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Static and dynamical transport properties of the fractional quantum Hall (FQH) states are studied
based on the theory of the edge excitations. Because the electrons on the edge of the FQH states are
strongly correlated, the I-V curve is, in general, nonlinear and contains singular structures. A narrow-
band noise is found in the dc transport of the FQH states, which can be used to directly measure the
fractional charge of the quasiparticles. The long-range Coulomb interaction is also discussed, which is
found to have a profound effect on the transport properties of the integer quantum Hall and FQH states.
In particular, the long-range interaction will cause a breakdown of the quantized conductance in narrow
quantum Hall samples. As a closely related problem, we also study the transport properties of a one-
dimensional charge-density-wave state in the presence of a single weak impurity. An exact mapping be-
tween two-dimensional quantum Hall systems and one-dimensional electron models is found.

It is well known that the quantum Hall (QH) states do
not support any gapless bulk excitations. All the low-
lying excitations appear only near the edges of sam-
ples. ' At low temperatures the density of the bulk ex-
citations is exponentially small. Thus the transport prop-
erties of the QH states are governed by the edge excita-
tions at low temperatures. ' Due to the chiral structure
of the edge excitations, there is no backscattering and a
static current on a single edge cannot cause a voltage
drop along the edge. (This is a result of the charge con-
servation. ) The voltage drop can appear only if (A) the
edge excitations interact with the bulk excitations or (B)
edge excitations tunnel from one edge to another. The
eff'ect (A) can be ignored at low temperatures. In this pa-
per we will concentrate on the effect (B), i.e., the trans-
port arising from the tunneling between the edge states.

In the past two years, a lot of progress was made in
theoretical understanding of the edge excitations in the
fractional quantum Hall (FQH) effects. The chiral
dynamical properties of the edge excitations were studied
in Refs. 2, 6 and 8. The electron propagator along the
edge was calculated in Ref. 9 and confirmed numerically
in Ref. 8. The relation between the edge excitations and
the microscopic electron wave function was discussed in
Refs. 10, 7, 9, and 8. The structures of the edge excita-
tions in the hierarchical FQH states and non-Abelian
FQH states were studied in Refs. 3, 11, and 12. The edge
states for spin- —,

' electrons were obtained in Refs. 2 and
13. Those theoretical advances make it possible to obtain
quantitative tunneling properties for various FQH states.
Recent developments on the fabrication of the devices at
1000-A scale also make it possible to experimentally
study in detail the tunneling between edge states. Thus it
is interesting to calculate some curves quantitatively for
realistic situations. Hopefully those theoretical predic-
tions can be tested in the near future.

We also study a closely related problem: the scattering
of a drifting one-dimensional (1D) charge-density wave
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(CDW) by a single weak impurity. Impurity pinning of a
1D CDW has been studied in detail in Refs. 14 and 15.
In this paper we will concentrate on the effects of quan-
tum fluctuations in a situation where the voltage acting
on the CDW is much larger than the pinning threshold.
Some recent experiments on 1D electron systems can be
found in Ref. 16.

The paper is arranged as follows. In Sec. I we study
the transport properties of the simple Laughlin states. In
this section we assume that the excitations on different
edges do not interact with each other. In Sec. II we study
the effects of interedge interactions (including the eff'ects
of the long-range Coulomb interaction) on the transport
properties. A relation between the transport in FQH sys-
tems and the transport in one-dimensional CDW systems
is pointed out. In Sec. III an exact mapping between
two-dimensionals QH systems and one-dimensional mod-
els with short-range interactions is discussed. Section IV
contains some discussions and conclusions.
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I. TRANSPORT IN THE FQH STATES
IN THE ABSENCE

OF THE COULOMB INTERACTION

In this section we will assume electrons in the QH
states have only short-range interactions. Such a situa-
tion can be realized in experiments by putting a metallic
film near the two-dimensional electron gas to screen away
the Coulomb interaction.

First let us study the tunneling between the edges of
two diferent FQH samples (see Fig 1).. Since the elec-
trons on edges I. and R have difFerent k momenta:
k„(L)—k (R)—:ko=d/I (l =&A'cleB is the magnetic
length), the tunneling between the two edges can happen

only with the assistance of impurities, phonons, or other
interactions which can absorb the extra momentum. In
this paper we will only consider the impurity assisted tun-
neling. We will also limit ourself to the tunneling at low
voltages and low temperatures so that the retardation of
the tunneling can be ignored. (We will not consider the
resonant tunneling. ) Because the electron interaction is
short ranged, we will assume in this section that the exci-
tations on difterent edges do not interact with each other.

Let us consider a simple case where the tunneling is as-
sisted by a single impurity at x =0. The tunneling opera-
tor can now be written as rA =rc,c, ~. „where c, ,
are the electron operators on edges R and I.. The tunnel-
ing current between the two edges I, is given by the for-
mula"

I (t)=eI' f "dt'e(t —t') exp i f eV (t)dt ([A (t), A (t')]) —exp i f e—V (t)dt ([A (t), A (t')]), (1)
00

(2)

we find that (1) can be rewritten as

where V, is the voltage difFerence between the two edges.
Introducing f (co, t ) through

I

exp i f eV, (t)dt = f dtof(to, t)e'"

G+(x, t)=( A(x, t)A (0))

=aq [x —u (t i5)—] ge

G (x, t)=(A (0)A(x, t))
~ —1=aq 2[x 2 u'(t +—i 5)'] ge" F"

(7)

I,(t)= 2eI —f dtolm[f(to, t)X„,( —co)],

where X«„ is defined by

X„,(t)= ie(t)([A (t), A —(0)]) .

