orbitals.
In the Huckel approximation the m-electron Hamil-

tonian is an XX%matrix in the space of the linear com-
bination factors of the atomic orbitals. The total ~-
electron energy is in the above approximation the sum of
the one-electron energies c.; weighted by the occupation
number of the corresponding molecular orbital (n; =0, 1

or 2):

m, tot g i i

III. RESONANCE RAMAN PROCESS FOR
LINEAR CHAINS (GENERALIZED CLM)

To evaluate the terms in Eqs. (17) it is necessary to cal-
culate the electronic and vibronic eigenstates and eigen-
values. In order to be able to compute all parameters
needed a simple system, a linear chain described by the
LHS model was considered. On the other hand, this
paragraph can be regarded as the generalization of the
conventional conjugation length model because not only
the electronic properties are calculated but a normal
coordinate analysis is done as well.

A. Evaluation of energies, matrix elements, and
normal coordinates in the LHS approximation

We consider a CH chain simplified to a strictly one-
dimensional geometry according to Fig. 4. An oligomer
with N carbon atoms is replaced by a linear chain of X
atoms with masses of mcH =257 29 a.u. (the free-

2

electron mass is 1 a.u. ) at the ends of the chain and
mcH=23892 a.u. for the others. The geometry is al-
lowed to change only within the (N 1)-dimensio—nal
configuration space spanned by the bond lengths
r, , r2, . . . , r&, . We consider the interaction of the light
only with the X ~ electrons. The o. electrons contribute
to the total energy by an additive term which depends on
the actual geometry. The ~ electrons are treated on a
tight-binding Huckel level. The following approxima-
tions have been used:

Born-Oppenheimer approximation.
o -m separation.
One-electron approximation.
Linear combination of atomic orbitals (LCAO's) for

gP (C""C"+,+C"+',C") n, , (18)
. J

where C". are the LCAO coefficients and p is the reso-
nance integral for the jth bond. The quantity which
characterizes the strength of a ~ bond is the mobile bond
order p with the definition

(19)

E~io, —2g p~pj
J

(20)

where the sum runs over all bonds. On the other hand
for fixed occupation numbers E, , is a first-order homo-
geneous function of the P., from which together with Eq.
(20) immediately follows:

BE
~&=

2 aP,
(21)

So far the results are well known in the usual Hiickel
theory. Longuet-Higgins and Salem generalized the
Hiickel theory by including the o. electrons (o. compressi-
bility) and by allowing a change in the resonance integral
with changing bond length assuming a well-defined
monotonic correspondence between them. Thus in the
LHS model

(22a)

where

p. is 0 and 1 for a pure single bond (ethene) and double
bond (ethylene), respectively, and falls in between these
values on the general case. Substituting Eq. (19) into Eq.
(18) yields

H
t C

~ /yy y/yx
HC C

H

H

L CH
~ geyyyo
C C

H

E „,=2+PJ(r )p (IrI, tnI)
J

=E „„(p,(r, );. . . ; Inj), (22b)

(22c)

~ ~ ~ I

~ ~ ~

In Eq. (22b) I n ) is the set of the occupation numbers. In
Eq. (22c) f(r ) is the potential energy of the o core. P(r )
can be reasonably assumed as an exponential function:

FIG. 4. Simplifying an oligomer with N carbon atoms to a
strictly one-dimensional finite chain. The individual bond
lengths r„r, r» can have difterent values. The masses of
the atomic cores at the chain ends are m CH, all others are m cH.2'

rp(r ) = —A expp
p

(23)
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f(r ) can be obtained from ground-state equilibrium con-
siderations. The first derivatives of the total energy are
zero at the equilibrium geometry:

BE„,
Br,-

df,. aE. .., dp,
dr, t)p; dr,

Using Eqs. (23) and (21), from Eq. (24) immediately fol-
lows that there is a one to one correspondence between
bond length r and bond order p. Assuming the empirical-
ly observed linear bond length-bond order relation
(Coulson relation)

r =R, —(R, —R2)p (25)

as exact, the f(r) function can be obtained from Eqs.
(24), (23), and (25):

f(r)= P(r)(r —Rt+B&) .2

R) —R2
(26)

R& and R2 are the lengths of a pure single and double
bond, respectively. Even though f(r) is obtained from a
ground-state configuration one can use this function for
all m excitations as well because of the assumed o.-~ sepa-
ration. The LHS model is characterized by Eqs. (22),
(23), and (25) or 26. The bond lengths can be optimized
self-consistently by satisfying the Coulson relation which
at the same time minimizes the total energy. With the
LHS model it is straightforward to describe, e.g. , the ap-
pearance of bond alternation in linear chains or topologi-
cal defects such as solitons or polarons.

There are only four parameters in the model:
R&, R2, A&, and 8& which were determined as follows.
The single and double bond lengths were taken from the
literature: R, =1.54 A, R2=1.33 A. The bond length
alternation for very long chains scales with 8&, indepen-
dent from 3&. A choice of 8&=0.3075 A leads to a
bond alternation for the infinite chain of 1.36 A/1. 45 A
which is in reasonable agreement with the experimentally
observed values in trans-polyacetylene. For fixed B&
the energy gap (HOMO-LUMO difference) scales with

A choice of A&=243. 5 eV leads to the value of 1.5
eV which is again in reasonable agreement with the ex-
perimentally observed gap in trans-polyacetylene. It
should be mentioned that the LHS model can after
some generalization successfully describe more comp-
licated systems with heter oatoms like, e.g. ,
poly(isothianaphthene).

