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Variation of the Coulomb staircase in a two-junction system by fractional electron charge
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We report a measurement of the Coulomb staircase in a two-junction system where the fractional
residual charge Qp on the center electrode is varied without an external electrode. We present a sim-
ple analytic equation for 1(V) that depends on the parameters of the junctions, C~,2, R~, 2, and Qp, and
allows us to obtain them directly from the data. Full "orthodox" theory simulations incorporating
these parameters are in remarkable agreement with our data. Asymmetric gaplike features in the I-V
curve are seen to vary with Qo, and can be well understood by use of a C2/C~-Qp phase diagram.

We present high-quality Coulomb-staircase data, taken
with a low-temperature scanning tunneling microscope
and a granular gold film, which confirm a simple analytic
expression for the current in a voltage-biased two-junction
system in which the ratio of tunneling resistances
R2/R~&&1. Within this framework we show how I-V
curves can be separated into four distinct cases, depending
on the capacitance ratio Cq/C~ and the fractional residual
charge Qp. We explain how the individual parameters of
the system can be obtained from the I-V curve and how
asymmetries are achieved when QpAO. The width of the
Coulomb blockade region is also shown to depend on Qp
and vary from the often quoted value e/C&.

Our analysis is based on the "orthodox" theory of
correlated electron tunneling, and follows the notation and
derivation presented by Averin and Likharev. ' A recent
paper by Amman etal. gives a concise description of the
two-junction system, a schematic diagram of which is
shown in Fig. 1(a), and provides a general analytic solu-
tion; however, that solution is not intuitive by inspection.
To make our discussion self-contained, we will first
rederive the more intuitive equation of Averin and Li-
kharev by looking at a limiting case.

The particle tunneling rate for the jth junction is repre-
sented by IP (n), where the +/ —refers to electrons tun-
neling on/off the center electrode (n n ~1). I/ —can
be easily obtained from a basic golden-rule calculation: '

r,—(n) =
—h,Eq-

Rje I exp(hE~ /ks T—)—
where hE is the energy change of the system when the
electron tunnels across the barrier and R~ is the tunneling
resistance of the jth junction. The equations for hE are
obtained from electrostatic energy considerations (e )0):

r

&E2 = —~ (ne —Qp) T C& V
Z

(2)

Qp represents the fractional electron charge present on the
particle when the voltage electrode in Fig. 1(a) is Boating.
The origin of the fractional charge Qp will be discussed
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junction, and C&=(C~+C2). hU is just the change in
charging energy of the center electrode as it gains or loses
one electron. The second term in hE~ 2 is the—potential
difference across the barrier times the electron charge. By
letting P = (ne —Qp), where n is the integer nearest Q/e,
i.e., I Qp r~ e/2, we can rewrite the above equations as

r

&El = —~ (ne —Qp) ~ C V
+ e e
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where Q is the excess charge on the center electrode be-
fore the electron tunnels, C~ is the capacitance of the jth
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FIG. 1. (a) Schematic of the experiment. (b) The four quali-
tatively diAerent cases of I-V curves. Within each case is shown
a small trace which is representative of data in that region, al-
though the shape of the trace can be varied greatly within each
case by changing Qo or C2/C~. It is the order of the conduction
onsets which is fixed in each case.
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later. The current is then given by

I(V) =e g a(n) [r;(n) —r;(n)]

=e g a(n)[r) (n) —r)+(n)],

a(n) [rl+(n)+r2+(n)l
=cr(n+I)[I l (n+I)+I 2 (n+1)]. (4)

Since the r.—are known from (1) and (2), this allows one
to solve for the distribution cr(n), subject to the normali-
zation condition, g„=— a(n) =1. We can thus numeri-
cally solve for I(V) from (3).

It is possible, however, to obtain a simple analytic ex-

where a(n) is the ensemble distribution of the number of
electrons on the center electrode. The distribution a(n)
is obtained by noting that the net probability for making a
transition between any two adjacent states in steady state
is zero; thus:

pression for I(V) by considering the limit where
R2/Ri» I The most probable number of electrons on the

electrode np i,e, the value fol which a(n )~ a(np+ 1), is then primarily determined by junction 1
because I l» I 2 in (4). Combined with (4) and (1), this
maximum probability condition requires that

e '( —C2V+Qp e/2) ~np~ e '( —C2V+Qp+e/2) .