For a dc voltage, (3) is simplified to

I, = —2e I' Im[X„,( —e V, ) ] .

(3)

(4)

(5)

where a is the cuto8 length scale whose value will be dis-
cussed later. The retarded Green function X„, is given
by

X„,(co)= f —6i(t)[G (x, t) —G (x, t)]e'"'dt

Notice that (1) is just the leading term in the expansion of
the tunneling amplitude I . In this paper we will limit
ourself to weak tunneling situations and keep only the
leading term.

Formula (1) reduces the tunneling problem to a calcu-
lation of the correlation function of the tunneling opera-
tor A. In the rest of the paper we will use the theory of
the edge states to calculate such a correlation function in
various situations. Then we will use (1) to obtain various
tunneling I - V curves.

The electron propagator along the edges of the FQH
states has been evaluated in Refs. 9 and 11. For the sim-
ple Laughlin state of filling fraction v= 1/q, the propaga-
tor is given by

+iv 'k x
(cz L (x, t)c~ L(0) ) o- (x + ut) ge

q
— —

q q-
(2q —1)! (9)

Equations (9) and (5) imply that the dc tunneling
current is given by I, ~ V, ', which is nonlinear. The
nonlinear I,-V, curve is a consequence of the strong
correlation in the FQH states. We notice that the I, V, -

curve for the v=1 integer quantum Hall (IQH) state
(q =1) is linear. This is because the edge excitations in
the IQH states are described by the Fermi-liquid theory

Now let us consider a situation where V, has an ac
component:

X [tang(erg)+i sgn(co)] .I 2g

For the Laughlin state, g is an odd integer q and (8) can
be further simplified to

at zero temperature. Here g = 1/v= q is an odd integer, u

is the velocity of the edge excitations, and
kF=2mnd =vko. (n is the two-dimensional electron den-
sity. ) Because the excitations on the two edges do not in-
teract with each other, the propagator of the tunneling
operator A can be calculated from (6):

V, (t) = Vo+ V& sin(Qt) .

In this case the time average f (co, t ),

f(co)= f dt f(to, t),
has a form

(10)
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f(co)= g a„fi(eVo+nQ —to) .

It is easy to see that a„=a „are real and a„only depend
on the ratio g= e V, /Q. In fact we have

I dt dt's
inst' t) —iS(cost c'o—st)

4+ o o
(12)

4 6
ev, /ti

10

The dc component of the tunneling current I, is found to
be

27T 0

a„(g)(eVo+nO) s (13)

The I,' ' V, curve-for a few values of e V, /0 is plotted in

Fig. 2 where we have chosen q =3 (the v= —,
' Laughlin

FIG. 2. The I,' '-Vo curve for the v=
3 Laughlin state in

Fig. 1. The voltage V, has an ac component of amplitudes
e V, /0=0, 2, 4, 6.

state). We see that in the presence of an ac component,
the tunneling junction develops a nonzero conductance at
V, =0.

The finite-temperature propagators can be obtained
from the zero-temperature ones through a conformal
transformation. ' We find that (7) becomes

i s n(t)e(v —x )6+(x, t)=a (mT) ~sinh[nT(x —tu)]si nh[mT( x+ut)]~ se' s's"'"

—i s n(t)e(U t —x )6 (x, t) =a (m T) ~sinh[m T(x —ut)]sinh[~T(x + ut)]
~

se
(14)

at finite temperatures. Equation (14) implies

(to) a2s —
2u

—2s(2~T)2s —1

tures. From (15) we can further show that

( dIt /d Vt )
~ v —o

cc T (16)

XB (g i to/2m T,g—+ico/2mT).
sin[n. (g +i co/2m T) ]

cos(n.g)
(15)

where B is the beta function. For dc voltage, the I,-V,
curves at finite temperatures are plotted in Fig. 3 (again
we have chosen q =3). We see that the differential con-
ductance (dIt/dVt)~ V, =O is nonzero at finite tempera-

Now let us consider a more interesting device with a
geometry as presented in Fig. 4. The low-temperature
transport of such a Hall bar is still governed by the tun-
neling between the two edges. Again we will assume the
tunneling is induced by an impurity in the QH sample.

iC

I
'& Edge R

v
0

Edge L

&r l

eV,
10

FIG. 3. The dc tunneling I,-V, curve for the v= —,
' Laughlin

state in Fig. 1 at finite temperatures T=0,0.3,0.6,0.9, 1.2. We
have chosen kz =1. eV, and T are measured with the same en-

ergy unit.
FIG. 4. A Hall bar with an impurity at X. The electrons in

the shaded region form a QH state.
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IPR, L(x) 4RL(+ )l ~(X X )PRL(x (17)

where e =ve is the charge of the quasiparticle and pz L

are the one-dimensional charge-density operators on the
edges R and l.. Since pz L satisfy the Kac-Moody alge-
bra 2)6)8

7

e v2

~PL, R;k&PL, R;k'~ +
2

k~k+k'

lpL, k PR, k I (18)

For such a system the tunneling can be accomplished by
moving one electron from one edge to the other; it can
also be accomplished by moving one quasiparticle be-
tween the edges. ' We know the quasiparticles in the
FQH state correspond to vortices of unit flux. The quasi-
particles tunneling across the FQH sample in some sense
resembles the vortex tunneling across a superconducting
stripe. The contribution from the electron tunneling is
discussed above. In the following we will concentrate on
the quasiparticle tunneling. Again we will only consider
a simple Laughlin state as an example.

