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Donor transition energy in GaAs superlattices in a magnetic field along the growth axis
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The transition energies between the ground state (1s-like) and two excited states (2p *-like) are calcu-
lated for shallow donor impurities in GaAs superlattices in the presence of a magnetic field along the
growth axis. Results are obtained as a function of the magnetic field and the well width for various
widths and heights of the barriers of the superlattices. The dependence of the transition energies on the
position of the donors and the effect of band nonparabolicity are also investigated. The calculation is
based on a variational approach in which Gaussian-type trial wave functions with two variational pa-
rameters are used. Polaron correction to these energies is studied within second-order perturbation
theory in which only the three-dimensional-bulk phonon modes of GaAs are included. We found that
the polaron effect and band nonparabolicity have to be included in order to correctly describe the experi-

mental transition energies.

I. INTRODUCTION

With the advances in crystal-growth techniques such
as molecular-beam epitaxy and metal-organic chemical
vapor deposition, it has become possible to grow systems
of alternating layers of two different lattice-matched
semiconductors having controlled thicknesses and sharp
interfaces. These alternating, ultrathin layers form a
one-dimensional periodic structure, which is referred to
as a superlattice. Among the most extensively studied su-
perlattices is the one consisting of alternating layers of
GaAs and Al,Ga,_  As.

In recent years there has been an increasing interest in
the theoretical' ~!# and experimental'>~?! investigation of
the behavior of shallow hydrogenic donor impurities in
semiconductor heterostructures, quantum wells, and su-
perlattices. In one of the early calculations! of the hydro-
genic impurity states in GaAs/Al Ga,;_,As quantum
wells (QW’s), an infinite potential was assumed at the in-
terfaces. Several groups®’ > have extended the work of
Bastard! to calculate the low-lying energy levels of a
donor in the finite high barrier QW. Chaudhuri and Ba-
jaj® included the effect of band nonparabolicity in their
calculation where the effective mass of the electron was
only associated with the lowest subband of the QW. The
polaron effect of a quasi-two-dimensional electron gas in-
teracting with longitudinal-optical (LO) phonons in the
presence and absence of a magnetic field has been studied
extensively?? 3!, Most of these works thus far have been
concentrated on the resonant polaron effect of free elec-
trons. Polaron correction to the properties of donors in a
single quantum well was investigated by several
groups’ !, where in Ref. 7 nonparabolic band mass was
used for the lowest subband of the QW.

Chaudhuri'? extended the variational calculation of the
ground-state energy of a donor electron in a QW to the
situation of a multiple-well structure. This calculation
was generalized to a superlattice by Lane and Greene,!3
who also calculated the energy of low-lying excited states
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(2p™) of a hydrogenic donor at an arbitrary position. In
Ref. 13 the effective mass of the electron was taken to be
the bulk GaAs value throughout the whole superlattice.
Recently Helm er al.3? extended these calculations to
higher excited states (i.e., 1s,25,2p~,2p,), where they in-
cluded the spatial dependence of the electron mass. All
of the above calculations'>'*32 are for zero magnetic
field. In the present paper we will generalize them to
nonzero magnetic field. At present we are unaware of
any calculation of the donor states with LO-phonon in-
teraction in a superlattice in the presence of a magnetic
field. Polaron effects are present in polar semiconductors
like GaAs. This effect results in a shift of the energies in
low magnetic fields, and leads to a resonant splitting of
the energies in high magnetic fields (B >12 T). Such
effects have been observed in recent experiments.!¥ 2!

In this paper, we report on a calculation of the transi-
tion energies 1s —2p* for a shallow donor impurity asso-
ciated with the lowest subband of a GaAs/Al,Ga,_,As
superlattice in a magnetic field parallel to the growth
axis. The position of the donor is arbitrary. We have in-
cluded the mass discontinuity of the electron at the inter-
face and the finite height of the barriers. To obtain the
wave functions and energy levels of an electron in the ab-
sence of electron-phonon interaction, a variational ap-
proach is used in which the trial wave functions are
Gaussians with two variational parameters and the effect
of the nonparabolic band mass is included in a self-
consistent manner. Polaron correction to these energies
is calculated within second-order perturbation theory.
We find that the polaron correction is important, not
only at resonance, but also at lower magnetic fields, and
that the effect of band nonparabolicity is appreciable in
high magnetic fields. No interface phonons have to be in-
voked in order to explain the existing experimental
data.!>"2! This paper is organized as follows. In Sec. II
a variational calculation of the 1s, 2pi states is presented
in the absence of the electron-phonon interaction. The
polaron correction is calculated in Sec. III. A detailed
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comparison with the experimental data is given in Sec.
IV. Our discussions and conclusions are presented in
Sec. V.