(5)
cr(n) is expected to be sharply peaked if ~AE~ ~ &&kilT.
That is, cr(n ) =6„„, at low temperatures. The net
current (3) is then given by

I(V) =e[I 2+(np) —I 2 (np)] .

Note that junction 1, having a much higher tunneling
rate, determines no, while junction 2, with the smaller tun-
neling rate, responds to this constant np by adjusting the
current correspondingly. For low temperatures such that
(AE2—(np)

~
&)ke T, we can simplify I q(np) to obtain

[——,
' +. (nil Qp/e) ~C(v/e], for&E2r —(n ) — R2Cg

0, for AE2—& 0.

I

pacitances are as small as 10 ' -10 ' F, however, the
asymptotic limit is not well defined in our range of mea-
surement, which is only a few volts. The data in this rela-
tively small voltage region show detailed features about
the conduction onset in a two-junction system. In particu-
lar, our work shows that there are distinct cases which
differ according to whether the onset of conduction is
caused by (i) np changing, because V reaches the limits in
(5) before those in (6a), or, (ii) overcoming the Coulomb
blockade of C~, because V reaches the limits in (6a) be-
fore those in (5). The former causes a discrete jump in
current, while the latter causes the onset of a linear in-
crease in current. Taking account of positive and negative
voltages separately, we distinguish four cases which are il-
lustrated schematically in Fig. 1(b).

The four cases identified above are exactly what is ob-
served in our experiments. By noting the sequence of con-
duction onsets, one can identify the case to which a mea-
sured E-V belongs, and then proceed to experimentally
determine the model parameters, including Qp. In our ap-
proximation, where R2&)Rl and T=O, Eqs. (5) and (6)
give simple expressions for distinct features in the data.
For example, from (5) we obtain that the difference be-
tween the threshold voltages for the first positive step and
first negative step is e/C2, while their sum is 2Qp/Cz.
Similarly, (6) shows that the plateau slope on a step (np
constant) is C~/RqCr. . Some of these quantities are noted
in Fig. 2. These preliminary parameter values are refined
for finite temperatures by using (3), (4), and the normali-
zation of a(n) to compute the dotted curve, which has
r=R2/R~ =~ and T=4.2 K. Since, the position of the
noted features are not aftected be changing r, we then
simply decrease r until the best fit is obtained. This is the
solid theoretical trace (usually hidden by the experimental

This means that I(V) =0 when

( —e/2+npe —Qp)/Cl ~ V~ (e/2+npe —Qp)/C~ . (6a)
This is the so-called Coulomb blockade. Outside of this
voltage range I(V) is given by: '

(n.e Q—.)+C,—V sgn(V—)—, (6b)

where n p is obtained from (5). Equations (5) and (6)
form the basis for interpreting our data They ar.e used
qualltatlvely to ldefltlfy tile case to wlllcll a glvell IV-
curve belongs and to determine parameter values from
specific features in the data. These parameter values are
then used in (3), the exact I(V) solution, for quantitative
comparison with the data.

Our experimental setup consisted of a low-temperature
scanning tunneling microscope (STM), tunneling into a
gold surface. The STM used a chemically etched
platinum-iridium tip. Images of the gold surface show a
very grainy surface. It is believed that the two-junction
system was created by the presence of a grain or some
equivalent contaminant between the tip and the bulk of
the sample. The sampIe was voltage biased and the data
were taken at 4.2 K.

In a two-junction system, the most commonly observed
feature of a Coulomb blockade is an oA'set in the asymp-
tote of the I-V curve. Our analysis gives more detail.
Equation (5) shows that Q =(npe —Qp) jumps from
( —Cq V —e/2) to ( —C2V+e/2) each time np jumps by l.
From (6b) the corresponding currents are V/R2 and
(V —e/C&)/R2, for V) 0. Thus (6b) describes a series of
sloping steps within an envelope with slope dI/d V= I/Rq = I/Rq, and average offset e/2C~. When the ca-
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data points). The dashed curve is (6) calculated with the
same parameters except with r po and T 0, to show ex-
plicitly the nature of the finite-temperature effects in our
data.

