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Uniaxial incommensurate rare-gas-monolayer solids. I. Structure and statistical mechanics
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Calculations are reported for uniaxial incommensurate solid phases of rare-gas monolayers adsorbed
on triangular substrate surfaces. The monolayer is treated in a two-dimensional approximation with
adatom-adatom pair potentials and a periodic adatom-substrate corrugation potential. The two signs of
the substrate corrugation amplitude lead to solutions with diQ'erent di6'raction signatures. Structures are
determined in the zero-temperature classical approximation and energies are calculated in the classical
and quasiharmonic approximations. The energy of a domain wall is calculated as a function of tempera-
ture and the phase transition between commensurate and incommensurate lattices is treated. The in-

plane motion of the domain walls is analyzed in terms of the Peierls barrier energy and the frequency
spectrum of the monolayer for wave vectors in the direction of the misfit.

I. INTRODUCTION

In a physisorbed rare-gas solid, the behavior of the ad-
layer is strongly influenced by the competition between
the adatom-adatom and the adatom-substrate interac-
tions. ' The interplay leads to a fascinating hierarchy
of different solid phases and phase transitions between
them. One very significant solid phase is the uniaxial in-
commensurate (UIC) lattice, ' with an average compres-
sion in only one spatial direction. At small misfits it con-
sists of a lattice of well-defined domain walls which are
parallel on the average. It has been proposed' as a major
step in the evolution of the monolayer from commensu-
rate to incommensurate lattices. It is tractable enough to
permit a detailed theoretical treatment, including
thermal effects, and is an excellent testing ground for the
comparison between theory and experiment of nonuni-
form adsorbed layers.

Here the Helmholtz free energy and the grand poten-
tial are computed for a model of the UIC monolayer
which is designed to (i) allow study of both UIC lattices
and commensurate (+3 X +3)R 30 (C) lattices on the tri-
angular surface lattice, (ii) allow investigation of the
UIC-C phase transition by changes of the thermodynam-
ic variables and of the model parameters, (iii) allow study
of both strongly and weakly modulated UIC lattices, (iv)
use simple, yet reasonably accurate, interaction models,
and (v) provide for a domain structure of adjustable re-
peat length. The total potential energy is minimized as a
function of the internal structural parameters. Then the
normal mode frequencies are evaluated and the free ener-
gy is computed in the quasiharmonic approximation.
The derived information includes data for the structure,
energy, and dynamics of the UIC lattice.

There are two broad classes of low-energy UIC struc-
tures in this work. In one structure, the compressed
domain walls are characterized by one-component dis-
placement vectors. Kardar and Berker named them su-
perheavy walls, and Gooding, Joos, and Bergersen and
Gordon and Lancon studied examples in models of kryp-
ton absorbed on graphite. In the other structure, the

compressed walls have two-component displacement vec-
tors and are a generalization of the Kardar and Berker
heavy walls. They arise for models in which the
minimum-energy adsorption sites are at threefold-
coordination sites of the surface triangular lattice cell and
were first identified by Gottlieb.

There are two situations for the occurrence of the
UIC-C phase transition. First, the ordering of the
minimum free energies changes as the temperature is
varied. For instance, in cases where the commensurate
lattice has lower density than the minimum-energy lattice
for the adatom-adatom interactions, the monolayer may
thermally expand to the commensurate lattice. Black
and Janzen explored this possibility in molecular-
dynamics simulations of xenon adsorbed on the (111)face
of platinum, Xe/Pt(111). Second, at a given temperature,
as the chemical potential is increased the C-UIC transi-
tion may be driven by mechanical compression. ' The re-
lation of the chemical potential increase to the energy of
isolated domain walls is developed here. The analysis
corresponds to a mean-field theory and the UIC-C phase
transition is continuous, consistent with the general dis-
cussion of Bak et ah. '

The Peierls barrier energy"' for translation of the
UIC domains is calculated as a function of model param-
eters and is found to be closely correlated to the smallest
normal-mode frequency at the Brillouin-zone center, as
suggested by Black and Mills. ' This is an extensive study
of these properties for a model of a physisorbed mono-
layer.