Some aspects of the quasiparticle tunneling operator
have been discussed in Ref. 9. There the Hilbert space of
the edge excitations on the two edges of a cylindrical
FQH sample was constructed. The Hilbert space con-
tains states which are related by transferring a fractional
charge e/q between the two edges (assuming the FQH
state has a filling fraction v= 1/q). The transition be-
tween those states are realized by the quasiparticle tun-
neling operators. The quasiparticle tunneling operators
can easily be written down by generalizing the discus-
sions in Ref. 9. In the following we will briefly surnma-
rize these results.

First let us derive an explicit expression of the quasi-
particle tunneling operator. The quasiparticle operator
on the edge, fR L, creates a localized charge and should
satisfy

27TU
X (PL, kPL, —k+PR, kPR, —k }

e vk)o
(22)

Using (18} and (21) one can show that the correlation
functions of the quasiparticle tunneling operators A are
still given by (7) but with a new exponent

12V kFX
g =(e'/e&v} =v. (The momentum factor e now

2l kFX
becomes e .) The tunneling formula (1) also applies to
the quasiparticle tunneling after replacing e by e *.
Therefore our previous results for the electron tunneling
remain valid for the quasiparticle tunneling once e and g
are replaced by e * and v.

Since g is less than —„the qausiparticle tunneling has
very different behaviors than that of the electron tunnel-
ing. For example, the zero-temperature dc I,-V, curve is
given by

I, ~ ~V, ~

~ 'sgn(V, )=~V,
~

'~ ' ~sgn(V, ) (23)

which diuerges as V, ~0. Such a diverging tunneling
curve resembles the tunneling curve between one-
dimensional superconductors (with algebraic decay order
parameters). The tunneling curve can be directly mea-
sured in experiments by measuring I 0 xy Vf and
V=I, /cr„ in Fig. 4. Here o =ve /h is the Hall con-
ductance of the FQH state. We would like to remark
that our discussions are based on the weak tunneling
theory. Our results are valid only when the tunneling
current is small: I, &&I, or equivalently,

FQH fluids, then the quasiparticle tunneling operator will
not be physical. In this case only electron tunneling is al-
lowed, which is the situation in Fig. 1.

The low-energy dynamics of the edge excitations is
governed by a Hamiltonian which satisfies

[H~PL, R;k ] + VkPl. , R;k

Such a Hamiltonian has a form

2'k, k'=integer X I, /V, (&cT„ (24)

one can show that the quasiparticle operators which
satisfy (17) are given by

L R +~kI.L, Re

Equation (23) violates (24) at small V, . In this case (23) is
no longer valid and the divergence is expected to be
rounded off.

where PL R is given by PL R =e ( &v/2~)B„PL R. We im-
mediately see that the quasiparticle tunneling operator
A =gR gL is given by

I I .
I

I I I

[

I I I

~ ~L+tt)R 2ikFx
A ~e L R F (20)

We would like to remark that the quasiparticle
creation operator fR L, creating a fractional charge, is
not physical, in the sense that it creates a state outside
the physical Hilbert space. However, the quasiparticle
tunneling operator A in (20), being a neutral operator, is
physical. One can show that it creates a state inside the
Hilbert space constructed in Ref. 9. We would like to
emphasize that the quasiparticle tunneling operator is
physical only when the two edges are connected by the
same FQH fiuid. If two edges belong to two different

0
0

I I I I

6 8 10

FIG. 5. The dc I,-V, tunneling curve for the v= —,
' Laughlin

state in Fig. 4 at finite temperatures T=0,0.3,0.6, . . ., 1.8.
e*=ve is the quasiparticle charge. We have chosen k&=1.
e*V, and T are measured with the same energy unit.



F 't t mperatures also remove the d' gdiver ence. Theini e e
b (15) andI,-V, curves at finite temperatures are given y,

are plotted in Fig. 5. (Again we have chosen v= —,'. We
see that I, peaks at a voltage

V, ,„=2.38T/e* . (25)

(26)

(27)
~xy

1 I Vcurv-e and (dI/dV&D)-VsD curve a«
-on structurelotted in Fig. 6. The curves show a turning-on

h ld V . Notice that at zero tem-near a certain thres o
perature the function V (I) has a minimum and it turns
out that VsDO is the minimum of VsD(I):

Thus the Anite temperature I,- V, curve can pcan rovide infor-
* once the zero-mation about the quasiparticle charge e once

tempera ut ture behavior (23) is confirmed.
It is instructive to calculate the total current p

'

gI assin
h Hall bar as a function of the voltage

d the drain:di erenced 6 between the source and
aned eV&D

= V&
—VD. We notice that the voltage along an e g

has a dlop ~or iise w en(
'

) hen we pass through the tunneling
point. e m

' t. W may evaluate V, using the average o t e vo
ages on the two sides of the tunneling point:

V =-'(~i)+ VI.2) ——,'(Vai+ ~~2) =I/~.,
The voltage V~D now can be calculated as

lt ( Vt )
~ v, =I/~„, +I
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FIG. 6. The (dI/dV»)-V+D curve (a) and the I-VqD curve
(b) for the v= —' Laughlin state in Fig. 4 at finite temperatures
T=0.3,0.6, . . ., 1.8. The unit of the voltage is chosen suc t ah that
V»o in (28) is equa to . e1 4 Th temperature is measured in units
of e*V»0/4

g/(1+2g)Xg
IU

&gl (2g)

—I /(1 —g)

i —(i —2g)/(2 —2g)( l g)

(28)

The unit of the voltage in Fig. 6 is chosen suc h that VSDO
is equal to 4.

& V theWe would like to remark that when V~D ~Dp e

ply. The detail features near Vip in Fig. 6 are not re i-

I

e*V,/n=4/a:

2 4

I I I I I I

e*V,/n=7/3:
I

e*V,/() =4

I—1
0

e*vo/2

. We have chosen the tempera-te in Fi . 4 with different ac components in V, . WeFIG. 7. Tne ~, - 0 curveh I,' '-V urve for the v= —' Laughlin state in Fig. wi i e3

ture T to be zero and fi= 1.
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able. Our results are valid only for V&D ))V&Do. Howev-
er, our calculations do suggest that as we decrease VzD,
there is a sudden drop in the current I near the charac-
teristic voltage V&Do. Such a structure resembles the im-
purity pinning of one-dimensional incommensurate
CDW. A more detailed discussion will be given later.

Now let us consider the situation where V, has an ac
component. The dc component of the tunneling current,
I,' ', is given by

I,' '~ g a„(g)lmX„,(e'Vo+nQ),

(29)

structures in experiments, let us make some numerical es-
timates. Assume 0=2 GHz. To observe the resonances,
Vo and V, should be of order Qfi/e* —30 pV. The
current passing through the Hall bar, I, is of order 0.4
nA. The tunneling current I, can be measured by
measuring V in Fig. 4. The validity of our results re-
quires V(& Vo. Thus the sensitivity of the measurement
of V should be much better than 30 pV, which is achiev-
able. Thus it may be possible to observe the resonances
in experiments and give a direct measurement of the
quasiparticle charge.

which is plotted in Fig. 7 for a few values of e*V, /Q. In
Fig. 7 we have chosen v= —,

' and T =0. We see that there
are many resonance structures at integer values of
e*Vo/Q. Those structures provide a direct measurement
of the quasiparticle charge. The resonance structures in
the tunneling between the two edge states resemble the
Josephson effects between superconductors. Later we
will see that the resonance structures in Fig. 7 reAect the
existence of narrow-band noise in dc transport, which is
very similar to the narrow-band noise in CDW transport.
Probably a more direct way to measure the quasiparticle
charge is to measure the frequency of the narrow-band
noise which is given by Q„, = e '

V, /A'.

To see whether it is possible to observe the resonance

II. TRANSPORT IN THE PRESENCE
OF THE COULOMB INTERACTION

The tunneling effects discussed in the preceding section
are easy to observe when the two edges are close to each
other. In this case the interactions between excitations
on the different edges cannot be ignored, in particular
when the long-range Coulomb interaction is present. In
this section we will discuss the effects of these interac-
tions on the edge transport properties of the FQH states.

Let us concentrate on the system in Fig. 4. The Hil-
bert space of the low-lying edge excitations is still gen-
erated by the Kac-Moody algebra (18), but the Hamil-
tonian is no longer given by (22). In presence of the in-
teraction the Hamiltonian becomes

27TV
(PL, kPL, —k +PR, kPR, —k ) + X Vl (k)(PL, kPL, —k +PR, kPR, —k )

e vk&o k)0

+ X V2(k)(PR, kPL, —k+PL, kPR, —k)+ 2
+

2 Vl( ) (PL, o+PR, O)+ V2( )PR, OPL, O '
k)0 e v

(30)

Here V& represents an intraedge interaction and V2 an in-
teredge interaction. In (30) we have included the zero
momentum component of the density. Notice that, at
low energies, the intraedge interaction V, (k) can only
modify the edge velocity if Vi(k) is finite as k~0. In
this case the V& term can be absorbed in the first term in
(30). The intraedge interaction can give rise to new
features only when V, (k)~ ~ as k —+0. In contrast, as
we will see, the interedge interaction will have drastic
efFects even when V2(k) is finite.

Even in the presence of the interactions, dynamics of
the edge states described by (18) and (30) is still exactly
soluble. Introducing

If we further choose Ok to satisfy

V2(k)
tanh20k =

2m.v/e v+ Vi(k)
(33)

where

778 p+, (PL, o+PR,o»
e v

(34)

then the Hamiltonian (30) will have the following diago-
nal form:

= 2~
X Ok(PL, kPL, —k +PR, kPR, —k )

e vk&o

pI., k coshk pL, k +s nhk pR, k

p& k
=coshOk p& k +sinhOk pL, k

(31) ve V, (k)
Vk= V+

2

2 2
ve V2(k)

2m
(35)

we find pL z still satisfy the Kac-Moody algebra:

e v2

~PL, R;k ~PL, R;k' f +
2

k ~k+ k

APL, k PR, k ~
—o .

