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A theoretical study of the properties of the Fermi level in semiconductor superlattices (SL’s) is made
which is based upon the carrier occupation of the minibands in thermal equilibrium. We find, for a fixed
carrier density and temperature, that the SL Fermi level can differ significantly from that obtained using
commonly employed three-dimensional approximations, depending upon the relative spacings and
widths of the minibands, with the SL Fermi level being higher than the corresponding bulk value. We
find that the SL Fermi level is a sensitive function of the relative widths of the quantum wells and bar-

riers.

In recent years, there has been renewed interest in
semiconductor superlattices, most notably in their trans-
port properties.! ~® The artificial periodicity of the super-
lattice (SL) perturbs the band structures of the underlying
materials to produce new (miniband) conduction states,
the energies of which can be selectively tuned through
the design of the SL. While there has been much effort,
both experimental and theoretical, aimed at elucidating
the allowed states of SL’s, there has been surprisingly lit-
tle attention devoted to the thermal occupation of these
states.

In this article, we investigate the properties of the
Fermi-level energy for semiconductor SL systems.
Despite the central importance of the Fermi-level energy,
experimental results on SL systems are often interpreted
by assuming a bulk, three-dimensional Fermi-level value,
or at best, by making educated guesses for which mini-
bands are occupied. To our knowledge, however, there
has not been a systematic study of the SL Fermi level. As
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we show, the actual Fermi level for a SL can differ
significantly from that obtained using bulk approxima-
tions, depending upon the relative spacings and widths of
the minibands. This is related to the fact that the density
of states for a SL is a hybrid between a two- and a three-
dimensional density of states, and a calculation of the
Fermi level must reflect this difference. We first calculate
the Fermi level for a given density of carriers which occu-
py the minibands of a SL in thermal equilibrium. We
find that, for the same density and temperature, the SL
Fermi level is higher than the corresponding bulk Fermi
level. We then investigate the dependence of the Fermi
level upon the parameters of the SL (e.g., the relative
widths of the quantum wells and barriers), for a fixed car-
rier density.

In the following, we adopt several simplifying assump-
tions which allow the basic effects of the SL minibands on
the Fermi-level energy to be most readily ascertained.
We assume the carriers to be a noninteracting Fermi gas
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which populate the energy levels of the system, an as-
sumption which is commonly employed in determining
the Fermi level in bulk, homogeneous semiconductor sys-
tems. We assume that the SL quantum potential
[V(z)=V(z +a), where a is the period of the SL] is
known from the conduction-band minima of the host ma-
terials, in terms of which a set of miniband energies can
be obtained. We further assume that the SL dispersion
relation can be written
hZ

*

m

E;(k ,k,)= jk.a), j=1,2,... (1)
where 7k, is the momentum transverse to the SL direc-
tion, k, is the longitudinal wave vector, and the € ; are the
miniband dispersion relations, with j the band index. We
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derive an average transverse effective mass, m *, from the
harmonic mean of the effective masses of the two materi-
als comprising the SL unit cell, (m*) 1=§;(m¥)"!
+8,(m3 )™, weighted accordingly (8,+8,=1). This
prescription yields the average curvature of the parabolic
band in the transverse directions. The minibands are
defined relative to some convenient reference energy, E.,
which we will take to be the bulk conduction-band
minimum for the smallest band-gap material in the SL.
We begin by calculating the density of carriers which
populate a specified set of minibands in thermal equilibri-
um, corresponding to a given value of the Fermi level E.
This is most easily done utilizing the one-electron density
matrix evaluated in the grand canonical ensemble,’
which, for this system, is readily shown to be given by

plziEp=25 3 [ kidk, [T i,y 1+ explBLE Ky k)~ Ep]D @)
J

where ¢; kz(Z) is the single-particle Bloch wave function

associated with the jth miniband, normalized according
to

1 pra
L s a1, ®

and B=(kyT)~!. Note that the electron density p(z) is in
principle inhomogeneous through the behavior of the
wave functions. Physically, this corresponds to an in-
crease in the carrier density in the quantum wells of the
SL, and to a decrease in the barriers. The magnitude of
such spatial inhomogeneities in the carrier density cannot
be accurately modeled without a self-consistent calcula-
tion of the electron states, where the inhomogeneous
charge distribution generates (via Poisson’s equation) the
potential from which the minibands are determined.!®
We will not attempt such a coupled Poisson-Schrédinger
calculation here; rather we adopt the simplest (and com-
monly employed) approximation where the minibands are
obtained from the “flat-band” potential ¥V, described
above. Note that, whatever the form of the SL potential
from which the minibands are derived, to determine the
Fermi level we require only the total density of carriers,

_1pa .
n(EF):afop(z,Ep)dz, 4)

and hence any inhomogeneities in the charge distribution
are averaged out.