II. VARIATIONAL APPROACH

Within the framework of an effective-mass approxima-
tion, the total Hamiltonian for a single conduction-band
electron coupled to a Coulombic impurity and interacting
with LO phonons is given by

H=H,+H ,+H,, 1)

where H, is the electronic part
2

2
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which describes a hydrogenic atom placed in a superlat-
tice in an external magnetic field, where the potential is
modeled by a square-well potential

0O,—w/2+n(w+b)<z<w/2+n(w+b)
Vo, w/2n(w+b)<z<—w/2 (3)
+(n+1)w +b),

Vb(Z)=

with w the well width, b the barrier width, and n an in-
teger. For a GaAs/Al,Ga,_,As interface the barrier
height V, is given by 60% of the total energy-band-
gap difference between the two semiconductors:
AE,=1.155x +0.37x* eV.*} The position of the electron
is denoted by r=[p?+(z—2z;)*]'%, p=(x2+y?2)"/? being
the distance in the x -y plane, and z; the position of the
donor. The quantity m*(z) is the electron effective mass,
which is different in the two semiconductors: for GaAs
m, /m,=0.067, and for Al,Ga,_,As m;,/m,=0.067
+0.083x. €,=12.5 is the static dielectric constant of
GaAs, which is assumed to be the same in both materials.
We take x =0.3, except when we compare with the ex-
perimental results of Ref. 17, where x =0.25.

In Eq. (1) H; g is the LO-phonon Hamiltonian which is
given by

Hyo= X fioala,+1), (4)
q

where aé (aq) is the creation (annihilation) operator of a
LO phonon with wave vector q and energy fio,. For
GaAs we take fio, =fiwy o =236.25 meV.>*

The electron-phonon interaction in Eq. (1) is given by

Hy=3 (Vqage'9™+Vialeiar), (5)
q

where |V [*=4mra\/#/2m w0 fio o/q)?/V, with V the
volume of the system, a=e?V'm, /2%w o(1/€,
—1/€y) /% the dimensionless coupling constant, and €,
the high-frequency dielectric constant of GaAs. In our
calculation we take a=0.068, being the value in the
GaAs wells, which is a good approximation because most
of the weight of the electron wave function is located in
the wells. Furthermore, we take only the interaction
with three-dimensional bulk GaAs phonon modes and in
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so doing we neglect the effect of the superlattice on the
phonon modes.

The vector potential A is defined as A=1BXr. The
magnetic field B is taken along the growth axis which we
take to be the z axis. It is convenient to write our prob-
lem in the cylindrical coordiate system

m, 2

H,=— 2—yL,— iy —=
. :(Z)(V yL,—iv*p*) S +Vy(z), (6)
where the effective Bohr radius in GaAs,

ay =#%ey/m,e?=98.7 A, is taken as the unit of length,
and the effective rydberg R*=e?/2€,a% =5.83 meV as
the unit of energy. In Eq. (6) L,=—i(d/9¢) is the z
component of the angular momentum operator (in units
of #i) and y is a dimensionless measure of the magnetic
field, y =e#B /2m ,cR*=0.148B (T).

The Schrddinger equation with the Hamiltonian H,
cannot be solved exactly. A variational calculation of the
Is, 2p* and 2p ~ states will be given. Because the elec-
tron energies related to the superlattice potential are
much larger than the Coulombic energies, we explicitly
factor out the lowest-energy solution of the one-
dimensional superlattice potential f(z). Consequently we
write the donor variational wave function of the i state as

¥;(p,2,8)=f(2)G;(p,z —z;,¢) , 0)

where G;(p,z—z;,¢) describes the internal states of the
donor and f(z) is the superlattice wave function

