
PHYSICAL REVIEW B VOLUME 44, NUMBER 11

Long-range surface modes supported by thin films

15 SEPTEMBER 1991-I

Fuzi Yang, J. R. Sambles, and G. W. Bradberry
Thin Film and Interface Group, Department ofPhysics, University ofExeter, Exeter, Devon EX4 4QL, United Kingdom

(Received 22 March 1990; revised manuscript received 7 June 1991)

A detailed analysis of the surface modes of a thin slab of material of dielectric constant e2 ( =e„2—i e;2)
surrounded symmetrically by dielectric media is presented. Results show that in the thin-film limit, as
well as the well-known long-range surface plasmon for a thin metal layer and the TM guided mode for a
thin dielectric, a long-range surface mode exists for almost any value of e2. This is even true if the imagi-
nary part of e2, e;2, is much larger than the real part e„2.We also find that a long-range surface mode
may arise from the coupling between two surfaces which individually cannot support a surface mode.
These are a pair of special coupled-surface modes which may exist below a certain critical film thickness
and which have two separate propagation vectors each with the same field symmetry. It is also found
that the inverse situation may pertain, that is for certain relative values of dielectric constants even
though ordinary surface modes may exist, below a critical thickness the resulting coupled long-range
mode no longer exists. The analysis has also been extended to practical situations with weakly absorbing
surrounding media and to circumstances where the dielectric constants of the surrounding media are
slightly different. Both of these effects modify the dispersion relations obtained for the simple case and
introduce further limit thicknesses into the problem. Analytic formulas in the thin-film limit are
presented for all the above situations and field distributions and energy How (Poynting vector) profiles
presented to illustrate as necessary the nature of the modes supported by these systems. Finally experi-
mental results are presented which illustrate the rather sweeping conclusion that a long-range surface
mode may exist on a thin film for almost all values of e„2and e;2. This result paves the way for a range of
optics experiments on absorbing structures.

I. INTRODUCTION

A surface electromagnetic wave is defined simply as an
electromagnetic wave that propagates along the interface
between two media and whose amplitude decays ex-
ponentially with increasing distance from the interface
into the two media. The existence or otherwise of such
surface waves is established through the use of Maxwell's
equations and appropriate boundary conditions. In the
case of a p-polarized disturbance (TM wave) whose mag-
netic vector lies in the plane of the interface and perpen-
dicular to the direction of propagation there will be a
discontinuity in the component of the electric field nor-
rnal to the interface. This results in a surface charge den-
sity and hence the surface electromagnetic mode is an
electromagnetic wave coupled to these surface charges.
At the interface of two nonabsorbing media the surface
electromagnetic waves which may exist are generally
known as Fano modes, ' while for one medium with ab-
sorption the surface waves are called Zenneck modes.

In general, in condensed-matter physics interfaces be-
tween two media can lead to a range of possible surface
states involving the relevant quasiparticles (electrons,
phonons, excitons, magnons, etc.). However if, as is nor-
mally the case, the decay distance of the surface vibration
amplitude and the wavelength are much greater than the
distance between atoms or the relevant distance scale for
the particular surface mode, then such surface vibrations
may be treated phenomenologically as simple alternating
dipole moments. This then allows a macroscopic electro-

dynamic treatment of the media which are described ade-
quately by a simple frequency-dependent dielectric con-
stant e(co). In the regime of frequencies close to coo such
that e(coo) displays a strong resonance, it is conventional
to describe the electromagnetic surface wave as a coupled
mode which is an admixture of the electromagnetic field
and the elementary excitation in the medium which gives
rise to the resonance in e(too). Such electromagnetic
waves are therefore commonly called surface polaritons
and we then find surface plasrnon-polaritons, surface
exciton-polaritons, etc. As we shall see later this descrip-
tion is somewhat misleading, as should be obvious when
we try to examine the existence regime in co, for a given
resonance, for all resonances have a strong effect over a
wider range in frequency than that often considered in
the above descriptions.

Another general concept of solid-state physics and op-
tics, often stated explicitly or often implicitly assumed in
the literature, is that of a surface-active medium. It is
commonly asserted that a material with a negative real
part of its dielectric constant (e„2(0) has the capacity to
cause a surface polariton at the interface with a second
medium of positive dielectric constant (e„&),provided
that the inequality ~e„,~ )e„,is satisfied. Actually this is

only true for the Fano modes —those surface modes with
no loss, in which case the dispersion equation describing
the surface wave has only real components. In general,
of course, all dielectrics have some imaginary component
to e; this is obviously true of the surface-active medium
since associated with any resonance in e„2(co)there will
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be a resonance in e,.2(co). This then gives a Zenneck mode
and the dispersion equation describing the surface modes
has complex components. It has often been assumed that
the imaginary part e, may be ignored, and this may well
be true for the surface-inactive medium, but for most of
the situations in which there is a surface-active medium
giving rise to perhaps a highly negative e„it will be im-
possible to ignore the inhuence of the absorbing effect on
the surface electromagnetic wave. Indeed, some situa-
tions arise, as we show below, in which a large e, 2 is vital
to the existence of the surface mode.

In Sec. II of this paper it is shown how a medium hav-
ing some absorption at a frequency co, i.e., e(co) has a
nonzero imaginary part e;2, must be "surface active" and
even though e„2does not satisfy the above criteria it can
support a surface mode between itself and a second medi-
urn with a real e. It is in fact independent of whether the
real part of the dielectric constant of the "surface-active"
medium is positive, negative, or even zero although when
the positive real part of the dielectric constant is much
larger than its imaginary part, the Zenneck mode almost
becomes a purely radiative mode, that is, a Brewster
wave.

Recently research using the attenuated coupling
method has shown that highly absorbing materials do
indeed support sharp surface mode resonances. In all
these studies the surface-active medium has a large imag-
inary part e;z with its real part either positive or negative

These studies therefore take the conventional wisdom of
a surface-active medium having a large negative e, into
the more general idea involving complex e values. It
would of course be argued that for highly absorbing sys-
tems the surface mode is likely to be a very broad reso-
nance. While this is indeed generally true for the single
interface mode, more complex geometries, and in particu-
lar the next simplest geometry of two such modes cou-
pled together on a thin absorbing film, do not give broad
resonances.

Consider a thin film of surface-active medium (now a
material with e,. ) surrounded symmetrically by dielectric
media with real positive dielectric constants. The two
surface modes may couple across the thin film. This then
results in two mixed modes which show dispersion with
film thickness. One mode is symmetric, that is, the paral-
lel component of magnetic field, which is labeled H, does
not exhibit a zero inside the film, the other is antisym-
metric which does give a zero in H inside the film. The
absorption in the surface-active film results in a finite de-
cay distance for both modes. However, for the truly sym-
metric system and indeed for small enough differences be-
tween the dielectric constants of the media bounding the
film the attenuation of the symmetric mode decreases to
zero as the film thickness decreases and the wave vector
of this mode approaches that of a plane wave in one of
the surrounding media. In this case, the symmetric mode
is generally termed the long-range surface mode not only
because the attenuation of this mode is less than that of a
general single surface mode but also because there is a
second antisymmetric mode which has a greater attenua-

tion and is correspondingly called the short-range surface
mode. As the film thickness decreases the propagation
distance of the long range-branch increases while that of
the short-range branch decreases. In absolute terms
"long range, "which implies a propagation distance much
greater than the wavelength, will depend on the wave-
length used and the particular geometry and it is really
only in the limit of the film thickness tending to zero with
correspondingly the propagation length tending to
infinity that the term long range should most rigorously
be used.

There have been several studies of both long-range and
short-range modes for very thin metal films. ' The
short-range mode has been observed in highly antisym-
metric structures with large differences between the
dielectric constants of the surrounding media. ' While
for almost symmetric structures both modes may be ob-
served and the decrease in the attenuation of the sym-
metric mode with film thickness confirmed. " '

Ferguson, Wallis and Hauvet' have evaluated the
dispersion curve as a function of metal film thickness for
a film surrounded asymmetrically by glass and air. They
find that, as well as a leaky Fano mode, above a certain
thickness of metal there is a bound surface mode which
transforms to a growing wave below some cutoff thick-
ness. At the cutoff thickness the solution is very much
like a Brewster field in that were a plane wave incident
upon the layer it would be totally absorbed. As is seen
later this cutoff thickness arises in more general situa-
tions not necessarily involving a metal film.