(32)

Equations (32) and (34) imply that

I. H&PL, R;k 1 + kkPL, R;k (36)

Equations (32) and (36) describe a collection of nonin-
teracting oscillators and hence are exactly soluble. The
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dispersion relation for the edge excitations is given by
Ek =Ukk.

First let us assume there are no impurities and study
the effects of the interactions on the transport properties
of the clean Hall bar. In the presence of the interedge in-
teraction, the excitations on edges L and R are mixed.
The right (left) moving excitations generated by pR (pL)
are no longer localized on edge R (L}. In this case one
needs to define various quantities carefully. The total
current and the total charge on the Hall bar are given by

Q =v'L (PR,O+PL, O)

=v L (cosh8p sinh8O)(PR o+PL p)

VpI= =(cosh8o sinh8o)(PR, o PL, o) .
(37)

1 dH dH

~PR, O ~PL, O

(3g)

while voltage V&D is the voltage difference between the
right movers and the left movers. V&D is given by

1 (}H
Vsa =

')/L (cosh8O —sinh8O} (3pR o APL, O

(39)

Equations (37)—(39}imply

I —2 Ve 2
=e

V~D h

-2e,=e ', = . (40)
V~D V, h

We see in the presence of the interedge interaction we no
longer have V, = VRD and I/VzD =ve /h. The two probe
measurement no longer gives the quantized Hall conduc-
tance. However, the ratio I/V„not affected by any in-
teraction, is still quantized and universal. When we have
a small tunneling current I, across the edges, the voltage

Too
drop V along an edge is given by V =I,e 'h /ve which
is different from the noninteracting one, V =I,h /ve .

To understand the generic effects of the interedge in-
teraction on the tunneling, let us first study a simple case
in which Vi V2=const. Now 0
dependent of k. The quasiparticle tunneling operator
(20), when expressed in terms ofpL R, has a form

i(e /e~v)(coshe sinh8)(PL+JR ) i 2k—Fx
R L

I R ~ F

where PL, R is given by pL, R e(1/v 2')dx4'L, R. Thus
the correlation functions between the tunneling operators

Thus the charge density of the right movers is given by
(cosh8o —sinh8O)PR /1/L and left movers by
(cosh8O —sinh8O)PL/v'L. The voltage V, is the voltage
difference between the excitations on the edges R and L„
which is given by

are still given by (14) (with v replaced by v), but now the
exponent is given by

g =v(cosh8 —sinh8) (42)

The transport properties can easily be calculated by re-
peating the procedures in the preceding section. In par-
ticular, (8), (13), (15), (16), and (23) remain valid with the
new value of g. %hen g & —,', I, diverges as V, —+0 and the
transport properties still have the qualitative features as
represented in Figs. 5—7. Since 0&0 for a repulsive in-
teredge interaction, the repulsive interaction reduces the
value of g which in turn enhances the tunneling current
I, at small V, . Even for the v= 1 IQH state, the repulsive
interaction will make I, / V, ~~ as V, ~0.

We would like to point out that the tunneling formula
(1) is still valid even when the electrons on the two edges
interact with each other. In general the total Hamiltoni-
an of the system has a form Hp+H„where
II, =I (QR1tL+H. c.) is the tunneling term and Hp may
contain interedge interactions. Formula (1) applies as
long as Hp commutes with Xl and Xz, the total electron
number operators on the two edges.

For the v= 1 IQH state, g may be in the range —,
' & g & 1

for a weak repulsive interaction. (Now the quasiparticle
operators gL R are the electron operators cL „.) In this
case the tunneling current I, does not diverge as V, 0
[see (23)j. But the differential conductance dI, /dV, ap-
proaches infinity at zero V, . Thus in the presence of an
ac component the differential conductance will show
similar resonance structures as demonstrated in Fig. 7.

We would like to point out that resonance structures in
Fig. 7 are generic properties of interacting one-
dimensional systems with both right and left movers.
The exponent g in general depends on the interactions
and can take any real values. (For this to be true both
the right movers and the left movers must be present. )

As long as g is not equal to an integer, similar resonance
structures will appear in certain order of derivative of
I, (V, ). From this point of view it seems too limited to
only connect the resonances in Fig. 7 to the Josephson
effect. The structures in Fig. 7 are generic many-body
effects which may appear in many interacting systems
even when the superconducting correlation is suppressed.

We would like to remark that for the v= 1 IQH state,
the low-lying edge excitations in the system in Fig. 4 can
be mapped to those in the one-dimensional Fermi liquid.
The excitations on edges L and R correspond to the exci-
tations near the two Fermi points. Equation (30) in this
case actually describes an interacting spinless fermion
system in one dimension. The Fermi momentum is given

by kz =d/2l . The tunneling operator cz cL carrying a2

momentum 2k+ is the CDW order parameter. From (7)
we see that there is a long-range CDW correlation when

g is close to 0. It is precisely in this case that we observe
a threshold structure in the longitudinal conductance of
the system (Fig. 6). This suggests that the threshold in
Fig. 6 should be attributed to the impurity pinning of the
CDW state. According to our picture, a drifting CDW is
realized by letting PLAPR. The impurity pinning is real-
ized through the tunneling between left movers and right
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movers (or by backscattering). Certainly the genuine (in-
commensurate) CDW state does not exist in one dimen-
sion. Here by "CDW state" we mean that the CDW or-
der parameter has a slow algebraic decay (e.g., g & —,').
The tunneling picture of impurity scattering of CDW was
first proposed in Ref. 1S. However, the CDW state in
Ref. 15 was treated within a mean-field picture. In this
picture we take into account the efFects of quantum Auc-
tuations and strong correlations. As a result of strong
correlations and quantum fluctuations, the transport
properties of the CDW's have nontrivial power-law struc-
ture (see the formula at the end of the paper). A
renormalization-group study of impurity pinning of 1D
CDW's can be found in Ref. 20.