—w/2<z<w/2

_ _ (8a)
be “Fabye " w/ia<z<w/2+b

cos(k,z),

f(2)=

which is periodically repeated, and f(z)=f(z +nl),
where /=w +b is the length of the period. The parame-
ters k,, k,, b,, and b, are determined by the matching
conditions at the interfaces. It is assumed that both f(z)
and [1/m}(z)]0f /0z are continuous across the inter-
faces. We find

k\=V2m,E, /%, k,=V'2m,(V,—E,)/#,

—kew kym
by=1e *2” cos(klw/2)——k1 > sin(k,w/2)
2w
and
kym
by=1e"2""? |cos(k,w /2)+ ——-sin(k,w /2) | .
k2mw

The energy momentum relation is determined by the
transcendental equation

cos(k,l)=cos(k w)cosh(k,b)
1

2

kimy, _kom,

sin(k,w)sinh(k,b) .

kzmw klmb
(8b)

In Eq. (7) only the nonpropagating electron state, i.e, the
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lowest state with k, =0, is needed.

Since the Hamiltonian has cylindrical symmetry, the z
component of the angular momentum is a good quantum
number, and consequently the ¢ dependence of the wave
functions is of the form e™™?, where m is the usual azimu-
thal quantum number. The Coulombic part of the wave
function G;(p,z,¢) in a magnetic field is taken as a prod-
uct of Gaussians

. —a,p*—B,z?%
Gi(p,z,qb):pl”"e”""’e a;p"—B;z , 9)

—B.z2
where the term e Bz
state in f(z)

corrects for taking only the k, =0
. In Ref. 3 a linear combination of Gaussians

J

<¢lsl¢1s)zcls ’

<'¢2pil¢'2p4_r> L

Q
H+

2p+ ?
2p +

w 2 ©
<¢1s|He|1p1s>=7rmw f_u/)z/:bdz_‘f——(—ZL 2

m(z) =

m™Tm 2 ©
i|H |¢ :t)_ w fw/2+bdzf (z)
a2pj: —w/2

)

mr(z) , <7

where we defined the normalization constants

w el —2B.(z—z,+nl)?
= [ a3 T e
2a,~ n=-—ow
and the functions
(n) 1 m*(Z) 2 2
A;"(2)=— - V(2)+2B; —4Bi(z =z, +nl)
1 df(z)
(z—z;+nl)—————
T4Bi(z =z n)f(z) dz
1 d*f(z)
a7z (116)
f(z) dz?
m*(2) 1/2 .
B"(z)=— 2m erfc(V/2a;lz —z; +nl|)
2a;(z —z; +nD)?
Xe ! ’ (llg)

with erfc(z) the complementary error function.

In Fig. 1 we present the donor energies of the ls, 2pt
and 2p states in a (100 A)/(100 A)GaAs superlattlce
(solid curves) as a function of the magnetlc field and com-
pare them with the equivalent energies in a 100- A QW
(dashed curves). The donors are placed at the center of
the well. As a reference we give also in Fig. 1 the bot-
toms of the first two free-electron states, i.e., E, ; + 1#io,

—2B),(z—z;+nl)?

_9gE(,— 2
e 2B2p(z z;+nl) [
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is assumed for G; where the parameters a; and ; are tak-
en from Huzinaga,® who performed a detailed study of
the use of Gaussian basis functions for hydrogenic atom
energy levels. For not too small magnetic fields the
difference with our approach is small. In the present pa-
per, we take a; and S3; as variational parameters which
minimize the unperturbated energy of the i state

(| H, ;)
0_ __Tt-"e "t°
B =m0

With the variational wave functions, Egs. (7)=(9), we ob-
tain the following expressions:

(10)

(11a)
(11b)
2
1+ A(z)+B{"(z2) (11c)
4als
Y ? Y
1+ F +14(2)
4a2pi 4a2pi 74t
+%B(2;)i(z)[ |z —z;+nl| —2azpi(z —z;+nl)?]
(11d)

[
and E,,+i%iw,, which are indicated by the dotted

curves. Note that the binding energy of the donor states
is given by AEY=E, +1#iw,—E) for i=1s, 2p~, and
AE;’P+ =Ez’1+%ﬁwc—Egp+, where w,=eB/m,c is the

15 I 100/100 & superlattice )
L — — —100 & quantum well .-~

ENERGY (units of R*)