Burke, Stegman, and Tamir' have examined in some
detail the case of a lossy metal film bounded by dissimilar
dielectrics and find that the geometry can support a total
of four waves. Leaky waves are predicted in regions of
the dispersion curves usually associated only with bound
modes.

The long-range modes which may be supported by
thinner films are of substantial interest both theoretically
and experimentally. This arises largely from their associ-
ated high local-field enhancement which has potential in
nonlinear optics applications. There is already a substan-
tial body of work examining nonlinear optics using long-
range surface plasmons' (LRSP) including both
second- and third-order nonlinear interactions. Some
theoretical studies ' have also been undertaken to try
to find a configuration which would give a very long
propagation distance with its associated strongly
enhanced local field. As well as these LRSP studies there
is also some work on the long-range surface phonon-
polariton and the long-range surface magneto-
plasmons. In all the above studies it is imagined that
the surface-active medium must have a large negative
real part to its dielectric constant and that the inequality
~e„2~)e, must be satisfied. Recently it has been shown,
as indicated earlier, that a long-range surface mode may
be supported on a thin film which has a large imaginary
part to its dielectric constant, the real part being very
nearly zero. This coupled long-range mode has been la-
beled the long-range surface exciton polariton (LRSEP)
since it is primarily in the vicinity of an excitonic reso-
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nance that the condition
~ e„z~&& e, z may be found.

In Sec. III of this paper a systematic analysis of the
long-range surface modes available with a thin film hav-
ing any dielectric constant e„z(=e„z—ie;z) surrounded
symmetrically by dielectric media having real dielectric
constants (e& =e3) is analyzed. It is found that as well as
well as the normal long-range surface polaritons
(plasmon, phonon, magnon, etc.) which exist for
e„z& 0, ~ e~z ~

&& e;2, ~ e„z~

& e), and the optical TM guided
modes which are found for e„z& 0, e„z» e;z, ~ e„z~

& e&

there are in fact long-range modes which exist for almost
any values of e2 with the exception of a small area in the
complex plane of e„2,e;2. In particular it is found that
when e;2=0, e„z&0but ~e„z~ &e& there is still a long
range coupLed surface mode euen though a single interface
mode does not exist for this system. This is a special sur-
face mode created only by the coupling of the two sur-
faces, rather like the TM guided modes; it is not a mode
created by the two surface modes coupling together.
Even more surprisingly, when the film thickness is less
than some critical value there are two coupled modes
with the same field symmetry yet difFerent propagation
vectors for a single thickness.

The examination of the symmetrically surrounded thin
film is extended in Sec. IV to the asymmetric case with
e)A&3, par'ticularly for ~b

~

=
~e&

—
e3~ &&e&,e3. This, of

course, takes the idealized symmetric system much near-
er to practical reality. The third step in this logical de-
velopment then introduces in Sec. V finite but small ab-
sorption in the surrounding media while maintaining
symmetry (e& =e„&—ie, &, e;& «e„),e) =e3).

In the penultimate section of the paper, Sec. VI, we
present some experimental results which verify the gen-
eral conclusions that the long-range surface mode may
exist for almost any value of complex dielectric constant
of the surface active film. Finally, in Sec. VII some gen-
eral conclusions and discussions are presented.

f (z)=e ', z &0, medium 1,
f(z)=e ', z &0, medium 2,

(3)

(4)

where the coefBcients a, and a2 are obtained from the
wave equations as

and

a=k —ke1 0 1 (Sa)

a=k —km2 0 2 ~ (sb)

where kp =co/c is the free-space wave vector at frequency
cu. Continuity of tangential E, E„,at z=0 leads to the
dispersion relation

e,a2+e2a, =0 . (6)

This equation has to be satisfied if a surface mode is to
exist. Also for a nonradiative surface mode it is clear
from Eqs. (3) and (4) that Re(a, )&0 and Re(az)&0.
There are then two simple situations to consider.

(a) If e;z=O, that is, the surface-active medium has no
absorption (a physically unrealizable situation but one
often assumed in the past), then k& =0. Then ez=e„zand
k=k„soEq. (6) becomes an equation containing only
real components. We must then have e„2& 0 and
~e„z~& e, for a solution to exist:

1/2

parallel to the interface and f(z) describes the depen-
dence of H on the distance away from the interface
[f(0)=1), and Ho is a normalization constant. In the
normal way the electric-field components may be calcu-
lated using Maxwell's equations: i.e.,

&~y —k
toe 5z toe

We then write the dependence f(z ) for the two media
in the form

II. SURFACE ELECTROMAGNETIC MODES
SUPPORTED BY A SINGLE INTERFACE

1&r2
k, =kp

~r2+ &1

E1&r2
=kp

E'1
(7a)

The geometry under discussion is that of two semi-
infinite media, 1 and 2, joined at a planar interface. For
simplicity we shall limit all media to those having relative
magnetic permeability 1 and a dielectric function which
has no spatial dispersion. The coordinate axes are chosen
so that the z axis is perpendicular to the interface with
z =0 corresponding to the interface. The x axis is in the
surface-wave propagation direction while the orthogonal
y axis lies in the interface plane. Medium 1 is a pure
nonabsorbing dielectric, e1)0, and medium 2 is a
surface-active medium ez erz 1 e 2(eiz &0'

For isotropic media the surface electromagnetic waves
are transverse magnetic and are best described by their
magnetic-field component which lies in the plane of the
interface and in the y direction:

1
CK1

—kp6'1
~r2

(7b)

1+2= kPer2
&r2

1/2

(7c)

(b) If e;2%0, then ez, k, a„and az are all comPlex, so
Eq. (6) leads to more elaborate solutions of the form

where e,2= —e',2, e,'2&0.
This is the very simple pure ideal Pano mode disper-

sion relation, which gives the decay constants a, and a2
as purely real constants of the form

1/2

H =Hof(z )exp[i(cot —kx ) ]=H~,
where k =k„ik;(note the negati—ve sign to be consistent
with e and +idiot) is the complex propagation constant

kr =kp
(e„z+e,) +e, z

ez+(e4+ezez )1/2

2
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k, =k0
E'

1

( E~2+ Ei ) +6I'2

1 /2
&i2&1

[2(E2+(6 +62e2 )i/2)]i/2
2/3

r2 i2

1/2 1/3
&i2

64 27
+

w here

(Sb)
1/2 1/3 '

&i2

64 27
+ ' —e, . (11)

2 = 2 2
p2 +~i2 +~ 1Fr2 (Sc)

k„=k0

1 /2
~1~r2

&1 +&r2

I 1/2
&1&r2

k ~'/2
0 1 (9a)

Also u 1 and a2 are both complex, leading to oscillating
decaying fields in both half spaces.

Let us now examine Eqs. (Sa)—(8c) for a range of
diferent situations.

(1) If e = —e' (0r2 ~r2 &
& ~r2 &&~i2~ ~r2 & 61 then from Eqs.

(8a) and (Sb) we find

When this equation is satisfied the real part of the wave
vector of the surface mode just equals the bulk wave vec-

~1/2 F
tor in the simple dielectric. If e » e th fe1, en or

pe i Eq. (1 1) gives e„2———0.75@i. This special
condition may be achieved in the vicinity of an excitonic
resonance close to co T .

For fixed e1 and e;2 the dependence of k„and k; on e„2
is s own in Fig. 1 . From this figure it is clear that pro-
vided e;2%0, no matter how small, in principle a nonradi-
ative surface mode exists, that is, k,- is finite and both a,
and a2 have real positive components. Thus over the

1 /2
&1&F2

(9b)k, =kp
2(e„2—ei ) e'„2(e„'2—ei )

This is then a much more realistic surface plasmon-
polariton having k„&k 0e

&
and with k; proportional to

e;2 ~ As is well known for a surface plasmon on increasing
e',2, k„tends to the limit value k0 e

&
and k; decreases to-

wards zero.
(2) If e„2=0 then we find

'I .02

1 .01

'l .00

and

em [e +(e +e )' ]
k &'/2

2( 2+ 2) k0e 1

1 /2

2(E2+E2 )[6; +(E2+ 2e)i/2]

(10a)

( 10b)

0.99

0.98—4-00
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I-200 0 200 400K„

which may be labeled a surface exciton-polariton ' For
this situation if also e;2 ))e, (which is the case for a fre-
quency close to a dielectric resonance, for example close
to the transverse exciton frequency u T of the surface-
active medium) then I

C3

r 0 1

3/2

k; ~k0
&&i2

so that surprisingly k, is inversely proportional to e;2 ~

This is quite the reverse of the dependence found in Eq.
(9b) for the surface-plasmon mode.