In the following paper, ' the methods developed here
are applied to an analysis of the UIC lattice of monolayer
Xe/Pt(111). Diffraction data' indicate that Xe/Pt(111)
has superheavy walls and not the modified heavy walls
expected for a lattice obtained by compression of a com-
mensurate lattice with adatoms located in the threefold
positions of an fcc (111)surface.

The organization of this paper is as follows: Section II
contains the formulation of the calculations and Sec. III
contains results for the properties of the UIC lattices.
Section IV contains concluding remarks.
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II. FORMULATION

A. Equilibrium

The condition for equilibrium of an adsorbed layer, on
area A and at temperature T, which coexists with a
three-dimensional gas at chemical potential p and the
same temperature is that the grand potential

Q=F, (X, )—pX, , (2.1)

be a minimum. In Eq. (2.1), F, is the Helmholtz free en-
ergy of the N, adatoms; the density X, /A and internal
structural parameters of the monolayer are to be adjusted
to minimize Q. The substrate is assumed to be rigid and
inert and the (dilute) three-dimensional gas and the
monolayer are assumed to be distinct separated phases.

B. Statistical mechanics

The Helmholtz free energy is constructed for the UIC
and C monolayer solids in the presence of a rigid sub-
strate surface which has a triangular Bravais lattice.
The monolayer is idealized by limiting the complexity of
the structures and interactions; then approximations are
made in evaluating the free energy.

The lowest-order approximation to the free energy is
the static potential energy. This is minimized with
respect to variations of the internal structural parame-
ters, using a classical force relaxation technique. Then
the normal-mode frequencies are found for small-
amplitude oscillations about the minimum potential ener-
gy configuration. The zero-temperature (0 K) approxi-
mation consists of adding the zero-point oscillator energy
to the potential energy. The quasiharmonic free energy
consists of the sum of the static potential energy and the
dynamical free energy of the normal modes. The free en-
ergy is incompletely minimized because the structural op-
timization is performed only on the static potential ener-
gy.

For the dynamical free energy, the sum over wave vec-
tors in the first Brillouin zone of the domain superlattice
is performed with the method of special points.
Cunningham's 16-point set' for the rectangular lattice is
used, including a reduction which arises because of the
symmetries of the domain basis. ' For the triangular (C)
lattice, ' a 45-point set is used. The largest eigenvalue
problem in this work is that of a 96X96 Hermitian
dynamical matrix for a UIC domain of 48 rows.

C. Atomic model

FIG. 1. Examples of even-l UIC V~ &0 lattices. The arrows
0

indicate the symmetry lines of the domains. i=14, o.=4.0 A,
and V~

= —20 K. Vertices of the background hexagons
represent either carbon sites of the basal plane surface of graph-
ite or the threefold-coordination positions of the Bravais unit
cell of an fcc (111)surface. (a) Stable configuration; (b) unstable
configuration.

cases, bridge sites of the adsorption energy surface are lo-
cated at midpoints of the hexagon sides.

The potential energy of the adlayer is written as a sum
of the adatom-adatom and the adatom-substrate interac-
tions. Phenomenological forms are used, and the param-
eters include such processes as substrate-mediated in-
teractions to some extent.

The adatom-adatom interaction is taken to be the sum
of Lennard-Jones (12,6) pair potentials

The geometry of the substrate surface is shown in Figs.
1 and 2. The surface has a triangular Bravais lattice with
unit cell of side L; the vertices of the hexagons are
threefold-coordination positions of the Bravais cells. In
Fig. 1, the hexagon centers are minimum-energy adsorp-
tion sites. This arises in models used for spherical adsor-
bates on graphite; the vertices then correspond to sur-
face carbon atoms. In Fig. 2, the two sets of threefold
positions are degenerate minimum-energy adsorption
sites. This arises in simple models ' for spherical adsor-
bates on the (111) face of an fcc solid, but the situation
for Xe/Pt(111) appears to be more complex. '9 In both

FIG. 2. Examples of even-I UIC Vg)0 lattices. i=14,
o.=4.0 A, and V =180 K. Identifications as in Fig. 1. (a)
Stable configuration; (b) unstable configuration.
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P(r) =4E 0
r

12 6

(22)
( ) (b)

Equation (2.2) is a convenient and reasonably accurate
representation of the force between rare-gas atoms; esti-
mates for c, and o. may be obtained from three-
dimensional data, but they are adjustable parameters
here.