MAGNETIC FIELD

FIG. 1. Energy levels of a donor at the center of the well in
units of the effective rydberg R*=5.83 meV in a
GaAs/Al, ;Gay ;As, (100 A) /(100 A) superlattice (solid curves)
and in a 100 A QW (dashed curves) as a function of magnetic
field ¥ =0.148B(T). The two lowest Landau levels in the first
subband are given by the dotted lines.
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cyclotron resonance frequency for a noninteracting elec-
tron, and E, | is the energy of a free electron in the lowest
subband at zero magnetic field. The energies for the two
lowest subbands are E,;=5.102*=29.74 meV and
E,,=19.947*=116.25 meV for the superlattice case,
E,;=5.1172*=29.77 meV and E,,=20.01R2*=116.66
meV for the QW case. Because of the large thickness of
the barrier, the electron energies E,, and E,, corre-
sponding to the superlattice are very close to those of the
QW. In the superlattice the donor-electron wave func-
tions are more spread out in comparison to the QW case,
because the electron is able to leak into the adjacent
wells, which diminishes the Coulombic energy AE? and
consenquently leads to larger energies EP for the super-
lattice donor states as compared to the QW case.

The numerical results for the state widths of the well-
center donors in the x -y plane ({x%+y?)'/2/v2) and in
the z direction ({(z —z;)*)!/?) are given in Fig. 2 as a
function of the magnetic field in a (100 A)/(100 A) super-
lattice (solid curves) and in a 100-A Qw (dotted curves).
Notice the following: (i) The results for the 2p * state are
the same as those for the 2p ~ state, which is because the
wave functions for both states, up to a phase factor, are
the same. (ii) The 1s state is more localized than the 2p*
states, and the localization increases with increasing mag-
netic fields. The width of the wave function which is
more spread out is more sensitive to the magnetic field.
(iii) The wave functions are more localized in the z direc-
tion than in the x -y plane because of the AlGaAs bar-
riers. (iv) For a smgle quantum well of 100 A we found
that the 1s and 2p* states have the same width in the z
direction, which is smaller than those for the superlattice
case. The dependence of the width of the electron states
on the position of the donor is depicted in Fig. 3 for a

——— 100/100 & superlattice
----- 100-R quantum well

N
T

[<x+y?>/2]'2 /a5

.
%

(%]

(4]

[<zz>]'/ 2/q
o
w

02sF T

MAGNETIC FIELD ¥

FIG. 2. Width of the well-center donor wave functions in the

x -y plane (upper figure), and in the z dlrectlon (lower figure) in

units of the effective Bohr radius ao =98.7 A as a function of

magnetic ﬁeld in a (100 A)/(100 &) superlattice (solid curves)
and in a 100 A QW (dotted curves).
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magnetlc field of y=2.0 (i.e., B=13.5 T). Notice that

=0, 50, and 100 A correspond to a donor at the center
of the well, at the interface, and at the center of the bar-
rier, respectively. For the QW case widths of the three
states in the z direction share one curve. For the super-
lattice case the widths are a periodic function of the
donor position as it should be, while for the QW case
they are a monotonic increasing function of the distance
from the center of the well. The width of the more local-
ized state, i.e., the 1s state, has a stronger dependence on
the position of the donor than that of the more spread
out states. A similar behavior is observed for the energy
of these states (see Fig. 4).

The dependence of the energy levels of the 1s and 2p *
states on the donor position and the magnetic field is il-
lustrated in Figs. 4(a) and 4(b) for the superlattice case
(w=b=100 A) and in Figs. 4(c) and 4(d) for the QW
case (w=100 A). We notice that (i) the energy of the ls
state depends much more strongly on the position of the
donor than that of the 2p * state; and (ii) once the donor
is located inside the barrier, the difference between the
superlattice and the QW cases is becoming appreciable.