To calculate the Raman intensities the electronic di-
pole matrix elements are also required. The many-
electron matrix element for Slater determinant wave
functions is nonzero only if one electron is excited. The
one-electron dipole matrix element between ith and jth
molecular orbital can be easily evaluated using the as-
sumption of the orthogonality of atomic orbitals:

{j~M~i )=e y C'&'*C"'r™, (27)

able for this purpose too. For Wilson's well-known GI"

formalism the F force constant matrix

BE, ,
F; =

Br, Br,

and the 0 reciprocal mass matrix

1
X &rk&jk

mk

(28)

are needed. Both are (N —1)X(N 1) m—atrices for an
N-atomic linear chain. In Eq. (29) the S matrix makes
the connection between internal coordinates (bond length
changes dr;) and Cartesian coordinates (atomic position
changes dx;) dr, =+.8,". dxj (i =1, . . .N —1; j
=1, . . .N). The vibronic normal modes and normal fre-
quencies are the eigenvectors and eigenvalues of the fol-
lowing equation:

6(N)F(N) Q(N) =0 (N) Q(N) . (30)

r&

-LL -U LL

For the infinite long chains the only Raman modes are
those which are totally symmetric and have wave vector
k =0. ' In our case the infinite linear chain is uniformly
dimerized and the only Raman active mode is the one
where all atoms vibrate with the same amplitude "u" and
the neighboring atoms vibrate in the opposite phase as
seen in Fig. 5. Thus, this mode is the amplitude mode in
the AMM and the Ja mode in the ECCM as it was men-
tioned in the Introduction and will be discussed in Secs.
IV A and IV B. For the finite chain the situation is much
more complicated but for symmetry reasons there is al-
ways one and only one normal mode where the neighbor-
ing atoms vibrate in the opposite phase although the
magnitude of the vibration is not uniform along the
chain. We define this mode as the Ja mode of the Pnite
chain since for the limit X~~ it converges to the Ja
mode of Fig. 5. Thus, from an evaluation of the eigen-
vectors of Eq. (30) it is straightforward to select the Qz,
mode for the finite chain. Because this is the only mode
which is important in the resonance Raman behavior of
very long chains, we concentrated on this mode for short
chains as well. The change of ith bond length during the
vibration according to the Ja mode can be expressed as
dr, . =qz, (QJ );, where g,. ~(QJ, );~ =1. We were in-
terested in the change of the properties of the Ja mode as
a function of X. As an example Table I shows the com-
ponents of the normal modes for a chain of four atoms as
obtained from Eq. (30). In this case Q3 is QJ, . Charac-
teristic for QJ, of long chains is that its components are
almost zero at the ends and tend to be constant in abso-
lute value at the center of the chain as it would be expect-

where r' ' is the position of the mth nucleus. In addi-
tion, Eqs. (17) require the FC integrals which needs a vib-
ronic normal coordinate analysis. The LHS model is cap-

FICx. 5. QJ, mode of an infinite chain or a finite chain with
cyclic boundary conditions. rl and r, are the long and short
bonds in the unit cell, u is the uniform vibrational amplitude.



RESONANCE RAMAN SCATTERING FPOM FINITE AND. . . 603

TABLE I. Normalized bond length changes of the three vi-

brational normal modes of a chain with four atoms.

Bond

0.2876
0.9135
0.2876

—0.7071
0

0.7071

Q3—:QJ.
—0.5254

0.6693
—0.5254

ed for the infinite case. Table II shows this tendency for
a chain of 100 atoms. In the next paragraphs the Raman
properties of the Qz, mode of linear chains will be inves-
tigated for finite and infinite chains.

B. Albrecht's theory for finite linear chains

With the model developed above one can calculate the
resonance Raman characteristics of a linear chain as a
function of the chain length. As far as the Raman line
position is concerned it is straightforward. The details of
the frequency analysis will be discussed in Secs. IV A and
IV 8 where we compare our results with those of the
AMM and ECCM. The Raman intensity can be also cal-
culated in principle, using Eqs. (17). However, serious
problems arise in calculating vibronic overlaps as it is
shown in this paragraph.

Considering only the Q~, normal mode it is possible to
calculate all quantities in Eqs. (17) which are necessary to
evaluate Albrecht's A and 8 terms. Table III collects
these values at least for the first two electronic excitations
(k=1: HOMO to LUMO, k=2: HOMO —1 to
LUMO+ 1) for different chain lengths from %=4 to 120.
Only the "symmetrical" one electron excitations —where
the initial state is by the same amount below the Fermi
level as the final state above it—have nonzero matrix ele-
ments. The decrease and final saturation for the transi-
tion energies and the increase and final saturation for the
transition matrix elements with increasing X are charac-
teristic for Huckel theory. The first derivative of the ma-
trix elements are smaller than the matrix elements them-
selves so that the usual neglection of Albrecht's B term is
a good approximation.

A surprising result from Table III is the behavior of
the FC parameter z together with the ratio of the curva-
ture of the total energy curves in the excited and in the
ground state if the chain is longer than 10, at least for the
HOMO-LUMO excitation. These results can be more
clearly seen in Fig. 6 which shows the corresponding to-
tal energy curves for N=4, 10, 50, and 120 as a function
of the dimensionless Ja coordinate pz, =Qm J, Q~, qJ„
where QI, and qJ, are the frequency and amplitude of the
Ja mode, respectively, and mz, is calculated according to
Eq. (47b). The figure illustrates that beginning with
about %=10 the total energy curve in the excited state
starts to deviate from quadratic in pJ, and becomes more

and more anharmonic with increasing N. This means
that for increasing X the usual FC analysis [see Eqs. (12)
and (13)j cannot be carried out satisfactorily any more.
The analysis finally becomes impossible for N)40. As
will be shown later, for X »100 the potential energy be-
comes harmonic again.