The adatom-substrate interaction can be reduced by
plausible approximations to a function with a small num-
ber of parameters. Steele's Fourier decomposition' for
the translational symmetry leads to an expression with a
single energy parameter V if the monolayer remains
close to the overlayer distance set by the average holding
potential, and effects of underlying substrate layers are ig-
nored' in the lateral energy variations. Then the
adatom-substrate potential energy for atoms in the two-
dimensional monolayer solid is

V(r) = V g exp(ig. r),
g

(2.3)

where the sum is over the six shortest reciprocal-lattice
vectors of the substrate Bravais lattice of length
go=4m/L&3. T.he two sets of threefold sites have equal
energies with the approximations used for Eq. (2.3).
Truncation of the Fourier series at the first shell of
reciprocal-lattice vectors is rationalized by Steele s re-
sult' that for many models the magnitude of the ampli-
tudes V at the equilibrium height decreases rapidly for
larger g.

The sign of V determines the locations of the minima
of V(r) For Vs. (0, there is one minimum per Bravais
cell, located at the hexagon centers in Fig. 1. For V )0
there are two degenerate minima per Bravais cell, located
at the hexagon vertices in Fig. 2.

The model calculations are designed to explore possible
structures of Xe/Pt(111) and some parameters are held
fixed or varied over a small range. The length L is held at
2.77 A, the nearest-neighbor spacing in platinum. The
energy scale of the Lennard-Jones (12,6) potential is held
at v=230 K, a value used for xenon; this is discussed
further in the following paper. ' The length scale cr is
varied in the range 4.0—4.10 A, near values used for xe-
non. The amplitude V is varied over large ranges. For
the dynamical properties the atomic mass is
217.9 X 10 g, for xenon. Adatom-adatom interactions
are retained for a total of 36 neighbors of each atom.

D. Adlayer structures

The commensurate (&3X&3)R 30 (C) monolayer lat-
tice has a lattice constant L, =V3L (=4.80 A for Pt) and
is illustrated by that portion of Fig. 1 for which the ada-
toms (circles) are in hexagon centers. Another example is
the upper portion of the domains in Fig. 2.

The uniaxial incommensurate (UIC) lattice, examples
of which are shown in Figs. 1 —3, is the principal subject
of this paper. The adlayer atoms form periodically re-
peating domains of l rows oriented parallel to the hor-
izontal (x) axis in the figures. The separation of atoms in
each row is equal to the commensurate lattice constant

FIG. 3. Examples of odd-l UIC V~ &0 lattices. i=13, o. =4.0
A, and V~=180 K. Identifications as in Fig. 1. (a) Stable
configuration; (b) unstable configuration.

L, . Along the vertical (y) axis, a compression of one sub-
strate spacing L relative to the commensurate lattice is
applied to each domain as a whole. The average row
spacing in the UIC lattice is

d =(3L/2)(l —m ), (2.4)

r =R „(C)+g. , (2.5)

where the vector displacement g depends only on the row
index j of the commensurate lattice. An example of the
displacements is shown in Fig. 4. The adlayer is placed
relative to the substrate by specifying the origin of the
lattice R „relative to the substrate.

Two different UIC lattice configurations are defined, "
termed stable and unstable. The stable configuration is
required to have at least one symmetry line which lies be-
tween two rows; it is expected to have the minimum po-
tential energy. ' The unstable configuration is dis-
tinguished from the stable one in that all adatoms in at
least one selected row are required to be above bridge
sites of the substrate potential energy, ' that row is a sym-
metry line of the structure. Examples of stable-unstable
pairs are shown in Figs. 1 —3. The difference in the dis-
placernents for one pair is shown in Fig. 5. The potential
energy difference between members of a pair" ' is
defined to be the Peierls barrier energy; it is found here to
be rather small for a physisorbed monolayer.