Notice from Eqs. (9a) and (10a) that while the surface
plasmon has k„&k 0e', the surface exciton hn as

0e 1 so a relationship between e e and e must
1 /2

r2& i2& 1

exist for which k„=kpEi . Examination of Eq. (Sa) gives
this relationship as

0-400
I I I I I I I i I I I I I I-200 0 200 400

K
„

FICx. 1 . Dispersion relations for a single interface surface
wave. {Ao=3.391 pm, &r =2.3, k, =(2m/A, )e' =2.81 pm '

)
Curve 1 e .

120@ {a)k„/kc vs ~rp~ {b~ ki vs ~rp.
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whole range of e„2(from —~ to + ~ } even though the
real part of the wave vector of the surface mode, k„may
be less than kpe&, a nonradiative surface mode may ex-
ist. This means that the light line, specified by k =kpe&
only separates radiative and nonradiative regions of the
dispersion curve for e;2=0, i.e., Fano modes. Although it
is clear that when e,.2 is very small and e„2is positive and
large enough the Zenneck modes (k„&koei~ ) are almost
Brewster waves, because Re(a2) is very small and Im(a2)
is large with u1 tending to zero. Workers ' have shown
examples of the excitation of nonradiative surface modes
(Zenneck modes) in the region k„&koeI~ .

Of course, all of the above is well established; we have
placed it within this text as an introduction to the main
ideas found in the following sections. It has also, we
hope, clarified some of the slight misconceptions which
exist regarding the rather rigid separation between sur-
face plasmons, Fano modes, Zenneck modes, surface ex-
citons, etc. These are often just limit concepts which are
convenient ideas but which become less clearly distin-
guishable for real systems with complex e's and complex
propagation constants.

III. LONG-RANGE SURFACE MODES
IN A SYMMETRIC GEOMETRY

still small enough so that
l —,'a2d

l «1, then from Eq. (16)
it is simple to expand to first order giving

6'2(X
1

6'1CX2
(17}

'2 2 2
~d 6;2(er2+ei2 eler2)

Ap ( Er2+ e';2
(18b)

where we have introduced A,o, the vacuum wavelength
(2m. jko) as the important scaling length for d. Note that
the expressions both contain terms quadratic in (m'd /A, o),
for k„this is a correction while for k,. it is the dominant
term.

Consider Eqs. (18a) and (18b) for the following cir-
cumstances.

so that the dispersion relation for the long-range coupled
surface mode which exists in this thin film limit is (Ap-
pendix A)

2 2 2 2 2 2
e'i ~d ( er2+ ei2 ~1~r2 } e1~i2

0 (e'r2+ ei2

(18a}

e2a2(e, a3+E3ai )
tanh(a2d )=-

E'1E'3A'2+ E2CX1A3
(12)

The geometry which is analyzed in the following is that
of a thin parallel-sided slab specified by e2 surrounded by
semi-infinite media specified by e1 and e3, in this sym-
metric case e, =@3. Now, of course, the thickness d of the
region 2 provides another variable in the problem being
involved in the linking of the two surfaces together. Solv-
ing boundary conditions as before it is readily shown that
the dispersion relation for this geometry is

d '(I „I+,}'
kr =kpp,'1+

2 p r2
kp

„,, '~d '
le,2I+ei

0 l&r2

(19a)

(19b)

A. Symmetrically surrounded real metal, e,2 & 0,e;2%0

If e,2&0 then

and

a.=k —kpe, , j=,

k =k„—ik;

(13) This is the case for a real metal and we see that k; is pro-
portional to e;2. These equations for k, and k; represent
the realizable iong-range surface plasmon for a real met-
al, in the thin film limit given by l —,'azd

l
« 1.

CX2d
tanh

2

E'1(X2

E2CX1
(15)

and a second, symmetric in H, which has the form

Q2
tanh

6'2' 1
(16)

For the long-range branch the primary interest centers
on Eq. (16) which when d~0 has the solution a&~0.
This is therefore the long-range mode. If d is not zero yet

as before.
For bound surface modes, we now require both

Re(a, ))0 and Re(a3))0 remembering that the depth
Q3z

distribution in region 3 has the form f(z)=e with
z (0. When the system is symmetric, e1=t 3, then Eq.
(12) is split into two separate branches, one which is an-
tisymmetric in H and has the form

B. Symmetrically surrounded excitonic absorber, e,2=0

If e„2=0 then with e,2) e1 we have
2 62 ~2

kr k061 i+ j 2
)kp61

1/2 61 ~d Gi2 ~1 1/2
2 0

2

k k 61/262 ~
—1md

i P 1 1 q i2
Ap

(20a)

(20b)

This is a special mode which may be found near a strong
resonance feature of the active medium. For example, at
the transverse exciton resonance e„2=0and e, 2 may be
quite large. This new resonance which we label the long-
range surface exciton (LRSE) has the interesting feature
that in this thin-film limit its half width, given by k; is in-
versely proportional to e;2. Therefore, the stronger the
absorption in the active thin layer the sharper the reso-
nance. The H field and Poynting vector distribution for
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such a mode show almost total exclusion of power from
the film. Further the Poynting vector in the film is only
along the z axis.

A situation found near a strong resonance where e,2 is
again zero but e,2 is quite small (for example, at the longi-
tudinal exciton frequency, coL ) leads to a mode which, in
contrast to the LRSE described above, has k„&kpE'1
which may also be labeled an LRSE. Once again the de-
cay constant is inversely proportional to e;2, but now
with 6'2&E'1 it is a much weaker resonance and is only
truly a long-range mode when d « A,p.

C. Symmetrically surrounded nonabsorbing dielectric, e,2 & 0

If e„2& 0 and e;2=0 then

1/2 1+ 1 &d r2 1e (e —e)
r 0~1 2 2

0 ~r2
0 1 (21a)

and

k, =0. (2 lb)

In this case e„2has to be greater than E'1 for a bound
mode to exist (see Equation (A19) in Appendix A). This
of course is none other than the well-known case for an
ideal TM guided mode. Because in this situation there
is no single surface mode for such parameters [see Eq. (7)]
then this long-range wave (k; ~0) arises purely from the
coupling of the fields at the two surfaces of the thin film.
Of course there is no corresponding antisymmetric mode.

D. Symmetrically surrounded absorbing dielectric e,2 & 0, e;2 & 0

If e„2&0and e;2«e„2,then we have the practically
realizable TM guided-mode situation which may be fur-
ther subdivided into several different situations.

(1) If e„2&e, and e„2(e„2—e, ) »e, 2, then k„is still
given by Eq. (21a) and

k, =k 1/2 2 md ~2 2E (e 6)-
(22)

0 &r2

These expressions describe a normal strong waveguide
with weak absorption.

(2) If e„2e&,and e„2(E„2 e'I) e;2, the case for a weak
waveguide with some absorption, then we need to use
Eqs. (18a) and (18b).

(3) If E„2=a„then

e& ~g (e&
—1)E;2

'2 2 2

k =k e' 1 —— &k e', (23a)r 0 1 2 g ( 2+ 2)2 0 1

and that described by Eqs. (23a) and (23b) are extensions
of the conventional waveguide picture. In conventional
waveguide theory the requirement for a symmetric
waveguide is e2 & e„but this is strictly only true for the
Fano mode. When e„2&e„provided that e;2%0, then if
e„2+@,2/e„2&e, is satisfied, there is a TM guided mode.
So, provided d is small enough to satisfy Eq. (17), as

e„2+@,2/e„2—e, tends to zero, because the optical fields

penetrate deeper into the media on either side of the ab-
sorber, the loss progressively reduces to zero [see Eq.
(18b)].

When (e„2+a,2/e„2)& eI it is clear that k, & 0 and the
mode transforms to a growing mode' ' [Re(a, ) &0 from
Eq. (A9)] in the symmetric geometry. Because the grow-
ing surface mode is not a bound long-range surface mode
and is dependent on externally incident fields supplying
energy to make the total wave amplitude grow, we do not
discuss this mode further. However, it is worth noting
that with E„2)0 and e„2+@,2/e„2& e, because e;2%0 there
is still a single interface mode which has now been des-
troyed by the coupling of the two surfaces, the converse
to the situation discussed in III C above.