To understand the reason for this behavior the follow-
ing must be considered. In the first excited state the bond
lengths in the configuration for which the total energy
has a minimum differs very much from the ground-state
minimum energy geometry. On a long chain the
minimum energy configuration for the first excited state
corresponds to a soliton-antisoliton pair at optimum dis-
tances from each other and from the chain ends. The dis-
tance over which the inverted bond alternation is extend-
ed is about 14 atoms. The tendency to relax in the first
excited state into a completely different geometry as com-
pared to the ground-state geometry means that the total
energy hypersurface in the excited state can differ very
much from that for the ground state. As a consequence
the ground-state normal modes are no longer proper nor-
mal modes for the excited state, a strong "Dushinsky ro-
tation" takes place. The total energy curve can differ
very much from a parabola if the first excited state ener-
gy hypersurface is cut along the direction which is the
ground state QJ, normal mode (see Fig. 6, %=50). In
this case the multidimensional FC integrals cannot be
factorized into one-dimensional overlaps with respect to
the ground-state normal modes. For very short chains
the effect is not so strong because the "solitonlike"
geometry is hardly established. There is not enough
space to form a "real" soliton-antisoliton pair and thus, it
does not perturb essentially the potential energy in the
excited state. On the other hand, as it will be shown in
Sec. III C, for the infinite chain the effect of the soliton
geometry, which is a localized distortion, is negligible on
the FC analysis with respect to the QJ, normal mode,
which is a delocalized effect along the whole chain. This
holds even though the deepest minimum may be at a
different position in ground and excited states in this case
as well. Numerical analysis shows indeed that for chains
longer than N=100 again a small minimum in the excit-
ed state potential appears which becomes deeper for
longer chains. Figure 6 shows this for N = 120

C. Extension of Albrecht's theory to infinite linear chain

We now investigate an infinite chain with uniform
bond length alternation where the only allowed change in
the geometry is the QJ, mode as it was illustrated on Fig.
5. The infinite chain can be considered as the limiting
case of finite chains but with cyclic boundary conditions.
With respect to uniformity of bond alternation and QJ,
along the ring the same holds as for the infinite chain.
However, the cyclic boundary conditions permit the con-

TABLE II. The components of Qz, normal mode for a chain with 100 atoms.

Bond (i)

(Qg. ); —0.002 0.003 —0.005 —0.148

50

0.148

51

—0.148
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diverge. For motions which correspond to one vibration-
al quantum it is, e.g. , A'Q. Therefore the real amplitude
of the change of a bond during vibration decreases with
increasing X. As a matter of fact it is proportional to
I IV'N. The amplitude qj, of the normal mode Qz„how-
ever, remains finite even for infinite chains. The change
of ith bond length can be expressed as the product of the
anlplitude of the normal mode and the ith component of
QJ, =QP" normalized to one:

cr, tot
O, tot —4

2tp
[Bp(coshx —x sinhx )

i 2

—(R, r—+ )coshx ],
(35b)

{—r~ /Bp) .
where tp= A&e

+ ~ is the absolute value of the mean
resonance integral. In Eq. (35a)

T

( —I )'
br; =qJ, (Qz, ),. = &N

(32)
1

~n
coshx

Thus, the kinetic energy is

hr',

l

red ~ 2
T. mJa q Ja

(33)

where m J,' =mcH/4=5973 a.u. is the reduced mass of
the Qz, normal mode, independent from N. The poten-
tial energy in the harmonic approximation is ,' fz,' (N)qJ—,
with

4n+2 .
1— 'j "

sin jcoshx 2n + 1
(36a)

a" ~~tot=0 and =0
Bx dr+

(37)

which can be regarded as a "finite elliptic sum" because
in the limit n ~~ it converges exactly into the elliptic
integral of the second kind.

The actual value of x (and r+ ) can be obtained from
the equilibrium conditions

dE, , 1 dE„,
dqJ, & dr'

2d Etot

dl"
(34)

E~, tot
E'

m, tot—
4tp 1

; n coshx,
coshx

(35a)

where e„,is the total (cr+m electronic) energy per unit
cell. This quantity renlains finite and converges for N to
infinity.

The m-electron energy eigenvalues and LCAO
coefFicients in the LHS model can be solved exactly for a
cyclic chain which is therefore much simpler than the
case of an open end chain, even for very large X. The
latter can be solved only numerically. After straightfor-
ward algebra one obtains for the cyclic chain

Equation (37) results in an equation for x of the form
x=f(x, n) with

R) —R2f (x, n)= sinh(2x) K
Bpn

1
~n

coshx

1
;n

coshx
(38)

Figure 7 illustrates the graphical solution of Eq. (38).
The right-hand side of Eq. (38) depends on N =4n +2.
For small n the only solution is x =0. For larger n the xp
nonzero solution has a lower total energy than x =0.
The xp value characterizing the dimerization saturates in
the infinite limit. The gap opening due to dimerization
has the value of Eg =4tosinhxo. The fg (N) =fJ,+
force constant of the Q~, mode can also be obtained:

2+. a e.t
Ja

g 2

X =X0

4tp
coshxp tanh xp I

~Bp
1

;n —K
coshx p

1
;n

coshx p

Bpm 2Xp+ 1—
2(R

&

—R2) sinh(2xo)

(39a)

In Eq. (39a) K and I are "finite elliptical sums" of the first

and third kinds similar to Eq. (36a):

1K ;n
coshx '

1
;n

coshx

4n +2
1 2.

1 — sin jcosh2x 2n + 1

—3/2

4n+2 .
sin j1 2 m

cosh x 2n +1

—1/2
(36c)

Using for A&, B&, R &, and R2 the values discussed in
Sec. III A one obtains from solving Eqs. (38) and (39a) in
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. 15
~ 8\x

.05

0(
0 .05 .15 .25

FIG. 7. Graphical solution of Eq. (38) for three difterent
chain lengths. Solutions are indicated by open circles. There is
no bond alternation for a cyclic chain with 6 atoms (n =1)
whereas for N —+~ the bond alternation saturates. With pa-
rameters mentioned in Sec. III A this corresponds to
rl —r, =0.09 A.