The UIC configurations for the V (0 case are con-
structed in close analogy to Joos's treatment" of the

where m is the mean misfit and is given in terms of the
domain size by m =(2/31). A weakly modulated UIC
lattice has only small distortions from the uniform UIC
lattice with equally spaced rows. For the well-developed
domains at small misfit, positions are expressed in terms
of displacements from the commensurate lattice positions
R „by
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one-dimensional Frenkel-Kontorova chain with even and
odd numbers of atoms in the domain. The stable-
unstable pair for even I is shown in Fig. 1. The construc-
tion for the V )0 case is more complicated: pairs for
even and odd I are shown in Figs. 2 and 3, respectively.
Eight UIC lattice cases (two signs of Vg, stable-unstable,
even-odd l) are optimized: an iterative set of small atom-
ic displacements starting from an appropriately placed
uniform UIC lattice leads to rapid convergence in all ex-
cept the V )0, stable, odd l case.

III. PROPERTIES

The constructions lead to two main categories of prop-
erties of the UIC lattices, characterizing the structure
and the energy. As noted, the structural properties are
all based on a minimization of the static potential energy.

A. Structural properties

The displacements for a UIC lattice with small misfit
are distributed quite nonuniformly over the domain, as
shown in Figs. 4 and 5. The region in which most of the

displacement occurs is termed the domain wall. The
domain wall width is defined with the construction shown
in Fig. 4, a linear extrapolation from the midpoint to the
asymptotes of each riser. This is the definition of Gordon
and Lancon and results for the V &0 cases agree with
theirs. Results for the V )0 case are shown in Fig. 6.
The Vg & 0 cases have the displacements confined to the y
direction, but in the V )0 cases the net uniaxial
compression is subdivided into two domain wall regions
which are displaced from each other along the x direc-
tion. These qualitative differences arise from the different
surface topographies: the UIC lattice samples both sets
of threefold positions of the surface cells for V )0.

The width of the domain wall is a measure of how
nonuniform the lattice is. As the domain size I is in-
creased, the width approaches a limit for each set of in-
teraction parameters, indicating that the domain walls
become isolated. The results in Fig. 6 are shown as ratios
to widths derived from a variational treatment of the
continuum theory of such walls. If the continuum theory
were accurate, the ratios would be 1. The trends and the
sizes of the ratios are similar to those found by Gordon
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FIG. 4. Adatom displacernents and domain-waH width
definition for Vg &0 UIC lattice. 1=14, o.=4.0 A, and V~=180
K. Components of displacement, Eq. (2.5); actual atomic posi-
tions correspond to integer values of the row number.

FIG. 5. Adatorn displacements for optimized stable and un-

stable UIC lattice. 1=48, o =4.05 A, and Vg =100 K. The x
and y components of the displacement, Eq. {2.5), are shown as a
function of the (integer) row number.
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3.0 trated in Figs. 4 and 5 have characteristic structure fac-
tor extinctions which are not observed in data for
Xe/Pt(111). '

2.0
W(model)

X—
/W(continuum)

cr=4.0 j
cr =4.0X
cr = 4.05 A

cr = 4.05 A.

cr =4.1A
cr = 4.1L

X—
Y—

0 I i & i I & i & i I
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C ORRU GATIO
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N(K)

FIG. 6. Variation of the domain wall widths for Vg )0. The
ratio of the wall widths derived from the construction shown in

Fig. 4 to the widths calculated in a continuum approximation is
plotted as a function of corrugation amplitude Vg for three
values of o.. The domains have i=48. Departures of the ratios
from 1 and the trend with Vg reAect the errors which arise in
the continuum approximation (Ref. 22) by using the elastic con-
stants at the commensurate density as the average elastic con-
stants of the adlayer.