It is worthwhile examining the magnitudes of k, and k;
for a possible practical case. Consider A,0=3.391 pm
(corresponding to a He-Ne laser line) with 4 =10 nm,
E'1 =E'3 =2.30, e„2=2.0, and e;2 =0.8. With these values
e'„2+E;2/e„2=2.32)e, ( =2. 30) we now expect a long-
range surface mode even though e„2& e, . From the ap-
proximation, Eq. (18), we find the mode is very close to
the critical momentum

ak, =kpeii" —k, =44 m ',
k, =1.90X10 pm

which corresponds to a long-range mode with very low
loss. Exact evaluation of Eq. (16) gives

hk„=44m

k; =1.90X 10 pm

which shows that in this thin-film limit Eq. (18) is a very
good approximation. If now we reduce e;2 to 0.7, then
because e„2+a';2/e„2=2.25 & e„Eq.(18) no longer gives a
bound solution. However, we can use Eq. (8) in Sec. II to
find a single surface mode having k„=1.95 pm ' and
k;=1.72X10 ' pm '. This is now a strongly damped
mode. Nevertheless its existence shows us that there has
to be some cutoff thickness d* such that when d & d* no
symmetric bound mode exists for the above constraints
on the e values. The behavior for (e„2+@;2/e„2—e, )-0 is
complicated and higher-order approximations need to be
introduced.

2 e3~d
k; =kpe1 ei 2 2 2(e, +e,2)

(23b) E. Symmetrically surrounded metal ~e„2~& eI

(4) If e„2& e, but (e„2+e;2 —e,e„2))0, that is
~„2+~',2/~, 2& ~„the~e is ~tI,ll a g~~ded mode. From Eq.
(A9) in Appendix A it is clear that Re(a, ) )0. This case

For e„2&0 and e;2=0, which is the same as case (1), we
now examine the infiuence of d for ~e„2~& e, . From Eqs.
(19a) and (19b) it is clear that we do not need ~e'„2~)e, for
this coupled mode. Yet in Sec. II, Eq. (7) the single sur-
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600—

400—
E

face mode may only exist if Ie„zi& e, . Thus we have a sit-
uation where a 1ong-range mode is supported by two sur-
faces neither of which can independently support a mode.

We may use Eqs. (15) and (16) to examine this situation
with e,2=0 and e„2=—eI2 (e„'2&0). Equation (15) then
becomes

200—
ds

k, +k0e„'22 2 I
' 1/2

tanh[ —'(k +k e' )' d]=r 0 r2 k —krz r 0
(24)

0
Ik 'k 'k&' Ik&

and since E' z(E'] the right-hand side of this equation
must be greater than unity so no solution may exist. This
means there is no antisymmetric mode for this situation,
just as for the TM guided mode case. However, Eq. (16)
becomes

FIG. 2. Relationship between k„/k, and the film thickness d.
(A,o=3.391 pm, @1=@3=2.3, e;2=0, k, =(2m/A, o)el '=2. 81

pm '. ) Curves 1 and 2, e„2= —11.5; curves 3 and 4,
e„&=—5.75; curves 5 and 6, e,2= —2.38; curve 7, e„2=—2.3;
curve 8, e„2=—2.07; curve 9, e,2= —1.50. Solid lines and
dashed lines are, respectively, for symmetric and antisymmetric
modes in H~.

tanh[ —'(k +k e'2)' d]= e2 k, koE,—

kr +k0&rz

1/2

(25)

which has solutions with the limitation that, because the
right-hand side is always less than unity, d is limited and
cannot go to infinity, that is, no single surface mode exists
for these conditions.

When d ~0 Eq. (25) has two solutions, k„~koeI and

m ed I U GATI 2

m eCI I U f7l

Hy Hy

medium I

edium

Hy

FIG. 3. The H~ field distributions for the points marked k&, k2, etc. for the same d, d, in Fig. 2. (A,O=3.391 pm, el=e3=2. 3,
e;2=0, d, =180 nm. ) (a) ki =3.84 pm ', e,2= —1.50, (b) k2=6. 57 pm ', e„2=—1.50, (c) k& =2.97 pm ', e„q=—5.75, (d)
k2 =5.79 pm ', e„2=—5.75 (d relatively scaled by 10X ).
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k„~~(for which k„dremains finite), this implies that
there is some maximum value of d, d „,below which
there are two modes having the same symmetry in H for
a single d value. This simply means for any given d
below d,

„

there are two values of k„which satisfy
1 /2

2 &r2 kr ko&id= tanh '
(k2+k2~' )1/2 ~ k2+k2~~

taining the symmetry of the system, for as is shown in the
next section, breaking the symmetry substantially
changes the situation.

To summarize the situations examined for the single
and for the two interfaces we list the cases developed in
Secs. II and III in Table I.

Finally, if we examine the power series expansion for
tanh(x ), viz. ,

(26) tanh(x)=x —
—,'x ' ' ', lxl &1, (27)

In Fig. 2 we illustrate solutions for this equation where
we have also included for comparison purposes other
curves calculated for Ie'„2I)e, . This shows the evolution
of the curves as Ie„2I approaches e, and then finally

le„2I&e, . For the case of le„2I&e, we see that when
d =d, ( &d,„)we have solutions k, and k2 for which the
H field distributions are displayed in Figs. 3(a) and 3(b).
In order to allow comparisons of these with the LRSP
and short-range surface plasmons (SRSP) fields we also
show in Figs. 3(c) and 3(d) the H distributions for the
LRSP at k', and the SRSP at k2.

In general then, provided d is small enough to satisfy
the approximation required to give Eq. (18), then a long-
range surface mode exists for any value of e2 except for a
small area described by (e„2+@;2)& e', e„zas shown in Fig.
4. The limit to this area is a semicircle of radius e, /2
centered at e„z=(e,/2), e,2=0. In fact close to this
boundary higher-order terms are needed to describe the
situation and the boundary is not exactly a semicircle.

In Figs. 5(a) and 5(b) we show both k„and k; as func-
tions of d for several different cases, using Eqs. (15) and
(16). For all these cases as d tends to zero a long-range
mode is found with k„near koe& and k; near zero. To
serve to illustrate this even more fully we have modeled
an attenuated total reflection coupling situation in Fig. 6.
Here the reflectivity, as a function of angle of incidence is
plotted for 3.391-pm radiation coupling to a 29.2-nm film
of varying e„zsurrounded by media with e, =@3=2.22.
There always exists a sharp resonance very close to the
critical angle of the coupling prism (@=2.89). This is the
long-range coupled surface mode which we note is quite
insensitive to the specific value of e„2. However, note
that this behavior is quite strongly dependent on main-

600—

400—

6

200—

0.99 1.00
k,/k,

1.01

600—

400-

it is clear that for the above cases we require la2d /2I & 1

and we need to specify the desired precision to impose
any tighter limit.

Of course, the goal of this paper is not to simply devel-
op a series of analytic formulas for calculating the disper-
sion relations for the various modes (they, after all, may

200—

K(2

Long —range Surface Mode Area
0
0.01 0. 1 10 100 1000

k ( 1O'nm ')

I I I I I I I ( I I I I I i I I I I I I I I I I I l I j I I I 1 I I I 1 i I

K1 r2

FIG. 4. A map of the region in the complex space of e2 over
which in the thin-film limit the long-range mode can be created
in the symmetric three-medium case.

FIG. 5. (a) Relationship between k„/k, and the film thick-
ness d. (b) Relationship between k; and the film thickness d.
(A.p= 3 ~ 391 pm 6&

= 63 =2.22 k& = (277/A, p)E'] =2.76 pm ~ )

Curves 1 and 2, e2 = —440 —i 84 (gold); curves 3 and 4,
E2= —105—i 140 (palladium); curves 5 and 6, e2 =0—i40 (vana-
diurn); curve 7, e&=16.8 —i1.0 (indium antimonide). Solid and
dashed lines represent, respectively, modes symmetric and an-
tisymmetric in H~.