2a e-, t

Bp'

2ape = 8.071 mdyn/A
(R, —R2)Bp

(39b)

the infinite limit: x(pn —+ ~ ) =0.1511, r+ (n ~~ )
= 1.409 A, and fz,+ (n ~ cc ) =5.390 mdyn/A. Because
in the AMM the "bare" system without m. electrons plays
an important role it is worth to compare the latter force
constant value with that of a "bare" o.-force constant:

~—=&[.) ( )
. (40)

As a consequence of Eq. (40) the A term in Eqs. (17) van-
ishes. Furthermore in the B term [Eq. (17c)] the product
of matrix elements is nonzero only if the vibronic excited
state is identical either with the initial (v =0) or with the
final (v =1) vibronic state as it is illustrated on Fig. 9.
The former corresponds to the incoming resonance the
latter to the outgoing resonance. After straightforward
calculations the following expression for the transition
polarizability related to one unit cell can be obtained:

which is of course independent from X.
For evaluating the Albrecht's 3, 8 terms the electron-

ic dipole matrix elements and the FC integrals must be
computed. For the former this can be done straightfor-
wardly inserting the proper LCAO coefficients into Eq.
(27). Since every energy level is double degenerate due to
4n +2 symmetry the matrix element is the interference of
four terms according to Fig. 8.

The FC integrals are very simple as compared with the
case of short chains. As it was mentioned earlier [see Eq.
(34)] the derivatives of the total energy with respect to
the normal coordinate amplitude qJ, are needed which is
the derivative with respect to r divided by &X. The
difference between the total energy in the ground and ex-
cited states is finite because only one electron is excited,
therefore all derivatives with respect to qJ, are equal in
the ground and excited states in the infinite limit. For
this reason the delocalized normal mode wave functions
are identical in the ground and excited states and we ar-
rive at the solid state limit. The FC integrals are then im-
mediately obtained for z =0 as

+ 1

2~+2@ sinhxo Q 2 s h2 Q h2 2 4tpy CoL +i I 4tpy +0— co+Li I
(41)

—2x0
p(y )—:r+ —r + r+e 1+

Bg

Ssinh(2x p )

In Eq. (41) rpL is the quantum energy of the exciting laser,
0 is the frequency of the Q&, normal mode, and I is a
damping factor. The prefactor in the integrand diverges
for HOMO-LUMO (y =sinhxp) excitation and for exci-
tation from the bottom of the HOMO band to the top of
the LUMO band (y =coshxp). The latter occurs at much
higher quantum energies as usually used for resonance
excitation and therefore does not play any role. Figure
10 shows the excitation profiles calculated from Eq. (41)
for various damping factors I . The two peaks with a g

i g

FIG. 8. Schematic representation of the four degenerate
one-electron transitions of a cyclic chain with 4n+2 atoms.

FIG. 9. Diagrams corresponding to the two terms in the Ra-
rnan cross section of the infinite long linear chain [see Eq. {41)].
U~ =O~U, =0—+U~ = 1 describes incoming resonance and
Ug =0~U, = 1~vg

= 1 describes outgoing resonance.
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renormalized from a "bare" phonon propagator Do(Q)
which describes vibrations without m electrons via strong
electron-phonon coupling according to Fig. 11(b). II(Q)
is the polarization bubble which includes electronic in-
teractions. Do(Q) can be obtained from the Fourier
transform of the equation of motion of a damped har-
monic oscillator. Allowing many modes to be coupled
with the m electrons the "bare" phonon propagator is

1 14
(Q'„)'

Do(Q) =
Q~ —( Q„)iQ=5„

(42)

FIG. 10. Resonance Raman excitation profile for an infinite
long linear chain calculated by generalized CLM using LHS
model [Eq. (41)].

where A, = g„A,„.For trans-polyacetylene, e.g. , there are
two modes with considerable electron-phonon coupling
constant A,„.The renormalized phonon propagator D(Q)
is according to Fig. 11(b)

difference equal to Q!Eg corresponds to the incoming
and outgoing resonances.

Do(Q)
D(Q)=

1 —II(Q)DD(Q)
(43)

IV. COMPARISON OF THE EXPLICIT RESULTS
OF ALBRECHT'S APPROXIMATION FOR THE

LHS MODEL TO THE CURRENT MODELS

In the following we compare the results of Albrecht's
theory for resonant Raman effect in strictly one-
dimensional chains described by LHS model with that of
AMM, ECCM, and conventional CLM.

A. Comparison to the amplitude mode model (AMM)

The AMM is a solid-state approximation. Figure 11(a)
shows the diagram for a Raman process in the solid-state
limit. An incoming photon with wave number q and en-
ergy co; creates an electron-hole pair which —after emit-
ting a phonon with wave number k and energy Q—
recombine to a photon with wave number q

—k and ener-

gy cof. The phonon propagator D(Q) is considered to be

where Do(Q)=[2k, /N(0)]Do(Q), N(0) is the electron
density of states at the Fermi level of the "bare" system,
before renormalization.

For a Peierls chain the dependence of the polarization
bubble on 0 can be neglected if 0 &&Eg. This is called in
the AMM as the adiabatic approximation. ' Thus II(Q)
can be replaced by II(0). The "bare" phonon frequencies
(Q„)are the poles of Do(Q) while the renormalized fre-
quencies (Q„)are the poles of D(Q). The latter are
determined by the roots of the denominator that is, where
1 —II(0)Do(Q)=0 holds. This is a polynomial equation
for fL which can be written in the form
+[[Q —(Q„)]/[Q —(Q„)] j =0. Taking these two
expressions at Q=0 and using Do(0)—:—1 from Eq. (42),
the product rule follows immediately:

2X:= 1+11(0) 2X
N(0)

(44)

D(A)

ps+ / + ~ ~ ~

D (II)II(II)D (0) D (II)II(II)D (Q)II(A)Do(II)

FICi. 11. Rarnan process in the AMM (a) and renormalized
phonon propagator (b).