III. POLARON CORRECTION

Because GaAs is a weak polar material we can use
second-order perturbation theory to calculate the polaron
correction to the energy of the i state

|<j;q|H1|i‘0>|2
fiw,+E)—E)— A,

22

, (12)

-
(&

100/100 R superlattice
----- 100-R quantum well

[<P+y?>/2]'2/ oy

o
»
1
[ -
%

0.5 -\

[<(z-2)?>1"%/ oy’

7=2.0

o i i i 'y
~50 0 50 100 150
DONOR POSITION 2, (&)

FIG. 3. Dependence of the width of the donor states in the
x -y plane (upper figure), in the z direction (lower figure) on the
donor position in a superlattice (w=>5=100 A) (solid curves),
and in a QW (w =100 A) (dotted curves) in a magnetic field of
y=2.0.
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where?*3%37 A, =AE;—AE,, and |j;q) describes a state  in the sum 3; which is a formidable task. In
composed by an electron with unperturbated energy E;’ the present work we limit ourselves to the most impor-
and a LO phonon with momentum #q and energy tant ones: ls, 2p™, and 2p ~. The matrix elements H}/

#iw,. In principle we have to include all donor states  =34|€j;qlH;|i;0)|? in units of (#w;)*/?, are given by
J
15,15 T fwd | |2 g; a2 /4a,
Hp»P=———— Gi15(g)°El |—— |e*" 1|
I 4a%sc%s 0 q; 15,1s\9z a, (12a)
H}pi,lszHlls,Zpi= - Ta
320}, +C,,C, +
® 8aja, + qXa, +a,, . qXa, +a . )/8a, a
X d G ( )2 74 + ZEI _ 1z 1s 2pt) z'C1s ij: 1s 2pi
fo | 152pF %)\ ayta, 9 8ay,a, + ¢ ’ (126)
+ + Ta
lep 2P =
4 2
256a2p:tC2pi
2 2
o q, /4
xf dq,|G, +, +(q,)|* |4a, +(12a, ++g¢7)+ (640l ++16a, +q2+q})Ei |— 4q: o, + ,
0 p=+,2p p p P p 2t
(12¢)
2 2
2t pF _ ed o _ 2 2 2 4 |4z 9, /4, 4
Hr 256a; +C? +f0 qu'Gzpi,zp”qz)' 16a; +—4a,, +q; — ¢, Ei da, - o, (124d)
pt Y 2pT ot

(a)

FIG. 4. Posi}ion andomagnetic field dependence of the engrgies of a donor for (a) the ground state E9; and (b) the excited state
Egp +ina (100 A)/(100 A) superlattice and similarly in a 100 A QW for (c) EY, and (d) Egp +
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FIG. 5. Energy levels of a donor at the center of the well in a
(100 A)/(100 A) superlattice as a function of the magnetic field
with (solid curves) and without (dashed curves) electron-phonon
interaction.

where we have defined the function

Gijlg)=["" "dz fH2) 3

n=-—o0

w/2+b

with «;, 3; the previously obtained variational parame-
ters for the i state, and Ei(q,) being the exponential in-
tegral function.

In Fig. 5 we depict the energy levels of the ls, 2pt
states (dashed curves) and the same ones shifted by a LO
phonon (solid curves) for a donor at the center of the well
of a GaAs/Al, ;Ga, ;As superlattice with w =b =100 A.
Note that (i) for not too large magnetic fields the polaron
correction shifts the energy levels to lower energy, and
these shifts increase with increasing magnetic field
strength; and (i) at resonance, i.e., E gp+ =EY, +#w. o
and E (2);# =E gp_ +#%w; o, there are anticrossings of the

energy levels.

The actual polaron shifts of the energy levels in low
magnetic fields (i.e., below the resonance region) are
shown in Fig. 6 for donors at the center of the well (solid
curves), at the interface (dashed curves), ar&d at the center
of the barrier (dotted curves) of the (100 A)/(100 A) su-
perlattice. In each of the three cases the ls state has the
largest polaron correction and the 2p ~ state the smallest
one. Furthermore, the polaron correction decreases
when the donor moves away from the center of the well.
Thus the smaller the width of the wave function of the
donor state, the larger the polaron correction. The pola-
ron correction to the 2p~ states increase much more
quickly with increasing magnetic field than that to the 1s
state because the width of the 2p* decreases much more
quickly (see Fig. 2). The rapid increase of the polaron
correction to the 2p T state for ¥ > 1 is a result of the fact
that this state is moving close to resonance.
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FIG. 6. Shift of the energy levels due to electron-phonon in-
teraction vs the magnetic field for donors at the center of the
well (solid curves), at the interface (dashed curves), and at the
center of the barrier (dotted curves) of a superlattice
(w=b=100A).