Our formalism also applies to the Coulomb interaction.
In this case

V)(k)=2ICO(lkla)lk ()=—ln=2 2
k a

(43)

V (k) =21to(lkld) li,

where Ko(k)= fo (x +1) ' cos(kx)dx is the Basset
function and e is the dielectric constant. Now Ok and uk
in (33) and (35) depend on k.

The correlation between the quasiparticle tunneling
operator

where P=Pix+PL
e v

is given by

G (x t) —ev(P(x, ()P(0)) G e
(+ o Xp

X„,(t)=2e" ' ~' '"~' ' sin[vim(P(O, t)(I)(0))],
—20

(y(, )ty(0))= J' k ik(Okt —x) i k(V kt +x)

k

ln(d /a)
2 ln(2/ka)

The exact value of the above integration is hard to calculate. In the following we will discuss the asymptotic behavior
of the above correlation functions.

First let us consider the long-wavelength limit k & 1/d. In this case Ok and Uk have the form
' 1/2

ac d
Uk v ln ln

a

1/2
4

k ad

(45)

2u1t+i m 1n +const,

where a= —„', is the fine-structure constant and c the speed of light. We also have chosen U in (33) and (35) to be zero. (U
can always be absorbed in V, by redefining a.) We find ( P(x, t)P(0) ) has the following asymptotic form for large t:

1/2 ' 1/2 ' —1/2
2u, t

(y(0, t)y(0) ) l, ,= — —in — 4 in (46)a a

where Vi =v(ac/em)[2ln(d/a)]'~ . Note a may not be
equal to a due to the possible next-order corrections.
After a calculation, the asymptotic form of the propaga-
tor X,«(co) for small c0 is found to be

—28k
e '=1,

ac 2
Ug ln

e~ ka

(48)

exp[ —v[8 ln(d/a)ln(2x)) /la)la')]'~2]
ImX„,(to) =C,

co[in(2u, /Isola*)]'"

(47)

at small k. We find surprisingly that ((t)(O, t)p(0)) has
the same asymptotic behavior as that for a constant ve-
locity: (P(O, t)P(0) )~ Int +in—Thus r.epeating the
calculations in the last section we find

where Ci is a constant. We see that as co~0, ImX,«(a))
satisfies co ' & ImX,«(a)) &co ' for any positive 5. Qne
can also easily check that fO'IxnX, «(co)dao is finite

Now let us consider the behavior of the propagators
for 1/d & k & 1/a. In this case Ok =0 and the interedge
interaction is not important. After taking the limitd~~ we have

IxnX,«(co) = Cz (49)

where C2 is a constant. The ratio C, /C2 can be deter-
mined by allowing the two curves (47) and (49) to connect
smoothly around k —1/d, or equivalently, around
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Co-ro;=(e /eird)ln(d/a). Equation (47) is valid when
co«co, and (49) when co; «ro «e /ea .(e /ea is the
high-energy cutoff of our efFective theory. )

From the above discussion we find that the dc I,-V,
curve for the v=1 IQH state in the presence of the
Coulomb interaction has the following properties. For
e /Ea ))eV, ))ro;, the I,-V, relation is linear and
satisfies Ohm's law. When e V, & co;, the nonlinear behav-
iors start to appear and I, /V, increases as V, decreases.
In particular I,~~ as V, 0. To get some rough idea
about the shape of the I,-V, curve, we plot in Fig. 8 the
curve as calculated from (47), (49), and (5). Due to the
approximations we made in the calculations leading to
(47) and (49), the curve is not completely reliable. But we
expect the qualitative features, e.g. , the divergences in
I, /V, and I, as V, ~0, are correct. Due to the singulari-
ty near V, =0 in the I,-V, curve, we expect to see reso-
nance structures similar to those in Fig. 7 when an ac
component is present.

Let us make some numerical estimates. We may
choose d =2000 A, a =200 A, and e = 10. Then
e /@ed =0.2 meV. Thus the breakdown of Ohm's law
will appear when T & e V, & 0.3 meV (which requires
T «3 K). Such a condition is not difficult to achieve in
experiments.

We also calculated the I,-V, curve for the v= —,
' FQH

state with the Coulomb interaction. We find that the
curve is very similar to that in Fig. 5, except I, diverges
faster when the Coulomb interaction is present. The
qualitative behaviors represented in Figs. 5—7 should
remain unchanged after the inclusion of the Coulomb in-
teraction.