The effective electron-phonon coupling constant A,

defined by Eq. (44) is the central parameter in the AMM.
From Eqs. (43) and (44) it follows that for a given X, the
position of the Raman line can be obtained from the
equation Do(Q) = —1/(1 —2X) (2X (1). The solution is
illustrated graphically on Fig. 12. In our simplified case
there is only one contribution to the sum in Eq. (42) and
to the product rule. Remaining in this model Eq. (44)
gives the possibility to compute X, explicitly by means of
the LHS model by comparing the QJ, normal mode fre-
quency obtained for the total o. +m electronic system
(Q ) with the frequency for the same system but without
m electrons (Q ). In the AMM the chain is infinite long.
A, of the infinite long Peierls chain can be calculated ex-
actly using Eqs. (39a) and (39b) with n ~ oo in the form-
er. The parametrization of LHS described in Sec. III A
results in 2X,( ao ) =fJ,+ (n ~ ao ) /f f, =0.6678.

We stress however, that it is possible to define A, for
finite chains as well. Using Eq. (44) we can compute X, as
a function of the chain length. These calculations have to
be carried out for open end chains and not for chains
with periodic boundary conditions. The behavior of



J. KURTI AND H. KUZMANY

Do&)
I I

Ik
I I

I-
!I

I
I

I
I

I
I

I
I

I

n a.,I

I I
I I
I

I
I

I

I I

X2()--" --- )i" -.-- -.---I
1I I

I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ p ~ ~ ~ ~ ~ ~ ~ ~ ~ o t r ~ i I ~

1
I

f

I I

I Q Q2

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

~ I

I

I. I

I

I

I

I

j
I I I I

i

I I I I

j
I I I I

[
I I l !

1.5 — ~

1.4

1.3
K

1.2

1 I f I i I I I I I I I I t I I I I I I I '. I

.4 .5 .6 .7 .B
ln E (N)

I I I I
/

I I I f

I

I I I I

j
I L

I I I I I I I I I f I I I t I I f

.9 1

FIG. 12. Graphical solution of Do(Q) = —1/(1 —2A, ) for
determination of the Raman-line positions in the AMM.

chains and rings is opposite to each other with respect to
the frequency response as it can be shown by solving Eq.
(30) numerically for chains and calculating Eqs. (39) for
rings (see Fig. 13). This result can be qualitatively inter-
preted as follows. fJ, from Eq. (39b) is the same for
chains and rings independent from their length, that is, A,

is proportional to the curvature of the total renormalized
(o.+sr) electronic energy which is correlated with the
amount of bond length alternation. The latter increases
with increasing X for chains with cyclic boundary condi-
tions as is immediately realized from the lack of any bond
alternation in the benzene ring but decreases with in-
creasing N for open end chains. The infinite limit is of
course the same. This means, one should be careful with
cyclic boundary condition for finite systems in general.

In analyzing RR experiments by means of the AMM
the plot of k versus lnE plays an important role. Choos-
ing A, as proportional to the product of the square of the
experimentally measured Raman line positions of the sa-
tellite peaks and Ez as proportional to the frequency of
the exciting laser results in a nearly straight line for A,

versus lnE . Carrying out the same plot for finite
chains, calculating X(N) and E (N) with LHS model re-
sults in Fig. 14. This curve is also nearly a straight line in
a broad interval. This is the reason why the AMM works

0-

2Q M & 80 10Q

FIG. 13. Chain length dependence of X calculated by gen-
eralized CLM using LHS model for open end chains (0) and
for chains with cyclic boundary conditions (0).

FIG. 14. Inverse of 2A. vs. logarithm of gap energy for in-
creasing chain length N for the AMM. All quantities were cal-
culated by generalized CLM using the LHS model.

well as far as the positions of the Raman lines are con-
cerned.

To compare our result for the RR intensity [Eq. (41)]
with the excitation profile obtained from AMM the Ra-
man cross section for a Peierls chain was computed by
the AMM and according to LHS model. In the former
electrons were considered in the neighborhood of the Fer-
mi points +p~ of the "bare, " undimerized (metallic)
chain by approximating their E(p ) dispersion with a
linear relationship. In addition the approximation0«E was used in all formulas, not only for II(Q).
This yielded for the. RR intensity

T

(45)

D(Q) is the same as in Eq. (43) and describes the position
of the Raman line(s). The f(x)=f(coL/Eg) resonance
factor contains the dependence on laser excitation fre-
quency and has the form shown in Fig. 15. It has a max-
imum if cuL =E and its half width depends on the damp-
ing factor I . For I ~0 f(x ) diverges at x = 1. This re-
sult has to be compared with Fig. 10. It is evident that
there is one peak missing in the AMM. Both tree-type
diagrams illustrated in Fig. 9 lead to the same loop dia-
gram which is seen in Fig. 11(a) in the solid-state limit.
The diagram in Fig. 11(a) should have two terms differing
in Q /E, depending on where we cut the diagram
[dashed lines in Fig. 11(a)]. The reason for the lack of
two distinct peaks is the approximation 0 /E « 1.
Without this approximation f(x ) would really have two
peaks as it can be seen from Eq. (A2.4) of Ref. 21.

In the experimental results on trans-polyacetylene
there is only one broad peak in the excitation profile even
for the part of the Raman line which characterizes the
long segments. This can have two reasons. First, if the
electronic damping factor is greater than 1% of the gap
E the two peaks smear out into one broad peak (see Fig.
10). Indeed, for fitting experimental curves with AMM a
I (or equivalently a three-dimensional cutoffl value has to
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I cordingly a quantitative analysis of the RR line shapes
from a simple AMM can lead to an incorrect distribution
function of A, . In a generalized form with two peaks in
the excitation profile the AMM approaches the general-
ized CLM. The distribution in Rem then be explained
on a microscopic level as a consequence of a distribution
in chain lengths (Fig. 13).