B. Energies

The energy (potential energy or free energy) is calculat-
ed as a function of the misfit and is used to evaluate such
properties as the energy per unit length of a domain wall
and the compressibility. Figure 7 shows the results for
one choice of adatom-adatom potential parameters and
three choices of the corrugation amplitude. The values of
the misfit correspond to integer values of domain size l.
All the cases treated in this work have the pattern shown
in Fig. 7: the minimum is at zero misfit for small magni-
tude of V and increases continuously from zero as V in-
creases beyond a threshold value.

For many of the following calculations, the energy is
treated as a smooth function of misfit, assuming that
values of the misfit which are not of the form 2/3l do not
introduce jagged behavior. Support for this assumption
comes from the evaluation of the Peierls barrier energy at
integer values of l: it is much smaller than the wall ener-

gy and indicates pinning energies are small in these cases.
The energy per unit length of a domain wall is defined

1 lq
'I' .s(q)= —pel

(3.1)

and Lancon' for a model of krypton on graphite. In both
instances, the commensurate lattice is quite dilated rela-
tive to the intrinsic triangular lattice set by the adatom-
adatom potentials and there is ambiguity as to the choice
of average elastic constants for the adlayer.

The smallest atomic spacing in the UIC lattice gives in-
formation on the internal structure of domain walls. The
difference between it and the commensurate spacing I.,0(=4.80 A) is a measure of the range of conditions within
a single domain. In this work the difFerence is 5 —10% of
I, Also, if the spacing is smaller than the nearest-
neighbor spacing in the low-pressure three-dimensional
(3D) adatom lattice, there is a highly stressed region of
the domain which might relax by motions perpendicular
to the monolayer plane. Here the most strongly modulat-
ed (largest V and smallest o) lattices have smallest spac-
ings which are a few percent less than the nearest-
neighbor spacings of the corresponding 3D Lennard-
Jones lattices.

The structure factor gives the signature of the lattice in
a di6'raction experiment. For wave vectors q in the plane
of the monolayer, it is defined by

2

E .s= [f(m) —f«3)jI

C

(3.2)
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where f (m ) and f (&3) are (free) energies per adatom of
the UIC and C lattices, respectively. It is extracted from
the initial slope of plots such as Fig. 7, i.e., conditions
where the domain walls are isolated from each other.
Gordon and Lancon studied a similar quantity. A wall-
wall interaction energy can be defined in terms of the
departure of such plots from linearity.

The grand potential Eq. (2.1) is rewritten as

where r& is the position of the jth row in the UIC lattice
and the sum is over the l rows in the domain. The wave
vectors q are reciprocal-lattice vectors of the domain su-
percell. For weakly modulated lattices only those q
which are in the reciprocal lattice of the uniform UIC lat-
tice have sizable structure factors. The modulation of the
adlayer by the holding potential increases as the magni-
tude of the misfit decreases and an example is shown in
the following paper. ' The subdivided domain walls illus-

-740
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t I I I I I I I I I I I I I

0.04 0.06 O.OB

MISFIT

I 1 I ! ! I

0.1

FIG. 7. Potential energy per adatom, measured in K, as a
function of misfit for o =4.05 A and three values of Vg The
zero of energy is the minimum energy of a single adatom on the
substrate surface. The points correspond to UIC domains with
one unit of misfit over an integer number of rows.
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Q=N, [f(m )
—p], (3.3)

and the number of adatoms is expressed in terms of the
commensurate lattice number and the misfit by

(3.4)

20

Then, if the energy f (m ) is a continuous function of the
misfit, the condition of minimum grand potential leads to
an implicit equation for the equilibrium misfit as a func-
tion of the chemical potential

0

p, =f(m )+(1—m )
Bm

The compressibility of the UIC lattice is given by

1 —m 8 f(m)
Bm

(3.5)

(3.6)

I I I I I I I

20 40

TEMPERATURE(K)

I

(

I I I I

I

I

60

where the area of the commensurate cell is a, =&3L /2.
Clearly, the compressibility is very large in the range of
small misfit where the function f is nearly linear.