LONG-RANGE SURFACE MODES SUPPORTED BY THIN FILMS 5863

1.00

0.80—

~ 0.60
U
Q3

0.40
Q3

U
(p 0.20

CL

0.00
59.00

I I I I I I I I I I I I I I I I [ I I & I I I I

60.00
Angle (deg)
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be readily computed directly from the exact equations).
Rather, the purpose of developing the analytic formulas
is to allow a more detailed discussion of the long-range
modes and to clarify the role of dielectric constants,
thickness, and wavelength on their properties. If we wish
to extend our analytic studies further in thickness then
higher-order approximations may be obtained; this is not
difficult using Eq. (27). For example, for e„&=0and
e;2& e1 we already have the first-order formulas in Eqs.
(20a) and (20b). These become, using the next-order term
in the tanh expansion,

FIG. 6. Calculated angle-scanned attenuated total reQection
spectra for p-polarized radiation exciting a long-range surface
mode, the sharp feature, and at least one guided mode in the
dielectric between the prism and the active medium.
(A,0=3.391 pm, e& =@3=2.22, e~„, =2.89, d, =8.80 pm,
dz =29.2 nrn. ) Curve 1, ez = —200+ i 50; curve 2,
62 = —100+i50; curve 3, ez =0+ i50; curve 4, ez= 100+i50;
curve 5, 62 =200+ i50.

2 2
1 7Td i2 1

r 0 1

&i2

El 1Td 6 I ( El 36l2 )
4 2 2+—

3 X0 i2

+ d . 4e'ie'iz (~is
6 2 2 2 2 2

18 k0 &~2

2 2
1 /2 7Td 1

i 0~1
~0 &i2

1 ~d ~i2
2 2 2

1+—
3 A0 E1

(28a)

4

(e;z —e, ) . (28b)
2

0

We compare these two pairs of formulas with the exact
computed results in Figs. 7(a) and 7(b). It is clear that
the first-order formula [Eq. (20a)] is adequate for k„for
thicknesses up to 50 nm, as seen by comparison of curve
2 with curve 4 on Fig. 7(a). This is not true for k, . By a
thickness of 20 nm the first-order formula, Eq. (20b), is
beginning to deviate significantly from the exact calcula-
tion; however, the next approximation, Eq. (28b), is very
good up to and beyond 50 nm. Thus we conclude that if
one wishes to examine general relationships for
thicknesses greater than 20 nm it is probably wise, partic-
ularly in the case of k;, to use the higher-order approxi-
mation although the first-order one does show adequately
the general trend in behavior of both k„and ki with
thickness. Actually such thicknesses (-20 nm) are typi-
cal of those used to produce long-range surface modes
and are also convenient for continuous metal and dielec-
tric thin layers.

IV. LONG-RANGE SURFACE MODES
IN AN ASYMMETRIC GEOMETRY

The geometry to be considered is as in Sec. III but now
e,&e3. We shall limit our considerations to only small
differences between e1 and e3, i.e., e&

—@3=6(&e&,e3. We
return to Eqs. (12)—(14). Once again in the thin-film limit
with small 6, Eq. (12) may be approximated but now by
much more elaborate expressions to give [see Appendix
B, Eqs. (B8a) and (Bgb)]

TABLE I. Summary of conditions for the existence of surface modes at a single interface and two

coupled interfaces.

parameters
e„z&0

e;2=0

e,z) 0
&rz & &i

e;2=0

&rz + 0~ &rz & &1

rZ+ Gi 2/Grz

any other cases

single interface
no surface mode

no surface mode

a surface mode

a surface mode

two coupled interfaces
two coupled surface modes with

the same symmetry for same d value
(d &6,„)

one long-range coupled
surface mode —TMO guided mode

no coupled surface mode
(d &d*)

coupled long-range

surface mode and
short-range surface mode
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(~~2+~~2 ~ ~2) (~ ) ~~~~2(~+
A,o 2e'

)e'3 ( e„p+E';p ) [ ( 6 ( E„2') +e;2 ]
(29a)

and

) /2 'Ird i2( ~r2+ ~i2 1 ~r2 )( ~
~3(~r2+~i2) [(&j—&r2) +&a]

(29b)

60—

1 2 3 4

where

2 = e')E3[(E] Epp) +'Ej2]

&r2+&i2
2 2

B =kE'1 2
7TCf

Aro

(29c)

(29d)

b, =e, —e, &0 (b, &&e„e3). (29e)

20—

The appearance of the term B indicates that there must
be a cutoff value for the film thickness d, that is, d can no
longer go to zero and still maintain a bound mode. This
is very different to the symmetric case, and there is in-
terest in examining this cutoff for a range of situations.

0 I I I I I I I I I I I I I I I f I I I ) I t I I I I I I I I I I I I i I I I I ) I I I I I I I I I I I I t I I I 1 I I

1.000 1.001 1.002 1.003
A. Asymmetrically surrounded layer with e;2=0

If e;2 =0, then the cutoff condition, which means
k„=koeI~, gives, from Eq. (29a), 2 =8. Of course, in
this case, e;2=0 and there is no need to use these thin-
film, small-6, limits since it is simple to solve directly Eq.
(12) with a, =0. We then have

1

ko(el —e'r2)

1/2
40—

X tanh
r2

r2
(30)

20—

0
0 4 8

( &o nrn ')

Obviously there is a maximum value of (e, —e3), 5,„,for
maintaining a surface mode in a film:

2(eg+ Ie,21)

X I [e'„,+4m, (e, + le„,l)]'"+e„,] . (31)

This result, Eq. (31), is the same as those obtained by
Burke, Stegeman, and Tamar. '

FIG. 7. (a) Relationship between k„/k, and film thickness, d.
(Ap= 3.391 pm E'~ =E3 =2 22 k = (2w/kp)p] =2.76 pm . )

Curve 1, TM guided mode @2=40; curve 2, LRSEP, e2= —i40;
curve 4; LRSP, t 2= —40; all calculated from the exact equation
(16) in Sec. III. Curve 3, LRSEP, e&= —i40 calculated from the
approximate equation (21a). (b) Relationship between k; and
film thickness, d. (Ap=3. 391 pm, e& =F3=2.22, e2= —i40. )

Curve 1, calculated from the approximate equation (19b); curve
2, calculated from the exact equation (15); curve 3, calculated
from the higher-order approximation, Eq. (28b).

6(e„2+a;z)
ko(e (

—~) (e, —e„,)'+ e', ,
1/2

(32)

B. Asymmetrically surrounded layer with e;2%0

If e;2&0 and (e„p+E;p E', E'„2)& 0, then k; =0 leads im-

mediately to the conclusion that for all values of e3 (Ref.
16) there is a cutoff condition given by A =B which
gives, from Eqs. (29c) and (29d), the cutoff thickness d,„,
as
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When d &d,„,then k, &0 and the geometry is no longer
able to support a bounded long-range mode; it becomes a
growing mode' ' just as in Sec. III but now for the
asymmetric situation. From Eq. (32) when ~E„2~&&E„
d,„,varies only weakly with e;2 in agreement with the
earlier numerical studies. ' However, if E'

2 E', then e;2
has a strong inhuence on d,„,particularly when e, 2 is not
very large. Similarly when e;2 «(e& —e'„2)and yet e„z-—e&

then d,„,strongly depends on e„2
From Eq. (29b), for a fixed value of d as b, is changed

so that A approaches B, then k; approaches zero and the
propagation distance of the long-range surface mode
tends to infinity. Further, as d decreases to d,„,so k; de-
creases more rapidly with changing d, this effect being
further enhanced by increasing A. These conclusions are
in accord with Wendler and Haupt's numerical results
for a thin metal film which shows that a slight asymmetry
supports a very-long-range surface mode whose proper-
ties are dependent on 6 and d. In our case the analytic
results may be used for any film so long as it is thin
enough to satisfy Eq. (29).

Because the cutoff condition is A =8, when 6 &0
the solution A = —B prevails, then the expression for the
cutoff thickness has to be changed to

[~g~(e +e )] ~

ko(e, —b, )[(e, e„z)+E;2]'i— (33)

~max 2

(e„z+e,2)+8 [(e)—e„2)+e(~~]e)
0

(34a}

and for ei & e3,

4 [(e,—e„2)+e;2]e,
&d 2 2 2

0
2

(e„2+E;2)—8 [(6]—e„2)+E,2]E,
7Td 2 2

0

(34b)

If the film thickness d and E'& are fixed, then from Eqs.
(28c) and (28d), the maximum value of (e, —e3) which
will give a long-range surface mode in the film is, for
E) )6'3,

2

4 [(e]—e„z)+e,2]e]
7Td

0

From Eqs. (34a) and (34b), b, ,„

is approximately propor-
tional to I /A, o so the longer the wavelength the more crit-
ical the matching condition between e, and e3. For ex-
ample, consider a silver film of 2S nm thickness with
E'i =2.3 and e& & e3. Then at A,0=632.8 nm with
@2=—19—0.5i we find 5,„=0.3 whereas at A,0=3.391
pm with e2= —600—100i, 5,„=0.01. Further, as ex-
pected on symmetry grounds, when e& is fixed, k„,k;,
and d,„,are not symmetric for +A. These antisymmetric
properties for +5 are also given by Wendler and Haupt
in his numerical results for a metal film.