’ (126)

IV. COMPARISON WITH EXPERIMENTS

In this section we compare our results with available
experimental data. We first consider the system in rela-
tively low magnetic fields, where there is no resonant po-
laron interaction and the electron-phonon interaction
only induces a shift of the energies of the donor states. In
Fig. 7(a) the experimental transition energies of Jarosik
et al."” for donors at the center of the quantum well of a
superlattice with w =210 A and b =150 A are plotted as
a function of the magnetic field. We show our theoretical
results with (solid curves) and without (dashed curves)
electron-phonon interaction. Both the 1s—2p " and the
ls—2p~ transition energies are in good agreement with
the experimental data. For the case of narrower wells we
show similar results in Fig. 7(b) for the experimental re-
sults of Cheng and McCombe!® in a (125 A)/(125 A) su-
perlattice. For broader wells such results are shown in
Fig. 7(c) for the experimental data of Brozak and
McCombe'” in an x =0.25, (450 A)/(125 A) superlattice.
It is apparent from these figures that (i) the polaron effect
slightly increases the transition energies, which is due to
the fact (see Fig. 6) that the polaron correction to the 1s
state is larger than to the excited states 2p T, because the
1s state is more localized; (ii) the polaron correction to
these transition energies decreases with increasing mag-
netic field, which is a consequence of the fact that the po-
laron correction to the ls state increases less rapidly than
the one to the 2p* states because the width of the wave
function of the 2p~ decreases more rapidly with increas-
ing magnetic field than that of the ls state; and (iii) the
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agreement is less satisfactory in the small magnetic-field
region because we know>? that at zero magnetic field the
wave functions should be exponential rather than Gauss-
ian.

B(M
0 5 10

F T M v M 1

[ * Jarosik et al.

with polaron effect
-— — — without polaron effect

[ 210/150 &

TRANSITION ENERGY (units of R*)
W
1
o
TRANSITION ENERGY (meV)

2
—410
1s » 2p~
S is
0 0.5 1 1.5

MAGNETIC FIELD vy

B(TM)
= o0 5 10
LI A " by A2s
2, e Cheng et al. i —
g with polaron effect ] ®
~ r— — — without polaron effect 1 \E,
) [ 120 5
& 3[125/125 & 1s » 2p* &
=z - ()
| Jis &
s | z
& 2[ =
z L 1s > 2p~ 10 2
& K = s s s <
[ | T T === - =~ 1 .n_:
L L \ 1s
0 0.5 1 1.5
MAGNETIC FIELD v
B(T
* o0 5 10
s . Brosc ' I
£ 4L Brozak et al. 125 <
E] i with polaron effect ] £
% [ — — — without polaron effect 120 ;_’
& 31-450/125 & ] i
r 4 L
& r £=0.25 + q15%
& 2f 1 3
= i 410 E
i (%]
z [ ] Q
é 1 s> 2p7 4 5 é
T
0 0.5 1 1.5

MAGNETIC FIELD vy

FIG. 7. 1s—2p¥ transition energies with (solid curves) and
without (dashed curves) polaron corrections in x =0.3 (a) (210
A)/(150 A), (b) (125 A)/(125 A), and (c) x =0.25 (450 A)/(125
A) superlattices vs the magnetic field. The experimental data
are from Jarosik et al. (Ref. 15), Cheng and McCombe (Ref.
16), and Brozak and McCombe (Ref. 17), respectively.
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The 1s—2p T transition energy is shown in Fig. 8 as a
function of the well width of the superlattice with a fixed
barrier of width b =150 A in several low magnetic fields.
Again we find good agreement with the experimental re-
sults of Jarosik et al.'> if we include the polaron correc-
tion (solid curves). The polaron correction to E, + —E|;

is more pronounced in lower magnetic fields and for nar-
rower quantum wells.