20

C. Phase stability 0

The sign and magnitude of the wall energy E,&&
are

both used to analyze the stability of the C lattice with
respect to the UIC lattice. Because the energy as a func-
tion of misfit in all cases treated here has the pattern
shown in Fig. 7, the C lattice has lower (free) energy than
the UIC lattice when the wall energy is positive. Some
results for the wall energy as a function of temperature
are shown in Fig. 8.

The two situations for the UIC-C phase transition de-
scribed in Sec. I correspond to distinct paths in the calcu-
lated chemical-potential —temperature phase diagram
shown in Fig. 9. At sufticiently low temperature the
monolayer condenses as a UIC lattice, while at higher
temperatures it condenses as a C lattice; the crossover
temperature is that for which the wall energy vanishes.
Thermal expansion to the UIC-C transition is also dis-
cussed by Gordon and Villain. The second situation
occurs for temperatures at which the monolayer con-
denses as a C lattice: by further increasing the chemical
potential beyond the value at condensation, the mono-
layer may be driven into a UIC lattice. This was ob-
served for Xe/Pt(111) by Kern et al. '

The steps in the second situation are described as fol-
lows. If effects of the spreading pressure of the dilute
two-dimensional gas are neglected, the chemical potential
at monolayer condensation is equal to the free energy per
adatom of the C lattice:

(3.7)

I
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FIG. 8. Domain wall energy, in K/A, as a function of tem-

perature. The wall energy is defined in Eq. (3.2) in terms of the
initial slope of the free energy as a function of misfit. The
Helmholtz free energy is evaluated in the quasiharmonic ap-
proximation. o.=4.05 A, (a) Vg (0; (b) Vg & 0.

20 40 60 BO

Ap= —', L,E „, . (3.8)

The wall energy, Eq. (3.2), gives a linear approximation
for f (m ) which suffices to show that a UIC lattice of
finite misfit is the phase of minimum grand potential for
an increment of chemical potential larger than the
threshold

TEMPERATURE(K)

FIG. 9. Calculated chemical potential-temperature phase di-
O

agram. o.=4.05 A; Vg
= —6 K. The Helmholtz free energy is

calculated in the quasiharmonic approximation and the phase
boundaries are determined with the criteria presented in Sec.
III C.
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For all the interaction parameters used in this work, the
C-UIC transition is continuous; when the UIC phase is
stable, the grand potential as a function of misfit initially
decreases to a minimum before increasing.

The corrugation amplitudes V for which the mono-
layer solid first condenses as a C lattice at 50 K are
shown in Table I. Also the values for which the incre-
ment Ap takes on prescribed values at 70 K are shown
there. The corresponding values from static potential-
energy calculations were presented previously. Thermal
expansion effects reduce the magnitudes of the ampli-
tudes in Table I from those of the previous work.
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D. In-plane motion of UIC lattices

Meso2

Vpeierls
(3.9)

plotted in Fig. 11 for a large domain; M is the adatom
mass and coo is the zone-center angular frequency. The

The Peierls barrier potential energy Vp„.„&, is defined to
be the difference between the potential energies (per
column in a domain) of the stable and unstable
configurations. It depends on the domain size l and for
large l gives an estimate of the energy barrier to transla-
tion of a domain wall. The energy Vp„„&, is shown as a
function of V in Fig. 10. The semilogarithmic plot of
Vp„„&, as a function of 1/Q Vg is suggested by results for
the Frenkel-Kontorova chain. "' The definition of
Vp '

~
leads to an irregular dependence on even-odd I for

V )0: the value for i=47 is precisely half that for I=48.
For all of the calculations in the quasiharmonic ap-

proximation, a full set of normal-mode frequencies is ob-
tained for each parameter set. Two aspects of the spectra
are shown in Figs. 11 and 12. The zone-center frequency,
defined to be the lowest frequency at zero wave vector,
reAects the pinning of the adlayer to the substrate. It is
related to the Peierls potential Vp &

and Black and
Mills' suggested that Vp„„&, is roughly proportional to
the square of the zone-center frequency. This is
confirmed by the dynamic ratio
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FIG. 10. Dependence of the Peierls barrier potential energy
Vp '

~
on the corrugation Vg. Domains of size 1=48. For the

Frenkel-Kontorova chain the asymptotic behavior is
ln Vp„„„~1/Q V~. The location of the cusp for Vg )0 cases is
correlated with an interchange of the stable-unstable
configurations as the minimum-energy structure (Refs. 13 and
21). (a) V &0; (b) V &0.