C. Asymmetrically surrounded layer, ~e,z~ & e,

If e;2%0 and (e„2+E;2 E)e'„z)&0, we know from Sec.
III there is no bound long-range surface mode for this
thin-film situation with the symmetric geometry (6=0)
because for k, & 0 and Re(a, ) & 0 the inode is a growing
one. However, from Eq. (29b} in the antisymmetric case
(b,@0) and with d &d,„,[(A B)&0—] we find k, &0.
Then we have to establish the signs of Re(a, ) and Re(a3)
to ensure the mode is bound. We only need consider the
case of b, & 0 (for 6 & 0 the conclusions are essentially the
same). From Eqs. (B6) and (B12) in Appendix B it is
clear that Re(a&) &0 and Re(a3) &0 because A &B and
(E„p+e(g E)E„2)& 0 so the mode is a leaky ' mode. Qf
course if A &B in the case of (e„2+e;z e)E'„2)&0, then
the mode is a growing one as now k; & 0 and
Re(ai) &0, Re(a3) &0. Finally to summarize the situa-
tions examined for an asymmetrically bound film we list
the cases developed in Secs. IV B and IV C in Table II.

So the three types of mode, bound, leaky, and growing,
are all available from one simple system by changing the
parameters of the situation such as the degree of asym-
metry or the value of e;2 or e,2. However we should be
aware, because of the possible sensitivity of the long-
range mode response to small differences between e& and
E'3, that in real materials the finite e;& and e;3 values may
have an effect. This is considered in the next section.

V. WEAK ABSORPTION
BY THE SURROUNDING MEDIA

The geometry once again is that of Sec. III but now
E'& =63 = 6'

i i e;, which is symmetric but now includes
absorption by the surrounding media. We are only going
to consider situations in which E'

&
((E„,which is a realiz-

able situation. The pertinent starting equation is Eq. (16)
in Sec. III. Examining the thin-film and small-e, ., limit

TABLE II ~ Relation between mode type and geometry parameters for both symmetrically and

asymmetrically bound films.

0
0

&0
&0
&0
&0

A-B

&0
&0
&0
&0
&0
&0

2 ~ 2
&rZ+&t2 &r2&r I

&0
&0
&0
&0
&0
&0

k;

&0
&0
&0
&0
&0
&0

Re(al)

&0
&0
&0
&0
&0
&0

Re(cz3)

&0
&0
&0
&0

Mode type

bound
growing
bound

growing
growing

leaky
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3(~, 2+~i~z) 4~ri~rz

( 2+ 2)2 i2 il

2 2 2 4
Q Er2+ 6E;2+E;2

Ap (ezz+pzz)2 2erl
I =k'+k E'~2

i i 0 r1

(35a)

(35b)

where

'2( 2 ~ 2 s2 2 2
0 1/2 Er 1 7Td r2 ' Ei2 Er 1 Er2 ~ Er1 r2

kr =kpEr, 1+
2 0 (e +E )

2 2 2
p lyz 2 1Td iz( r2 i2 ~rl~rz)
i 0Er1 Er1 2 2 2A,p (e„2+@;2)

a =(e„z—e„,)(e„z—2e„,),

(35c)

(35d)

(35e)

b =(erz 2E ,r—)(e ,r+2e r)2. (35f)

The inhuence of E;1 on k, is dependent on the sign of
[3(e„z+e,z) —4e„,e„z]provided d is nonzero. In the limit
of d tending to zero, k„tends to an asymptotic value of
kOE1 while k,. no longer tends to zero but to kOE;, /2E„'1 .
These limit values are, as expected, simply those belong-
ing to a plane wave propagating in such an absorbing
medium. However, if the film has a finite thickness the
inhuence of E;1 on k; is complicated. For example, if
E;2=0, that is, no absorption in the thin film, then from
Eq. (35b)

2

k; =kp(e„,)'~
0

a 12+ Eii ~

2Eri
(36)

Then if a &0 we find k; )kpE;, /2e„'( which decreases to
kpe;i/2e„', as d decreases, while if a &0 then
k; & kpe, , /2e„', and this increases to kpe' l/2e„'( as d de-
creases. Clearly if a=0, then k,-=kpE;1/2E 1 indepen-
dent of d. From Eq. (35e) if e„z& 0 or e„z)2e„ithen a & 0
while if Eri &Er2&2E1 then a &0 and finally if E„,=2Er,
(because e;2=0 we must have e„z)e„,) then a =0. Thus
we see that a weakly absorbing dielectric medium
(ei =e„i—ie,. l ) surrounding a thin metal film (e„z& 0) or a
thin dielectric with E,2) 2Eri will support a long-range
surface mode for which the loss is greater than the loss of
a plane wave propagating in the absorbing medium. On
the other hand, when surrounding a lossless dielectric
film satisfying Er, & E„2&2E„it will support a long-range
surface mode for which the loss is less than for a plane
wave in the absorbing medium.

All the above discussions centered on varying d and a,

then we find using the method outlined in Appendix A
that

2

kr =kr —
kOEr1 E,1

0 1 /2 7Td

0

but it is also clear from Eqs. (35b) and (36) that the major
contribution to k; is linear in E;1 and independent of d.
This has a strong effect on the very-long-range surface
modes which the systems previously considered may sup-
port. For example, in the numerical results of Sec. III
we considered the situation of A,p= 3.391 pm, E,
=2.3, E2=2.0—i0. 8, and d=10 nm giving k, =2.81
pm ' and k;=1.90X10 pm '. If we conclude in this
calculation an imaginary part to E1 of just E;1=0.0002
then while k„is insignificantly different k; has become
1.24X10 pm ', nearly 2 orders of magnitude larger.
This large change is directly as a consequence of the
long-range surface mode forcing the fields to lie out of the
thin film and in the surrounding (now absorbing) medi-
um. Thus we see it is vitally important that any match-
ing fiuid or substrate, used with thin films on which we
wish to excite such modes, have minimal absorption.

One further consideration, as discussed in Sec. III, is
the problem of the growing mode found for E,.1=0 and
(e„z+F;2 e„zF., ) & 0.—Now a small value of e;, can
change the sign of k; making it no longer &0 and so the
mode type will depend on the sign of Re(a, ). However,
it must be stressed that in general to limit the loss of the
mode, Eii is kept small and so it may not be that easy to
find a bound mode except for (e„z+e;2—e„ze„,) close to
zero when it is necessary to consider higher-order correc-
tions to the formulas used thus far.

Finally consider briefly the introduction of some asym-
metry between E, and E3. To first order the effects dis-
cussed above involving 5 and Ei 1 will superimpose and
the mode type will be dictated by a complicated interplay
between d, b, , e, „and (e„2+@,z

—e„ze„,). The necessary
calculations may be done using Eqs. (29) and (35), al-
though the general complexity of the situation is now
becoming such as to make analytic elaboration unwieldly
and a numerical solution is probably more appropriate.

VI. EXPERIMENT

The purpose of this paper has been to explore the
infiuence of the dielectric constant ez( =e„z—ie;2) of a
thin film on its ability to support a long-range surface
mode. We have shown that even for a very large E;2 such
a mode may still exist. Also in general we have shown
that there is nearly always a long-range coupled surface
mode for a thin enough film except over a very limited
range in the values of E2.

Already there exists in the literature several studies on
the long-range surface plasmon' ' ' ' (LRSP) support-
ed by a thin metal film. Also the TMO-type guided mode
is well documented and we need not concern ourselves
with it here. Rather our aim is to give results for E2
values not normally considered; the metal film LRSP case
satisfies e„z« 0 and

~ e„z~
))e;z while the TMp case

satisfies E„2)0 and E„2))E;2.We wish to examine situa-
tions in which E;2 is large. We have specifically studied
two cases, one in which e„z&0 and ~e„z~-e,z and one in
which e„z)0 and ~e„z~&&e;2.