Thus, substituting (1) into (2), integrating over (2) as in
(4), utilizing (3) and integrating over the transverse de-
grees of freedom, we obtain

n=—— E L;, (5)
where n,p, =m* /(7mB#*) and
1 T
szgf_ﬂdx Fo(BlEp—¢;(x)]) . 6)
is the Fermi-Dirac a two-

Here F, integral for

dimensional density of states, Fy(y)=In[1+exp(y)].
Equations (5) and (6) generalize the form of the expres-
sion for the density of a two-dimensional electron gas: an
integration is performed (instead of summation) over the
miniband energies which result from the splittings in-
duced by the interactions among the quantum wells of
the SL. Once the minibands are specified, we can infer
via (5) and (6) the Fermi level which corresponds to a
given density of carriers.

While it is possible to solve for the band structure of
the minibands for a given SL potential, we have, for sim-
plicity, adopted a model dispersion relation'! to represent
each miniband, of the form

g;(x)=¢g;o— Wcos(x) , (7
where €, is the center energy of miniband j and 2W; is
the respective bandwidth. These parameters are assumed
known,'? and are taken as input for the present study.
The tight-binding form in (7) is a convenient example of a
one-dimensional band structure. If necessary, it would be
a simple matter to numerically integrate (6) using more
accurate minibands. We have calculated Kronig-Penney
minibands and find results which are well parametrized
by the form of (7).

With (7) substituted in (6), the resulting integral ap-
pears to be intractable except for one case for which we
can obtain useful analytic results. When the Fermi level
does not intersect a miniband, i.e., |[Er—¢; o > W), it can
readily be shown that L; possesses the following rapidly
convergent expansion:

Lj=F0(B(EF*8j’0))

1)k+l

+E X

O kB —1]  (8)

where I, is a modified Bessel function. When Ej inter-
sects a miniband, however, we have not found a useful
analytic expression for L;. For the general case (no re-
striction on E), we have numerically integrated the com-
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bined equations (6) and (7). Equation (8) provides a useful
check on numerical results when applicable.

Equation (5) defines an implicit relationship between
the Fermi level and the total density of carriers in the SL
minibands. In order to accurately describe the equilibri-
um density of carriers in the SL states, however, the
analysis must include a description of all the states avail-
able to carriers with energies lying in the vicinity of the
Fermi level. For any given semiconductor system, there
are numerous possible physical processes which can affect
the free carrier density.!> For example, carrier freezeout
may occur if the impurity states are sufficiently localized.
In semiconductors with a small effective mass such as
GaAs, however, one would expect that the mutual
screening of the impurity potentials prevents the localiza-
tion of hydrogenic states for doping densities above a
characteristic value. (Deep levels can still be a major
effect, as in the well-known “DX-center” problem.)
Below, we adopt the simplest assumption of a mono-
valent donor species which remains ionized independent
of the Fermi level, and thus the carrier density equals the
donor concentration. In GaAs systems, this is found to
be a good approximation for donor concentrations above
the low 10'°-cm ™ range;!* donor densities in experimen-
tal GaAs SL’s are commonly well above this value, with
2% 10" cm~? being typical.