III. RELATIONS TO ONE-DIMENSIONAL
INTERACTING ELECTRON MODELS

Ho=+ V(k, l )c„ck
k

(50)

The ground state of (50) is a Fermi liquid which corre-
sponds to the IQH state with the first Landau level filled.
In the presence of weak interactions the infrared fixed
point of the system is described by the Luttinger liquid. '

When the electrons are interacting, the mapped 1D
system also contains an interaction term. For a 2D elec-
tron interaction V„(z;—z ) =t) 5(z,. —zj ), the mapped in-
teraction term in 1D is

k)+k2 =k3+k4
Vee(k I k2~ k3~k4 )Ck)Ck Ck3Ck4

(51)

V (ki k2 k3 k4) ~k, k4+k2k3 kik3 k2k4

In the preceding section we saw that when projected
down to the first Landau level, the electron system
presented in Fig. 4 can be mapped into a one-dimensional
system. The column states in the Landau gauge in the
quantum Hall system correspond to the momentum
eigenstate in the 1D system. Notice that in the Landau
gauge we have the translation symmetry in x direction.
The column states are the eigenstates of the momentum
in the x direction. The momentum k is related to the
position of the column state through k„=y/l, where y is
the y coordinate of the center of the column state. If the
electrons in Fig. 4 are confined by a smooth potential
V(y), then the Hamiltonian of the mapped 1D system is
given by (for the free electrons)

Note that V„ is regular for small k, hence it represents a
local interaction in 1D. In fact one can easily show that
(51) correspond to the following two-body interaction in
1D:

V„(x;—x, ) = t) 5(x; —x ) . (52)

I.-1 I I I I LI
0 1

I I I I I I

3 4
eV,

I I I I I I I I I I I I I I

3 2 j. 0
~o~, o(ev, )

FIG. 8. The dc I,-V, tunneling curve for the v= I IQH state
in Fig. 4 with the Coulomb interaction at zero temperature. e V,
is measured in units of e /ed. VVe have chosen d/a = 10.

We know that in 2D when the electron interaction V„ is
much larger than the potential V, the electrons will form
a new kind of state, e.g., the v= —,

' Laughlin state. This
implies that, after the mapping, the 1D system described
by Hp+H, also supports a new ground state when
H

&
&&Hp ~ It is interesting to see whether such a new

state in 1D represents a new universality class or not.
One way to address this problem is to study the electron
propagator. According to the above mapping, the low-
energy dynamics of the 1D system Hp+H, is described
by the Kac-Moody algebra (18) and the Hamiltonian (30).
The Hilbert spaces of the low-energy states are generated
by the density operators pL z, the charge e operators

+i("I/q /e)QL Re ' and the quasiparticle backscattering opera-
tors e —"' ' ~'~. Here P is equal to Pit+Pi and q= 1/v
is an odd integer. In the presence of generic interactions
the physical electron operators may mix with the quasi-
particle backscattering operators. The electron operator
may take the following genera1 form:
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CL, R
+i ( /q /e)[PI )(+(n/q)P] +((q+2n)k+x

Actually (53) is the most general form of a local charge e
operator. From (53) we see that the electron propagator
has a form

2 g„&(q+2n)kFx
G, (x, t)~g(x+vt) + "(x —v t ) "e

Equation (54) has structures identical to those of the elec-
tron propagator in the Luttinger liquid. Therefore the
1D state derived from the v= 1/q Laughlin state belongs
to the same universality class as the Luttinger liquid de-
rived from the v= 1 IQH state.

We would like to point out that when V=O, the
ground state and the low-lying excitations (i.e., the zero-
energy sector) of the 1D Hamiltonian (which is Hi ) are
exactly soluble. Those zero-energy wave functions can be
obtained by mapping the wave functions of the Laughlin
state and the wave functions of the edge excitations ' '

into one dimension. The mapping of the Laughlin wave
function into 1D has also been discussed explicitly in Ref.
22. Notice that the 1D system described by H& contains
only one length scale k~ ' while the corresponding 2D
FQH system contains two length scales d and I. What
happens is that difFerent 2D FQH systems with the same
kz=d/I map into the same 1D system. This property is
related to the fact that the 2D system, after being project-
ed into the first Landau level, is invariant under separate
scalings x~gx and y —+g'y if the potential is given by
V(z; —zj ) =B 5(z; —zj ). As a consequence of the above
scalings we find that the FQH states for d » 1 and for

d «1 are continuously connected to each other and have
the identical excitation spectrum once kz=d/I is fixed.
When d (&I the magnetic field is not important and the
system reduces to the 1D model described by Hp+H&.
Many results obtained in this paper for the FQH effects
also apply to such a 1D system. Since the CDW order
parameter has a slow algebraic decay, x, we may call
the 1D state derived from the v= 1/q FQH states a CDW
state.