The experimental technique is the well-known at-
tenuated total refiection (ATR) technique using a prism
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to couple a 3.391-pm laser beam (He-Ne) on to a thin-film
sample. The sample geometry is shown in the inset of
Fig. 8. At the wavelength chosen the tunnel gap between
prism and the active layer may be typically 5—10 pm
which is readily achieved in an adjustable manner. The
coupling prism which has to be suitably transparent at
this wavelength is a single crystal equilateral sapphire
prism cut with its symmetry axis parallel to the three
equivalent faces giving n = 1.699 for the p-polarized (TM)
incident radiation. This prism is mounted in a microposi-
tioning assembly in which a quartz optical Qat with ap-
propriate thin film may be placed adjacent to a surface of
the prism. Using interference fringes from visible (632.8
nm) coherent radiation it is possible to make the gap be-
tween the sapphire prism and the quartz Qat parallel to
+0.2 pm over the incident beam diameter of 2 mm. In
the present study the coupling gap which is adjustable
from 4 to 30 pm is filled with a matching Quid of low ab-
sorption coefFicient. A mixture of hexachloro-1, 3-
butadiene and tetrachloroethane is used with proportions
adjusted so that the dielectric constant is very close to
that of the quartz substrate. This coupling Quid thereby
also acts as the upper dielectric in the nearly symmetric
layer system. The active layers, in one experiment a thin
film of palladium and in the other a thin film of vanadi-
um, are deposited by vacuum evaporation on to the
quartz substrate in a pressure of 10 Pa.

ReQectivity data for the 3.391-pm radiation is recorded
for a range of incident angles with a resolution of 0.01'.
With cooled indium antimonide bolometric detectors and
phase-sensitive detection of the 1.7-kHz modulated beam
a signal to noise in excess of 1000:1 is readily recorded
giving very-high-quality data with which to compare
theory.

At the wavelength used the two metals have different
characteristics to each other and also to the noble metals
conventionally used in surface plasmon studies. Palladi-
um behaves as a metal but the real part of its permittivity
while being negative is of the order of or smaller than its

large imaginary part. Vanadium doesn't even behave like
a metal at this wavelength, a strong interband transition
gives it the permittivity more often associated with an ex-
citonic resonance in an insulator, that is, e„is positive
and much smaller than e;. In order that reQectivity data
from the system described above may be compared to
Fresnel theory it is first necessary to obtain as many of
the independent variables in the problem as possible. In
the first instance we only know A,o. By measuring the
prism the internal angles of the prism are accurately ob-
tained (to +0.005') and from the refiectivity for a bare
prism the critical angle is measured. By converting in-
cident external angles to internal angles this gives an ac-
curate e value for the prism. We also know within cer-
tain tolerance limits (+0.002) using the Brewster angle
the e of the quartz substrate and from the approximate
proportion of Quid components the e„ofthe matching
Quid to +0.005. Further, the e; of the matching Quid is
known to be (0.005. This then leaves a total uncertainty
for the permittivity of the metal film, ez, its thickness d,
and the Quid layer thickness. By depositing at the same
time the thin metal layer on the quartz substrate and a
second sapphire prism it is possible to perform a secon-
dary experiment on the film deposited on this second
prism to deduce reasonable bounds on ez and d. This
second experiment involves using the combined geometry
of prism, metal film, air gap, thick palladium film and ex-
amining the modes in the system using ATR. From
fitting Fresnel theory to this data we deduce e„,e;, and d
to within a few percent and use these parameters as start-
ing parameters with which to begin the fit to the data
from the present experiment. This leaves one final un-
known, the Quid layer thickness, but from experience
with the micropositioner we know this lies in the region
4—7 pm. Thus the fitting of the reQectivity data such
as that recorded in Figs. 8 and 9 is now relatively
straightforward. In producing the full curves in these
plots, which are the theoretical fits using Fresnel theory,
there are seven constrained unknowns,
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FIG. 8. Data (crosses) for the attenuated total reAection sig-

nal for TM-polarized 3.391-pm radiation fitted to Fresnel
theory (full curve). Inset is a sketch of the prism-coupling sys-
tem. The active film in this case is palladium which at this fre-
quency is metallic (e„=—110, e; = 142) giving an LRSP
(d =43.5 nm, coupling gap = 5.74 pm).

FICr. 9. Data (crosses) for the attenuated total reAection sig-
nal for TM-polarized 3.391-pm radiation fitted to Fresnel
theory (full curve). The active film is vanadium which at this
frequency is excitonic (e„=10.0, e; =49.3) giving an LRSEP
(d =50.4 nm, coupling gap = 6.11 pm).
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&fluid ( & 1 &&i1) &2 ( &r2 &&i2), d, ~, ( =~„,), »d the
Quid thickness. Of these the least constrained parameters
were the Quid thickness and the metal thickness; all oth-
ers were relatively tightly constrained as outlined above
to avoid the fitting routine wandering aimlessly in a
seven-dimensional variable space. The quality of the
fitting is superb with none of the variables hitting any of
the imposed bounds and all lying very neatly within sensi-
ble physical limits. In Fig. 8 the sharp dip corresponds to
an LRSP on a strongly absorbing metal bounded
asymmetrically with

i
b,

i
=0.004+ i0.001 while the

LRSEP in Fig. 9 arises from a strongly absorbing dielec-
tric (vanadium at 3.391 pm) bounded asymmetrically
with I

5
I

=0.004+ i0.001. These sharp resonances,
which cannot be simply modeled by the expressions de-
rived earlier because of the significant perturbation intro-
duced by the prism, have half-widths given by
gk /k„=2X10 corresponding to propagation lengths
of about 0.18 mm. Since this is of the order of the beam
diameter, 0.25 mm, then the finite beam size effects may

have a small inQuence on these results and these have not
been taken into account in any way.

If we take the fitted parameters from Figs. 8 and 9 we
can then model the Poynting vector and H distributions
for the two minima recorded. It is clear from such mod-
els shown in Figs. 10 and 11 that the power is in both
cases largely excluded from the active layer. Of course, it
is precisely for this reason that such strongly absorbing
films are able to support long-range modes. Commensu-
rate with the long distance of propagation is the strong
local-field enhancement which is, for the Poynting vector
in the case of the LRSP (palladium), 38.83 and for the
LRSEP (vanadium), 33.79.

These enhancement factors are by no means as large as
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FICx. 10. The H~ field and Poynting vector amplitude distri-
butions for the palladium film of Fig. 8 at 61.31'. The thickness
of the active region is scaled by 100X relative to the remainder
of the system.

FIG. 11. The H„field and Poynting vector amplitude distri-
butions for the vanadium film of Fig. 9 at 61.38 . The thickness
of the active region is scaled by 100X relative to the remainder
of the system.
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could be obtained by suitably adjusting e, and d; howev-
er, finite beam diameter and beam divergence would then
become a serious problem.

VII. DISCUSSION

A. Summary of solutions

may be greater or less than the loss of a wave propagating
in the lossy medium according to the exact parameters of
the system.

Two new sets of experimental results are presented
which support the primary conclusion of the paper; that
a long-range coupled surface mode may be supported by
a thin film with almost any dielectric constant.

In the preceding sections we have outlined the solu-
tions to the thickness-dependent k vector for the branch
of the dispersion curves which evolves into a long-range
surface mode guided by a thin film having almost any
permittivity e2 (=e„z—ie;2). For the symmetric
geometry with a very thin film as well as the established
long-range surface plasmon (LRSP) for E„2& 0,
~e„2~&&e;2, ~e„2~&@i, and the TMo guided mode e„z&0,
e„2»e;2,e,2&e, there are three new cases. When the
imaginary part of the permittivity of the active layer, e;z,
is quite large there is still a long-range branch supported
by the film. In situations where ~e„2~&&e,z irrespective of
whether e,2 ~0 or e,2 0 the loss of the long-range mode
is inversely proportional to e;2. More surprisingly, when
E;2=0 and e„z& 0 with ~e„2~& ei we also find a long-range
surface mode, perhaps more sensibly labeled simply a
two-surface symmetric mode because in this situation nei-
ther interface independently supports a surface mode.
Further, there is a d „above which no long-range
branch exists and below which we can even find two sym-
metric modes having different k values for a single d
value. Just like the TMO mode these modes do not have
an antisymmetric equivalent.

For situations when (e„2+@;z—e„2e,) &0 we are unable
to find the long-range branch even though a single inter-
face may support a surface mode provided e;&%0. This
again implies a cutoff thickness but now above this thick-
ness modes exist but below it they do not. For values of
(E„2+@;2 E„2e,) very—close to zero for thin films we find
long-range surface modes with extremely low loss-
independent of the magnitude of e,2.