For higher magnetic fields resonant polaron interaction
can take place which alters the energy levels appreciably
at resonance as was illustrated in Fig. 5. We compare in
Fig. 9 the experimental results of Huant et al.'®!° with
the present theoretical calculation (dotted curves) for a
superlattice with w =5 =100 A in the cases of well-center
donors, interface donors, and barrier-center donors. As a
comparison we have also plotted the results for a single
100 A QW (thin dashed curves). Notice that near reso-
nance two transitions are observed which are a conse-
quence of the lifting of the E 2+ and E | +%iw; o degen-

eracy. The experimental resonance positions, which in
Refs. 18 and 19 were indicated, respectively, by the
letters A, B, and C, are given in Fig. 9. Only for the
well-center and interface donors we find good agreement
with the experimental results in low magnetic fields. For
v > 1.5 the agreement between theory and experiment is
unsatisfactory. The reason is that for such high magnetic
fields band nonparabolicity becomes important. We in-
clude this effect through an energy-dependent effective
mass in the GaAs wells,

m,(E)/m,=0.0665+0.0436E +0.236E%—0.147E* ,
(13)

where E is the single-electron energy of the i state in eV.
The above expression is based on the k-p approxima-
tion.®3° In order to obtain the unperturbated energy
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FIG. 8. Energy of the 1s—2p* transition in a

GaAs/Alj ;Ga, ;As superlattice with a barrier width of 150 A
as a function of the well width for various magnetic fields with
(solid curves) and without (dashed curves) polaron effects. The
experimental data are from Jarosik et al. (Ref. 15).
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E =E? and wave function ¥; we have to solve Eq. (10) us-
ing Eq. (8b) for the lowest subband energy and Eq. (13)
for the effective mass in a self-consistent manner. The re-
sults of such a calculation are given by the solid curves in
Fig. 9. The agreement with the experimental results for
the well-center and the barrier-center donors is excellent,
while for the interface donors it is worse. A possible ex-
planation for the latter discrepancy will be deferred to
Sec. V.

Because the above self-consistent approach to include
an energy-dependent mass is numerically very time con-
suming, it is interesting to consider different approxima-
tions which do not invoke this self-consistency. The sim-
plest one would be to take E=E, ; in Eq. (13). A first im-
provement to the latter approach is to consider
E=E,,+1%io.,and a second improvement is to take

E=E,,+1fio, for the 1s and 2p~ states, and
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at the interface (middle figure), and at the center of the barrier
(bottom figure). We compare our theoretical results for the
cases of nonparabolic mass (solid curves), parabolic mass (dot-
ted curves), and a 100 A QW with parabolic mass (thin dashed

curves) to the experimental data from Huant ef al. (Refs. 18 and
19).
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nonparabolictiy compared to the experimental data of Chang et
al. (Ref. 20).

E=E,+3#0, for the 2p™ state in Eq. (13). For a
donor at the well center in a (100 A)/(100 A) superlattice
in a magnetic field of ¥y =2.0 we found for the above ap-
proximations E2p+ —E,=5.35,5.31,5.29,5.11,5. 13R*,
respectively, where the first is for the parabolic mass and
the last for the full self-consistent calculation. For a
donor at the interface the results are E 2+ —E
=4.76,4.55,4.52,4.32,4.34R2*, and for a barrier-
center donor E2p+ —E,;=4.52,4.18,4.14,3.96,3.99R*.
Thus it is obvious that the second improvement is the
best approximation, which can be reliably used to replace
the full self-consistent calculation.

Recently Chang et al.?° measured the transition ener-
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FIG. 11 Energy of the 1s—2p* transition for donors at the
center of the well in a (125 A)/(125 A) GaAs-superlattice as a
function of the magnetic field with (solid curves) and without
(dashed curves) band nonparabolicity. The dots are the results
of Cheng et al. (Ref. 21).
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gies 1s—2p ™ for donors at the center of the well (solid
dots in Fig. 10) for a GaAs/Al,3Ga (;As superlattice
with well width w =125 A and barrier width b =125 A.
Our present theoretical results with (solid curves) and
without (dashed curves) band nonparabolicity are also
given in Fig. 10. The overall agreement with the experi-
ment is convincing. For very small magnetic fields the
agreement is not as good because in that region the wave
functions should be more exponential-like than Gaussian.
For larger magnetic fields, i.e., ¥ > 2.0, the experiment
for the lower branch of the 1s—2p ™ transition shows a
stronger polaron interaction than those found from our
theoretical analysis. In Ref. 7 the interaction with inter-
face phonons was invoked to explain this stronger pho-
non interaction.