B. Comparison to the effective conjugation
coordinate model (ECCM)

.6 1.4

FIG. 15. Resonance Raman excitation profile proportional to
the square of f(coL/Eg) calculated by the AMM for a Peierls
chain (see Ref. 21).

be used which amounts to 10% of the E . As a second
reason, the real polymers are inhomogeneous so the dis-
tribution of E and Q will smear the two peaks as well.
The second efFect is most likely dominant.

The AMM has the advantage to treat various RR
modes simultaneously and to provide a simple technique
to obtain vibrational frequencies and relative intensities
of RR bands. From a comparison of Figs. 10 and 15 it is
evident that the resonance e6'ect for a given chain is
reproduced as a limiting case of a molecular physics mod-
el in the form of the LHS approximation. However, the
AMM has the disadvantage, that the analysis needs two
fitting parameters per mode which will result in 2n pa-
rameters for n modes. This number can be reduced by
one if the product rule is considered. In addition, for the
quantitative analysis of the dispersive line shape of a
given RR-mode problems arise. First of all it is assumed
in the AMM that all chains in a sample are infinite
translationally symmetric, for which the solid-state limit
is valid. In real polymers it seems to be more realistic
that there are several short conjugations for which this
assumption is not valid. Assuming that all chains are
perfect and infinite but have various A, seems also unreal-
istic from a microscopic point of view, and can be accept-
ed only phenomenologically. Of course a distribution in
A. leads to a distribution in both the energy gap and the
phonon frequency. Thus, it is formally possible to de-
scribe dispersive RR line shapes. Another serious prob-
lem is that in AMM the resonance effect f(x =1) is as-
sumed to be constant and independent from the excita-
tion energy or from X. This is not justified from any ex-
perimental or theoretical consideration in particular not
for finite conjugation lengths. Qn the contrary: explicit
calculations on the Huckel level show the opposite behav-
ior. For long chains a 1/E dependence of the matrix
elements on the excitation energy was found. A similar
behavior for various short chains is shown in Table III in
this paper. The change of Eg in the denominator of Eq.
(45) is not enough to describe the resonance, in particular
because the transition matrix elements enter with the
fourth power. Thus their inhuence is very dramatic. Ac-

The ECCM considers chains with quasifinite conjuga-
tion length as obtained from periodic boundary condi-
tions. The central parameter is an effective conjugation
coordinate (Ja coordinate) as described already in Sec.
III A. Accordingly, Ja is a heuristically constructed
internal coordinate for an optimum characterization of
the strong coupling between the molecular geometry and
the ~ electrons of a conjugated polymer. In general it
can be constructed from the bond alternation coordinate
of the backbone. g; (

—1)'r, , where i runs over all bonds
of the backbone in the unit cell. The purpose for the con-
struction of this mode was the intention to give a micro-
scopic interpretation to the parameter A, in the amplitude
mode model. A, was replaced by an e6'ective force con-
stant fJ„which is the force constant of the Ja mode.
Different values for f~, lead to different normal frequen-
cies and difFerent normal modes. The various fz, corre-
spond to various lengths of conjugation. fJ, decreases
with increasing conjugation length. For computing the
change of normal frequencies and normal modes with

fj„asimplified GF formalism can be used. Instead of
considering the whole inverse kinetic (6) and force con-
stant (F) matrix only the blocks with dimension equal to
the relevant number of normal modes (experimentally ob-
served resonantly enhanced Raman modes) are con-
sidered. These blocks have, e.g., the dimension 2 (at most
3) for real trans-polyacetylene. Furthermore the depen-
dence on conjugation length is taken into account for
only one element in the F matrix, namely, the fJ, . The
Ja mode in the ECCM is the translationally symmetrical
extension of the eigenvector of the relevant GF block
(with strongest coupling with m electrons) if replacing
fz, (X~ ao ) into the F matrix. For other values of fJ,
the eigenvalues change and the modes mix if the dimen-
sion of the reduced matrices is ) 1. In this case QJ, is
not a normal mode in general. Figure 16 illustrates the
relation between fJ, and normal mode frequency 0 for
the case of two RR Inodes. For the strictly linear and
infinitely long chain there is only one RR mode. Thus,
the relevant G and I blocks are one dimensional and in-
stead of two there is only one curve which is shown as
dashed line in Fig. 16. This mode is then always the Ja
mode with di6'erent frequencies for di6'erent values of
fJ.

In the ECCM the assumption is used that the Raman
intensity of a mode is proportional to the Ja content of
that mode which can be regarded as the "coupling
strength" of the mode to the m electrons. This is a good
approximation for comparing Raman intensities, and also
IR oscillator strengths, of various modes on the same
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FIG. 16. Graphical determination of the Raman-line posi-
tions as a function of the e6'ective force constant fJ, in the
ECCM. The relative weight of QJ, in the normal modes
changes if there are more than one Raman active modes.

max

n =1
(f(n) +f(n) 2f (n)

) (46)

in Eq. (46) f», f22, and f,2 are the C—C, C=C
stretching constants and ( C—C )-( C =C ) interaction re-
spectively. The upper index (n ) refers to the number of
unit cells between corresponding bonds. It should be
mentioned, that the real length (N) of a finite chain de-
scribed by ECCM with Eq. (46) can be approximately ex-
pressed as N=4(N, „+1),because n =0 corresponds al-
ready to butadiene and increasing X „by1 means in-
creasing the chain length by one unit cell in both direc-
tions. As it is known the interaction force constant f (",2)
is always positive and the diagonal force constants be-
tween different unit cells f(i)), f (22)(n )0) are negative.
They quickly decrease with increasing distance. Conse-
quently, fJ, decreases and "saturates" with increasing
X „andthus yields a formally proper dependence of the

chain. However, it does not take into account the role of
electronic transition matrix elements in the resonance
Raman process. In the strictly one-dimensional bond al-
ternating chain with only one mode the ECCM yields a
constant Raman intensity. This result is not correct be-
cause the transition matrix elements depend strongly on
the transition energy and thus on the conjugation length.
Thus, similar to the AMM line shapes of dispersive
modes cannot be analyzed within the ECCM.