Rounding in the steps arises from two sources, a
nonzero temperature and a finite R2/R~. Finite tempera-
ture causes a symmetric broadening of the current step
jumps. In our experiment, at 4.2 K, k&T &0.02(e /C&)
and thermal effects are small. The finite ratio R2/R~
leaves the linear conduction onsets very sharp, but the step
onsets (no no~ 1) are no longer vertical jumps con-
necting plateaus with universal slope C~/R2C~, as in the

simplified result (6). Rather, the onsets have a finite slope
and the step top rounds toward a plateau slope of
C~/RzCX [Fig. 3(a)]. The step onset can be distinguished
from a linear increase by noting that the slope of the
linear increase is the same as the slope of all the step pla-
teaus, while the step onset will have a much larger slope.
This distinction can be clearly seen in Figs. 2(a) and 3(a).

Figure 3(a) shows data in a wider voltage range where
successive steps become apparent, forming the Coulomb
staircase. From (5) and (6) it is clear that the width of
the individual steps is e/Cz, and that the slope on the step
plateau is C~/R2Cq, in all cases; this agrees extremely well
with our data, where the values of C~ and C2 are already
uniquely obtained from the central region. Also, as Qo
approaches + e/2 in any case, the width of the zero con-
ductance region goes to zero as shown in Fig. 3(b). This
is the single-electron transistor effect in which by chang-
ing Qo from 0 to +' e/2 we change the conductance of the
center region from zero to a finite value. A close look at
measurements reported by other researchers shows that
their results are well accounted for in our model. In par-
ticular some unexplained asymmetric traces are perfect
examples of cases I and IV [Fig. 1(b)]. It is also
worth noting how closely class-III traces resemble
superconductor-normal-metal STM measurements re-
ported as showing large superconducting gaps. '

In our experiment Qo is thought to originate from the
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FIG. 2. Data for various cases compared to exact theoretical
curves and two levels of approximation. (a) Case II, (b) case
III, and (c) case I. The measured parameter values are (a)
Cl =1 36x10 ' F, C2=405x10 ' F, R[=0 3 MO, R2
=29.3 Mti, and Qp= —0.096e, (b) C~ =1.64X 10 's F,
C2=3 28x10 ' F, Rl =20 MQ, R2=39 2 MQ, and
Qp= —0.005e, and (c) Ci =7.2X10 'p F, C2-4.05x10 '9 F,
R~ =1.7 Mii, R2 =16.6 Mri, and Qp= —0. 1 le. All data were
taken at T =4.2 K and fitted using that value.
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FIG. 3. (a) Coulomb-staircase data continue to fit theory
outside of the central region. By moving the STM tip closer to
the sample, we go from A to 8, decreasing the total resistance of
the system (asymptotic slope). This movement also changes the
geometric capacitance, C~ or C2, and hence changes Qp. This
capacitively induced Qp change can be seen more dramatically
in the central region of data in another junction, Fig. 3(b).
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TABLE I. Width of the zero conduction region, h, Vp, for
different cases. The parenthetical restrictions show that the
necessary symmetry of the Qo —C2/C~ phase space is preserved.
Note that in cases I and IV, AVO 0 as IQOI e/2, while in
cases II and III, 4 Vo e/max(C2, C~).

Case

I (Q. &0)
II (C, & C2)
III (C, &C, )
iv (Q. & o)

AVp

(e/2+ Qo) (CrjC ~ C2)
e/C)
e/C2

(e/2 —Qo) (Cx/C t C2)

difference in work functions of the different metals used in
the junctions. If so, the more fundamental variable is the
contact potential across the junction. Qo(mod e) is ob-
tained from

Qo -—[C ) (A4 ) ) —C2(hy2) ]1

e

where the hp~ and d, &2 are the contact potentials across
junctions 1 and 2, respectively. By changing the tip-grain
distance we can change the capacitance C~ or C2 and
hence change Qo as well. This allows us to move sys-
tematically around the phase space of Fig. 1(b), taking
data in the various sections. We have observed the oscilla-
tion of the width of the zero conduction region caused by
varying the tip-to-grain capacitance sufficiently to change
Qo through multiples of e. A detailed report of these data
is in preparation.
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