TABLE I. Corrugation amplitude to reproduce C-UIC transitions. '

4.0
4.05
4.1

Qgc

98.2
58.8
28.1

Vg &0
ap'

350
178
120
69.7

250
151
96.2
49.5

150
122
71.6
29.6

Qgc

—8.55
—5.26
—2.86

Vg &0
bpd

350
—15.2
—10.0
—5.82

250
—11.5
—7.12
—3.76

150
—7.72
—4.38
—1.90

Amplitude, in K, of the two-dimensional approximation to the adatom-substrate potential, Eq. (2.3).
All entries based on free energies calculated in the quasiharmonic approximation.

0
Characteristic length, in A, of the Lennard-Jones (12,6) pair potential, Eq. (2.2). The energy scale is

a=230 K, the atomic mass is for xenon, and the commensurate lattice spacing is 4.80 A, for Pt(111).
Amplitude chosen, by interpolation in the model calculations, to yield a UIC-C transition at T= 50 K.
Amplitude chosen, by interpolation in the model calculations, to yield the C-UIC transition at 70 K

after increase of chemical potential (in K) from the value at monolayer condensation by the specified
amount; see Sec. III C of the text.
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FIG. 11. Dynamic ratio as a function of Vg. The ratio of the
square of the minimum zone-center frequency to the Peierls en-

ergy, defined in Eq. (3.8), is shown for domains of size i=48 for
Vg & 0 Although the Peierls energy, shown in Fig. 10(b), varies
by a factor of 10 on this range, the dynamic ratio varies by less
than a factor of 2.

energy Vp„„&, varies over several decades for the corru-
gation amplitudes used in Fig. 11, but the ratio varies by
less than a factor of 2. The zone-center frequency also is
informative about the dynamical stability of the UIC lat-
tice: with these constructions for the stable-unstable
configurations, the smallest eigenvalue of the dynamical
matrix occurs in positive-negative pairs. This was also
observed by Black and Mills' in their studies. '

Figure 12 shows the frequency spectrum of the UIC
lattice for a V &0 case, for wave vectors parallel to the
direction of the mean misfit. The many branches of the
spectrum of the superlattice ceH are unfolded to become
two branches for wave vectors in the first Brillouin zone
of the corresponding UIC lattice. In this case, the polar-
izations of the two branches are precisely transverse and
longitudinal. The frequencies just above the first
Brillouin-zone boundary of the superlattice are very close
to the frequencies for the commensurate lattice at zero
wave vector. At intermediate wave vectors there are
small gaps in the frequency spectrum again at superlat-
tice zone boundaries. The features which occur for wave
vectors near the edge of the uniform UIC lattice Brillouin
zone are associated with localized motions of the adatoms
in the highly compressed centers of the domain walls, as
confirmed by analysis of the eigenvectors of the dynami-
cal matrix.

FIG. 12. Frequency spectrum in the extended zone scheme of
the superlattice for wave vectors in the direction of mean misfit.
UIC lattice of i=48, o.=4.05 A, and Vg= —6 K. The many
branches of the superlattice spectrum are unfolded to become
two branches for wave vectors in the first Brillouin zone of the
corresponding uniform UIC lattice. The upper and lower
branches have longitudinal and transverse polarization, except
in the first superlattice Brillouin zone, where they interchange.
The two branches of the uniform UIC lattice are shown as dot-
ted lines, for comparison purposes.

center of the superlattice was known already from model
calculations for one-dimensional chains of atoms. The
structure in the spectrum at high frequencies, identified
with motions within the domain walls, has not been noted
previously.