The dependence of the positions of the Raman lines on
conjugation length is described by ECCM only qualita-
tively. The reason for this is that it uses cyclic boundary
conditions and thus does not take into account finite
chain effects. As a matter of fact the effective force con-
stant fJ, for the Ja mode in a finite chain is derived from
an infinite chain by considering a finite interaction width
of the local force constants according to the relation

fECCM(N ) .—1(f(0) +f(0)
) 2f (0)

fJ, (N) =fJ,' (N): = QJ, (N)P(N)Q~, (N) .

Similarly one can define the reduced mass as

m~,
" (N)=mi,' (N):= QJ, (N)6 '(N)QJ, (N) .

(47a)

(47b)

Table VI shows also these reduced values for chains with
4, 8, 20, 50, and 100 atoms both for o. +sr (renormalized)
and for only (7 (bare) systems. The frequencies are eigen-
values of the GF matrix. As can be checked immediately
the relation fl =f Im between the corresponding values
still holds. It is also seen from Table VI that the various
values obtained for open end chains with increasing
length converge to the infinite limits obtained with cyclic
boundary conditions. The effect of the change of m&'"
with X is most clearly seen for the set of bare values. In
this case only o.-force constants between neighboring

normal mode frequencies on chain length as it can be
seen in Fig. 16. However this description is only qualita-
tively correct as it can be shown for the example of the
strictly one-dimensional chain using the LHS model. As
it was mentioned in Sec. III A the LHS model is capable
for calculating force constants. Table IV illustrates the
quality of this comparing bond lengths and force con-
stants as obtained from the LHS model and from ab initio
calculation for butadiene. We stress that we did not try
to scale the force constants, because we were not interest-
ed in the absolute values but in the changes as a function
of the chain length. For calculating fJ, with Eq. (46)
one needs the f "' values. Extending the calculations to
long chains shows that the force constants in the center
part of a chain with 100 atoms already equal those for the
infinite chain. This means that there is a quasitransla-
tional symmetry for the force constants at the center.
Table V shows the f ."' values from the center of a chain
with 100 atoms for various values of n within the LHS
model. The corresponding f~, effective force constant
values calculated by Eq. (46) using these f (~.

"'s are shown
in the first row of Table VI.

In addition, in the LHS model it is possible to carry
out the normal coordinate analysis with GI' method not
only for the small block, assuming translational symme-
try as in the ECCM but for the whole (N —1)X (N —1)
dimensional matrices as they were defined by Eqs.
(28)—(30). This can be done for the system including the
m electrons as well as for the system described only by the
0. part of the LHS Hamiltonian. For each chain length
the QJ, normal mode can be obtained as it was men-
tioned in Sec. IIIA. To compare the results with the
ECCM one has to compute the expectation values of the
force constant matrix with respect to the QJ, unit vector.
This reduced force constant is

TABLE IV. Comparison of the bond lengths and the force constants of butadiene calculated by ab
initio method {Ref.54) and by our LHS method, {All force constants are in rndyn/A. )

ab initio
LHS

r, {A)

1.457
1.476

r2{A)

1.339
1.340

5.608
8.063

9.549
14.992

0.461
0.943

—0.136
—0.471



RESONANCE RAMAN SCATTERING FROM FINITE AND. . .

0
1

2
3
4
5
10
15

8.1783
—0.3971
—0.1010
—0.0339
—0.0129
—0.0053
—0.0001
—0.0000

12.8471
—0.7267
—0.1848
—0.0621
—0.0237
—0.0097
—0.0002
—0.0000

1.3947
0.2568
0.0774
0.0280
0.0111
0.0047
0.0001
0.0000

atoms exist and they all are identical. The fJ, force con-
stant is therefore independent from chain length. In con-
trast the vibronic frequency 0&, changes with X corre-
sponding to a change of mJ, with N. The main point is
however, that comparing the corresponding fz, and
fJ, values in Table VI shows that the effective Ja force
constant fz, leads to a qualitatively correct but quan-
titatively an incorrect dependence on chain length.

C. Comparison to the conventional conjugation
length model (CLM)

The CLM was discussed already to some extent in Sec.
III. It assumes that there are various conjugation lengths
in a conjugated polymer due to interruption of conjuga-
tion by conformational and chemical defects. There is
thus a distribution in the lengths of segments with perfect
conjugation between defects. In the conjugation length
model this is transformed into a distribution of finite
chain lengths. The strength of the interruption of a chain
by a defect can be characterized by its interruption pa-
rameter g defined as

EEd,f
tg 0 (4&)

AE,„,
Here AEd, f and EE,„tdescribe the increase of the first
excitation energy of a chain due to a given defect or due
to a cut of the chain at the same site, respectively. ' The
calculated value for q depends to some extent on the
length of the chain and on the location of the defect. For
sp and sp + carbonyl defects, e.g. , it is between
70—90%. In the CLM always 100% interruption is as-

TABLE V. Force constant values (all in mdyn/A) taken
from the middle part of a chain with 100 atoms, calculated by
LHS model (n is the distance between bonds measured in unit
cells).

f(n)

sumed. It describes the RR bands by the A term alone.
For the chain length dependence of the electronic param-
eters, transition energies, and matrix elements, the results
of Huckel calculations are used and the vibronic overlaps
are treated within the FC approximation. Thus the CLM
is the only model among the three investigated in this pa-
per which really considers finite conjugation lengths with
no translational symmetry and no cyclic boundary condi-
tions on the one hand and explicit electronic dipole ma-
trix elements on the other. One disadvantage of the mod-
el originates from the use of extrapolated experimental
values for the chain length dependence of the vibronic
parameters like frequencies and FC constants. Neverthe-
less, using these parameters the frequency shifts with
chain length can be obtained. with a similar diagram as in
the case of the AMM (Fig. 12) and ECCM (Fig. 16). This
is demonstrated in Fig. 17 where the third quadrant
expresses the resonance condition, the second quadrant
the relation between energy gap and chain length, and
the first quadrant the relation to the vibrational frequen-
cy for two different modes.