Shown in Fig. 1 are our results for the density versus
Fermi level for a GaAs/Alj ;Ga, ;As SL with 50 A quan-
tum wells and 70-A barriers obtained with use of (5) and
(7). The energies of the three lowest minibands (relative
to the bulk GaAs conduction-band minimum) are shown
at the top of the figure in crosshatch. The miniband ener-
gy extrema [which are used to infer the parameters in
(7)], were obtained using a Kronig-Penney model incor-
porating the effective mass discontinuities,!> together
with a 65% conduction-band offset. The SL density of
carriers is shown as a function of Fermi level, together
with that for bulk!® GaAs at two different temperatures,
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FIG. 1. Density vs Fermi level (left ordinate) for

GaAs/Aly ;Gag ;As superlattice and for bulk GaAs for two tem-
peratures. Three lowest miniband energies (relative to GaAs
conduction-band minimum) are shown at top in cross-hatch.
Superlattice has 50-A GaAs quantum wells and 70-A barriers of
GaAs Alj ;Gag ;As. Superlattice density of states shown in dot-
ted line (right ordinate).
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FIG. 2. Superlattice Fermi level for fixed carrier density
(2X 10'® cm™?) as a function of superlattice parameters for two
temperatures. For each curve the quantum-well width is held
fixed, and the barrier width is varied.

T=0 K (solid lines) and T=300 K (dash-dotted line). It
is seen that for a given density and temperature, the SL
Fermi level exceeds the corresponding bulk Fermi level
by approximately the energy of the lowest miniband. We
have also shown the SL density of states (dotted line).
The quantized, “staircase’” appearance resembles a two-
dimensional density of states, in that between minibands
there are no additional states for SL transport. As the
Fermi level exceeds each miniband minimum, however,
the density of states suddenly acquires a three-
dimensional character.
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FIG. 3. Miniband energies as a function of SL parameters.
Each panel corresponds to superlattices of varying barrier
width, but fixed quantum-well width.
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Figure 2 shows the behavior of the Fermi level which
results for a fixed density of carriers (2X10'® cm™3) as a
function of the SL parameters. Three sets of curves are
shown. Each set corresponds to a sequence of SL systems
for two temperatures in which the quantum-well width is
held fixed, but in which the barrier width is allowed to
vary. Note that for each set of SL parameters in Fig. 2, a
separate determination of the miniband parameters is re-
quired. In the limit as the barrier width vanishes, the SL
becomes bulk material, and the Fermi level evolves to the
appropriate bulk value, that for GaAs in this instance.
The barrier material in all cases is Al ;Ga ;As.

It will be noted from Fig. 2 that the Fermi level is not
always a monotonic function of the SL parameters. This
can be traced to the qualitative behavior of the minibands
as a function of barrier width, such as is shown in Fig. 3.
Starting from zero, as the barrier width is made finite, the
bulk conduction band is quantized into a series of mini-
bands by the SL periodicity. For small barrier widths,
the first miniband is rather wide in energy. However, a
small energy gap is opened up between the bulk
conduction-band minimum and bottom of the first mini-
band. To populate the SL with the same density of car-
riers, therefore, the Fermi level must increase accordingly
to overcome this energy gap. As the barriers are made
wider, the minibands tend to shrink in bandwidth (from
above as well as from below), and thus the Fermi level
must generally be an increasing function with increasing
barrier widths to populate the ever-narrowing minibands
with the same carrier density. Some interesting excep-
tions can occur, however. If, as a function of increasing
barrier width, the top of the (shrinking) miniband which
contains the Fermi level, meets, and then crosses beneath
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the (rising) Fermi level, E; can then either “plateau” or
even decrease in value, being “pulled down” by the top of
the shrinking miniband. This is seen to occur in Fig. 3 at
barrier widths of approximately 4 and 2 nm, respectively,
for well widths of 2 and 5 nm. From Fig. 3(a), we also
observe a change in the behavior of the Fermi level as it
crosses into the second miniband at a barrier width of ap-
proximately 15 nm. Note that these effects are accentuat-
ed in the case of the smallest quantum-well width shown,
where the relative influence of an increasing barrier width
is strongest.

In conclusion, we have investigated theoretically the
properties of the Fermi level in semiconductor superlat-
tices, based upon the thermal occupation of the mini-
bands. For calculational simplicity, we have employed a
tight-binding band structure, (7), for the minibands, a
condition which can be trivially relaxed in the light of
more realistic minibands. We find that the SL Fermi lev-
el differs from that obtained using bulk approximations
owing to the energy gaps between minibands, and that
the difference can be significant depending upon the rela-
tive spacings and widths of the minibands.
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