Extensions of this work should include the three-
dimensional character of the adsorbed layer, because the
smallest atomic spacings in the adlayer, at the center of
the domain walls, correspond to quite compressed struc-
tures.

There are several other monolayer phases in phy-
sisorbed systems, such as the hexagonal incommensurate
nonrotated and rotated solids. ' These calculations
treat only the C-UIC relative stability. The stability of
the modulated UIC lattice relative to hexagonal incom-
mensurate lattices is also of interest.

For the UIC lattice at small misfit, excitation of
domain-wall meanderings at intermediate temperatures
leads ' ' to effective wall-wall interactions which are
larger than the primarily mechanical interactions treated
here. The UIC lattice has not been exhausted as a subject
for careful study.

IV. CONCLUDING REMARKS

This paper presents results of an extensive computa-
tional study of the uniaxial incommensurate lattice of a
rare-gas monolayer solid. Systematic studies of the
Peierls barrier energy and the frequency spectrum of a
physisorbed UIC monolayer are given. The development
of a gap in the frequency spectrum at the Brillouin zone

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation through Grant No. DMR-88-17761 and
by the University of Wisconsin —Madison Graduate
School with funds provided by the Wisconsin Alumni
Research Foundation.



5758 J. M. GOTTLIEB AND L. W. BRUCH

P. Bak, D. Mukamel, J. Villain, and K. Wentowska, Phys. Rev.
B 19, 1610 (1979).

~H. Shiba, J. Phys. Soc. Jpn. 48, 211 (1980).
J. Villain and M. B. Gordon, Surf. Sci. 125, 1 (1983).

4R. J. Gooding, B. Joos, and B. Bergersen, Phys. Rev. B 27,
7669 (1983).

5M. B. Gordon and F. Lancon, J. Phys. C 18, 3929 (1985).
J. M. Gottlieb, Phys. Rev. B 42, 5377 (1990).

7M. Kardar and A. N. Berker, Phys. Rev. Lett. 48, 1552 (1982).
8M. B. Gordon and J. Villain, J. Phys. C 18, 3919 (1985).
9J. E. Black and A. Janzen, Phys. Rev. B 38, 8494 (1988); 39,

6238 (1989);Surf. Sci. 217, 199 (1989).
K. Kern, R. David, P. Zeppenfeld, and G. Comsa, Surf. Sci.
195, 353 (1988).

'B. Joos, Solid State Commun. 42, 709 (1982).
'2V. L. Pokrovsky and A. L. Talapov, Theory of Incommensu

rate Crystals, Vol. 1 of Soviet Scientific Reviews Supplement
Series Physics (Harwood Academic, New York, 1984).

~ J. E. Black and D. L. Mills, Phys. Rev. B 42, 5610 (1990).

J. M. Gottlieb and L. W. Bruch, following paper, Phys. Rev. B
44, 5759 (1991).
K. Kern, Phys. Rev. B 35, 8265 (1987).
S. L. Cunningham, Phys. Rev. B 10, 4988 (1974).
S. E. Roosevelt, Ph. D. thesis, University of
Wisconsin —Madison, 1989.
W. A. Steele, Surf. Sci. 36, 317 (1973).

9J. E. Muller, Phys. Rev. Lett. 65, 3021 (1990).
OG. Horton, in Rare Gas Solids, edited by M. L. Klein and J.

A. Venables (Academic, London, 1977), Vol. I.
'Isolated examples are encountered, especially at small l, where

the identification of the minimum-energy member of the
designated stable-unstable pair reverses, but the pairing of
smallest eigenvalue of the dynamical matrix remains. Black
and Mills (Ref. 13) also observed this.

22L. W. Bruch, Surf. Sci. (to be published).
P. Bak, Rep. Prog. Phys. 45, 587 (1982).

24A. D. Novaco, Phys. Rev. B 22, 1645 (1980); C. de Lange and
T. Janssen, J. Phys. C 14, 5269 (1981).