With a proper distribution function of the conjugation
length the RR line shapes can be well fitted for all laser
excitations between 400 and 670 nm. The distribution
function may be bimodal characterizing the ordered and
disordered parts of the polymer. ' ' The change of the
RR line shape in experiments where defects are induced
artificially on conjugated polymer chains '" or during in
situ electrochemical doping can be analyzed successful-
ly with CLM.

In addition to the nonsatisfactory treatment of vibron-
ic contributions several other problems arise with CLM.
First, in the CLM the Albrecht B term is neglected. This
term is, however, important for very long chains, as it
was discussed earlier. However, if the typical length of
undisturbed conjugation is shorter than several ten car-
bon atoms, neglecting B as compared to A is a good ap-
proximation, since the shift between potential curves in
the ground and excited states is large and thus enhances
the A term over the B term. Also, the dipole matrix ele-
ment which enters into A is larger than its first derivative
which enters into B. Another problem results from the
lack of the minimum in the excited state potential for a
certain range of chain lengths as it was discussed in Sec.
III B. As a consequence a conventional FC analysis can-
not be carried out for medium long linear chains. As it
was pointed out, the reason for this may be the strong

TABLE VI. fjoe as calculated by LHS model using Eq. (46) with N=4(N, „+1)(see text) and the expectation values of the
force constant (P) and inverse mass (C ') matrices for finite chain length (N) with respect to the QJ, mode together with the eigen-

frequencies of the same mode as calculated by the LHS model using Eqs. (47) and (30), with and without m electrons.

fEccM( fndyn/A )

f,"M =f, (mdyn/A)
fJ, (mdyn/A)

mJ, (a.u. )

Qq, (cm ')
AJ, (cm ')

7.723
10.301
8.071

7223
7071
2099
1878

6.086
8.696
8.071

6717
6217
2000
2003

20

5.434
6.143
8.071

6019
6010
1776
2037

50

5.391
5.496
8.071

5980
5979
1685
2042

100

5.391
5.413
8.071

5975
5974
1673
2043

5.390
5.390
8.071

5973
5973
1669.7
2043.2
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FIG. 17. Relation between laser energy col, gap energy Eg,
chain length N, and vibrational frequency 0 in the CLM. The
dotted and dashed lines refer to two different laser energies.

perturbing role of the soliton configuration on the excited
state energy hypersurface. Thus, this problem exists only
for polymers with a degenerate ground state like, e.g.,
trans-polyacetylene. This problem may not be relevant
even for trans-polyacetylene if one of the following state-
ments are true.

(A) Solitons are not excited due to three-dimensional
interactions as it was argued by several authors.

(B) The contribution from chains for which the FC
problem exists is not important, because most chains in
the sample are either shorter or longer than the critical
lengths. It should be pointed out that although the criti-
cal length from our calculations is in the region from
several tens to around a hundred, these values are param-
eter dependent. However, within the present approach
for a chain with degenerate ground state there definitely
exists a critical interval for the application of FC theory.
This problem is very general and concerns also the other
models, in particular the ECCM.

V. DISCUSSION AND CONCLUSION

even qualitative errors. In contrast, the CLM especially
in its extended version presented in this paper considers
real finite, open end chains. From this point of view the
CLM is closest to experiments and will match the condi-
tions of the polymer in an optimum way.

Summarizing, the three models —amplitude mode
model (AMM), effective conjugation coordinate model
(ECCM), and conjugation length model (CLM)—were
compared with each other for the case of a strictly one-
dimensional bond alternating chain of finite or infinite
length as described by the Longuet-Higgins —Salem ap-
proximation.

It was shown that for a simplified consideration, main-
ly for analysis of the position and relative intensities of
the resonance Raman lines, both AMM and ECCM are
appropriate even though they do not consider a realistic
structure of the chains. For a detailed description and in
particular for a description of dispersive Raman modes
an explicit consideration of the conjugation length is
needed including the evaluation of the matrix elements,
transition energies, and force constants. The model
which fulfills this requirements is the conjugation length
model in its extended version. It was shown that the ex-
citation profile calculated with Albrecht's theory and
LHS approximation in the quasi-infinite limit results in a
resonance shape similar to the results of AMM for a
Peierls chain. The correct calculation for the transition
polarizability results in two peaks, one for incoming and
one for outgoing resonances, respectively.

Finally, it was shown that the usual FC analysis is not
appropriate for medium long linear chains because of the
dramatic difference in the shape of the total energy hy-
persurface for ground and excited states. This is due to
the strong and very complicated effect of electron excita-
tion on the geometry of the oligomer. It may be worth
investigating theoretically the FC problem with more so-
phisticated methods for oligomers, varying their length in
a broad range.

The final problem to be discussed refers to the question
which model is closest to the real polymer? There is
enough experimental and theoretical evidence that de-
fects limit conjugation in conjugated polymers. A defect
limited conjugation has, e.g., a bond length distribution
comparable to a finite chain. The AMM and the
ECCM consider infinite chains —explicitly or
implicitly —assuming translational symmetry or cyclic
boundary conditions. This can lead to quantitative or
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