Very recently Chgng et alé21 were able to observe three
branches in a (125 A)/(125 A) superlattice, whose results
are depicted in Fig. 11 by solid dots. The results of the
present calculation are given by the solid curves. Notice
that the correction due to band nonparabolicity is essen-
tial to explain the experimental results, and no interac-
tion with interface phonons has to be invoked.
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FIG. 12. 1s—2p ™ transition energy around resonance, with
(solid curves) and without (dotted curves) polaron effect in a su-
perlattice with w=5b=100 A for donors at the center of the
well (top figure), at the interface (middle figure), and at the
center of the barrier (bottom figure) vs the magnetic field with
band nonparabolicity.
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V. DISCUSSION AND CONCLUSION

We have investigated the 1s—2p¥ transition energies
of shallow donor impurities in GaAs/Al,Ga,_, As super-
lattices in a magnetic field along the direction of the
growth axis. The electron—LO-phonon-interaction—
induced correction to these energies is included in our
calculations. We find that the electron-phonon interac-
tion increases the transition energies in low magnetic
fields, and leads to resonant splitting of energies in high
magnetic fields. We have considered the donors to be lo-
cated at any position of the superlattice. In high magnet-
ic fields, i.e., ¥ > 1.5, the effect of band nonparabolicity is
important. Our calculation, which contains no fitting pa-
rameters, is in good agreement with most of the available
experimental data.

Recently Huant et al.!® have argued that the resonant
polaron interaction is larger for donors at the interface
than those at the center of the well. In order to check
this assertion we plot in Fig. 12 the transition energy, in-
cluding band nonparabolicity, with (solid curves) and
without (dotted curves) polaron correction near reso-
nance for donors at the center of the well, at the intgrface
and at the center of the barrier in a (100 A)/(100 A) su-
perlattice. First notice that the resonant magnetic field
increases with increasing distance of the donor from the
center of the well. This implies that below resonance the
polaron correction to the transition energies at a fixed
magnetic field decreases with increasing distance of the
donor from the center of the well because we are farther
away from the polaron resonance field. At resonance let
us denote the polaron energy shift by A~ for the lower
branch and by A™ for the upper branch. The total split-
ting at resonance is thus given by A=A~ +A%1. We
found A =0.44,0.43,0.462*; A" =0.46,0.33,0.16R*;
and A=0.90,0.76,0.627R* for donors at the center of the
well, at the interface, and at the center of the barrier, re-
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FIG. 13. 1s—2p ™ transition energy as a function of the mag-
netic field for donors at z; =40 Aina (100 A)/(100 A) superlat-
tice with (solid curves) and without (dotted curves) band non-
parabolicity. The dots are the results of Huant ez al. (Ref. 18).
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spectively. Thus within the present approximation the
well-center donors have the strongest polaron interaction.

In discussing the experimental results of Huant et al.'®
we confirmed that the resonance peak “B” could not be
explained by transition energies from the interface donors
(see Fig. 9). Recently*® this B peak was interpreted as
due to the negative-donor (D ~ ) center —n =1 photoion-
ization transition of a D~ center in the quantum well.
This seems to agree with a recent theoretical calculation*!
of the binding energy of a D~ center in a single quantum
well. In some of the early experimental samples,*>*
however, an additional layer of donors was placed in the
QW at 10 A from the interface, i.e., z;=40 A, which
motivated us to calculate the transition energies
E 2t —E,; corresponding to such donors. The results of

such calculation are depicted in Fig. 13 and compared to
the B transition. To our surprise excellent agreement
with the experimental data is found. Nevertheless, we be-
lieve that this agreement is rather accidental because in
most of the samples no such layer of donors was placed at
10 A from the interface and the B peak was still ob-
served.!”®

Finally, we would like to discuss the possibility of in-
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creased polaron effects due to interaction with interface
phonons. With the exception of Fig. 10 all experimental
results discussed in the present paper could be explained
by considering only interaction with three-dimensional
bulk LO phonons. Recently we discussed in Ref. 44 the
effect of interface phonons on the polaron ground-state
energy and effective mass in the absence of a magnetic
field. We found that for quantum wells of width w > 100
A such an effect was very small, which seems to corro-
borate our present analysis in nonzero magnetic fields.
Therefore the results of Ref. 20 (see Fig. 10) for y >2.0
are difficult to understand, and require further study.
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