In the asymmetric geometry with a small difference be-
tween the dielectric constants of the surrounding media
we find a minimum cutoff thickness d,„,below which the
long-range branch no longer exists. As d approaches d,„,
from above, the fields penetrate progressively further into
the medium with the slightly higher index, becoming pro-
gressively more like a uniform plane wave propagating
parallel to the surface with progressively smaller loss.
This means that for a thin film of fixed thickness a little
introduced asymmetry can produce a very-long-range
surface mode with low loss but increasing the asymmetry
further may destroy it completely.

In reality, of course, the surrounding media will have
some absorption which in the case of the very-long-range
modes may have significant inhuence especially on k,. the
imaginary part of the k vector of the surface mode. This
inhuence is simply because for the long-range mode the
fields tend to be pushed into the surrounding media. It is
worth noting that if a lossless thin film is inserted into a
uniform medium with weak absorption then the loss of
the long-range surface mode supported by this geometry

B. The surface polariton, surface mode,
and surface wave

As discussed brieAy in Sec. I, the term surface polari-
ton is in general confined to that arising from solving the
real dispersion equation (6). In this case the surface po-
lariton or electromagnetic surface mode can only be sup-
ported at an interface at which one of the media has a
negative real dielectric constant whose absolute magni-
tude is bigger than that in the other medium. This solu-
tion is basically a steady-state solution independent of
time or propagation distances. Usually this mode may be
also called a normal mode of the system because one can
employ normal-mode expansions which satisfy power
orthogonality relations to describe the total field at any
point in space. According to this rigorous definition al-
most all of the solutions we have considered in this paper
are not to be called surface polaritons or surface modes;
perhaps they should be labeled surface waves or long-
range surface waves because they are solutions to a com-
plex equation and can therefore exist and be excited in an
experiment.

However, the surface polariton, or surface mode, is the
result of a strong interaction (resonance) between an elec-
tromagnetic field and a surface elementary excitation. In
the frequency range over which strong interaction occurs
both the real and imaginary parts of the dielectric con-
stant of the active material vary rapidly, but continuous-
ly, with frequency. Indeed while e;(co) is going through a
sharp peak as co is changed, E„(co)may go from large
positive values through zero to large negative values and
back again to small positive values. So there is in a real
situation a combination of all forms of e„(co)and e, (co)
through a strong resonance, with the exception of
e;(co)=0, the one often assumed in simple treatments of
this problem. Of course, at some frequency
6;(co) « ~e„(co)~ and it may be possible to largely ignore
it, but the principle is still the same, that is, that for real
media the dispersion equations and all the fields will be
complex. Thus one has to broaden the definition of the
surface mode to include the damping effects. It has often
been assumed in the past that while this is a valid point„
the only pertinent regime is for e„(co ) & 0. This we
dispute; it is much more appropriate to include the whole
of the frequency range over which the given elementary
surface excitation is dominant. Thus through an exciton-
ic resonance we may have regions where e„(co)&0 and
e'„(co)& 0, regions where E;(ro) & ~e„(co)~ and regions
where e;(co) & ~e„(co)~. In all these regions a coupled
long-range surface mode may exist for a thin enough film
and the correct film geometry, and to subdivide the re-
gions into sections with particular constraints on e is
misleading. The important criterion is simply whether a
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long-range coupled surface mode exists and whether it
may be externally excited and detected.

Council (SERC). J.R.S. and G.W.B. also thank the
SERC for financial support.

C. The imaginary part of the dielectric constant APPENDIX A

As pointed out above any resonant mode will always
have an associated imaginary e;(co). This e'; basically de-
scribes the loss in the material through its inhuence on
the phase of the wave. For an infinite medium one may
view absorption as the progressive destructive interfer-
ence between the exciting radiation and the reemitted ra-
diation from the material. This is also described by mak-
ing k, nonzero. In general the larger e;(co), the larger k;
and for a plane wave the greater is the loss. However, in
a nonuniform structure such as the layered structure dis-
cussed here, there are other causes of interference and
these may redistribute the fields in such a way that the
inhuence of e; is largely removed. This is particularly ob-
vious in the situation where ~e„2(co)~&&e;z(co) so there
would be expected to be a large k; yet in the thin-film
case interference between the two surface modes redistri-
butes the fields so they are small in the active medium.
Furthermore, the larger e;2 for this situation the smaller
the absorption, e;2's role being then reversed from that
normally encountered simply by other interference
effects. Thus we see the long-range coupled surface mode
is really very different from any single surface mode and
it suggests that for complex multilayered structures con-
ventional understanding of the inAuence of e; may have
to be substantially modified. We also find, as must now
be expected, that when e;(co) )0 the light line defined no
longer clearly separates the radiative and nonradiative re-
gions of the dispersion curve just as Burke, Stegeman,
and Tamir' report.

We have not discussed the short-range branch of the
dispersion curve since in the thin-film limit, where the an-
alytic forms might be used, it becomes extremely lossy
and is of no potential significance although in general al-
most all long-range modes do have their short-range
counterparts.

Interesting extensions of the present work to consider
are the following.

(a) Real material e(co) values as co is swept through a
resonance to study the inhuence of co alone using a fixed
thickness layer. A material such as ZnO with a strong
excitonic resonance is a good example.

(b) Nonlinear effects. The strong-field enhancement
with the field being excluded from the strong absorber is
a very interesting system for analysis and it also lends it-
self to experimental study.

(c) A.nisotropic media where not only p modes are
available but also s modes may couple via off-diagonal
matrix elements to the surface charges.

These three extensions of the present study are current-
ly being investigated.
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If d is small enough so that a2d /2 « 1, then
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and

a2=[ko(e, —e~)+aij' '. (A4)

Now from Eq. (A2) we have

tidal kO&id(Eie2')+62&1+ =0; (A5)

thus
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Since (e„2—ie, 2) is not very small, then because kod is
quite small, we choose the positive sign of the square root
in (A6) so that ai is a small quantity also. Then
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From this equation we have
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where the a 's are defined by Eq. (13). Because d is small,
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APPENDIX 8

The basic relationship (12) takes the form and

a3=(kph+a, )' (82c)

E2a2(E,a3+ E3al )
tanh(a2d )=-

E)E'3CK2+ EpA )CX3

with, as in Appendix A,

u, = [2kpE'~ (5—lk; ) ]'~

a2= [kp2(E, —E2)+a, ]'

(81)

(82a)

(82b)

5=(E1 E3) ((El, E3 . (82d)

E,E3a2d = —E2[E,( k p 6+a, )
'~ +E3a, ], (83)

j..e.,

If kp5 is small and of the same order as 2kpE'& 5, then
both a, and a3 are of the same order. So from (81) in the
thin-film limit, neglecting higher-order terms, we have

[2kpE, d E3(E1 E2)+E2(E3 El)]IX1+2E1E2E3kp(E1 E2) dCX 1+[kpd El'E3( El 'E'2) E}E2kpk] 0

Then if E2=E„2—iE;2 and (E,—E2) =El E„2—+i E;2 are not too small, from Eq. (84) we have a solution

k pEid E3( 'El E2) E1E25d

2E,E', (E,—E, )

which yields

kpd(E~r2+E(p Ele,2)( A B)—
R (,)=

2E3(Er2+ E,2)[(El E„2)+E;2]

where

(85)

(86)

E1E3[(El Er2) +Ei2]
f

8 =b,E,(E'„2+E;2) 4
0

(87a)

(87b)

Using (85) with (82) we find

(E„2+E,2 E,E„2)( A— B) —E,E,2(
—A +8 )

Ap 2E1E3(Er2+Ei2) [(El Er2) +Ei2]
(BSa)

d E;2(E„2+E;2 E1Er2)( A B)—
E3(Er2+Ei2) [(El Er2) i2]

ElE'3d k p( El E2) +E3E26'
CX3-

2E1E2( E 1
—

E2 )

Then finally we find

(810)

If now we also note that

and

a2= [k,'(E, —E2)+a3 —kO~]'"

from (Bl) we get

(BSb)

(89a)

(89b)

A'=E, E3[(E,—E„2)+E;2]

and
r

B'=E3b,(Er2+E,', ) 4
0

kid(E„2+E;2
—E1E„2)(A '+B')

Re(a3)=
2E1(E„2+E;2)[(E1 E„2)+E;2]

where
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(812a)

(812b)
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