Certainly in 1D one can only directly measure the
I VsD cu-rve (see Fig. 5). For VsD»VsDo and at T=0,
the conductance is given by I/Vzr) =ge /h —y Vs),
where y is a constant. In the presence of an ac corn-
ponent in current I, the dc part of VsD(t) can easily be
calculated from (27) and Fig. 7. The results are presented
in Fig. 9. The resonances appear when the current is
equal to a multiple of eQ/2m. Those resonances can easi-
ly be understood from a CDW picture. Actually the
steps similar to those in Fig. 7 have been observed in
three-dimensional CDW states. Notice that the reso-
nances happen at such currents that an integer number of
electrons are transported through the system in each
period 2qr/A. We know when a CDW state (or a state
with strong CDW fluctuations) passes through an impuri-
ty, the density oscillation in space will cause an oscilla-
tion in time. If there is one electron in each period of the
CDW state, the frequency of the oscillation will be
Ap =2' /e. This oscillation, when resonant with the
external oscillation, causes the first step in Fig. 9. The
other steps are caused by the resonances with higher har-
monies in the external oscillations. It is very satisfying to
see that the result of the quasiparticle tunneling in the

I I

4
0

0
I I I

4

27ri/eB 27TI/e0

FIG. 9. The dc part of the I-VzD curve for the CDW state or the v=
3 Laughlin state in Fig. 4. I contains an ac component:

I{t)=I +Il sin(Qt }. The temperature T is chosen to be zero.
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+~'(+q /e)P& & +iqk&x
CL„R

L, A F

The kz singularity disappears.

(55)

FQH states can be explained by the above simple CDW
picture. This also confirms that the transport properties
of the FQH states are governed by the quasiparticle tun-
neling.

We would like to remark that in 3D CDW samples,
one also observed steps at rational values of 2vrI/eQ.
Those new steps can be obtained in our model by includ-
ing higher-order terms of I in the tunneling formula (1).

We would like to mention that the limit d/l —+ co (with
kz=d/l fixed) is very useful. In this case the FQH state
is a well-defined bulk state and yet equivalent to the 1D
system described by H

&
~ Many properties of the 1D sys-

tem described by HI can be obtained in this limit from
the known properties of the FQH eff'ects. For example, it
is clear that the electron propagator in the FQH state
only contains singularities at 3kF. This implies that
after mapping to 1D the electron operators take the sim-
ple form

The value of the exponent g depends on the detail struc-
ture of the hierarchical state.

In this paper we discussed the transport properties of
the edge states in the IQH and FQH efFects, with or
without Coulomb interactions. %'e find that the trans-
port properties demonstrate various nonlinear or even
singular behaviors. Those behaviors can be used to
directly measure the fractional charges of the quasiparti-
cles. We also find that the interedge interactions have
profound effects on the edge transport properties of the
QH states, sometimes quantitatively and sometimes even
qualitatively. In many cases the interedge interactions
complicate the matters. One way to avoid the interedge
interactions is to do experiments on samples with a
geometry as illustrated in Fig. 10. Many predictions that
we obtained here are within the reach of the present ex-
perimental technology. It would be very interesting to
test those predictions in experiments.

We also discussed the scattering of a moving 1D CDW
state (i.e., a state with an algebraically decaying CDW or-
der parameter) by a single weak impurity. We find that
the differential conductance of the system is given by

IV. DISCUSSION
2dI e

'V (56)

Before ending the paper we would like to discuss the
limitations and the approximations in our approaches.
All the results obtained in this paper are based on the
low-energy effective Hamiltonian (22) or (30). The com-
plete Hamiltonian may contain many other terms, e.g.,
the anharmonic term g pi, p& p i, i, . Those terms are

2 I 2

irrelevant at low energies and can be ignored if we are
only interested in the low-energy properties of the sys-
tem. Thus our results are correct only when k and co are
less than certain cutofF values. In the following we will
discuss the values of the momentum and the frequency
cutofF in the efFective theory.

If electrons experience only a short-range interaction
with a range less than the electron separation n ', then
the momentum cutoff a ' is expected to be of order
n' =&v/2m. l '. For a 10-T magnetic field a is of order
100 A. In the presence of the Coulomb interaction the
situation is more complicated. When the cyclotron fre-
quency co, is much larger than the characteristic
Coulomb energy e,&

=+v/2m. (e /el), experimental value
of the gap is of order 1 K for the v= —,

' FQH state. We
may take 6 as the energy cutoff of our effective theory.
The momentum cutoff may be determined from
6=k(e /em)ln(2/ka)~l, ,q„which gives a -e /A~
—3000 A. For the v= 1 IQH state, we would choose
A-ai, . In this case e /b, m is less than the interelectron
distance. So the cutoff scale is given by the latter:
a -2.51-200 A at B=10 T. We would like to point out
that the above estimates (and other numerical estimates
in the paper) are very crude. They may be off by a factor
of 3 or more.

The results obtained in this paper also apply to the
hierarchical FQH states, because the Green function of
the electron or the quasiparticle on edge also has a form"

when V&D is much larger than the pinning threshold but
much less than the cutoff' U/a. Here ge /h is the conduc-
tance of the CDW state in the absence of impurities and
y is a constant. We find that the conductance of the
clean system determines the exponent in (56). The pin-
ning threshold for a weak impurity can be estimated from
(28). We see that the pinning threshold has a nontrivial
power-law dependence on the impurity strength.

We have been emphasizing the similarity between 1D
CDW systems and 2D FQH systems. Certainly there are
differences between the two systems. For example, the
narrow-band noise in the dc transport still exists even

FICx. 10. A sample geometry which reduces the effects of in-
teredge interactions.
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when the 2D FQH system is not 1D like, say with a
geometry given in Fig. 10. In this case it is hard to use
the spatial charge modulation to explain the narrow-band
noise. Also in this case the exponents g in (8) and (56) are
quantized and take simple rational values.
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