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General formalism of the Kronig-Penney model suitable for superlattice applications
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A formalism of the Kronig-Penney model has been developed that is more general than that of Cho
and Prucnal [Phys. Rev. B 36, 3237 (1987)]. It gives not only odd- and even-index subbands but also
wave functions for all values of the wave number. A parity analysis of the wave functions is also given.

I. INTRODUCTION

Superlattices (SL’s) and multiple-quantum-well struc-
tures (MQWS?’s) are alternating ultrathin epitaxial layers
with different constituent-semiconductor compositions,
e.g., GaAs and Al,Ga,_, As. Because of the band offset
of the heterolayers, smaller energy gap layers act as po-
tential wells between larger energy gap layers. Figure 1
shows the periodic square potential of a superlattice with
well width a, barrier width b, and barrier height V. Since
the superlattice period d =a + b is much longer than the
original lattice constant of the host crystal, the Brillouin
zone is divided into a series of minizones, giving rise to
narrow subbands separated by forbidden regions. As a
consequence, the actual wave function of a superlattice
can be separated into a product of a Bloch wave function
with a period equal to the atomic lattice constant, and an
envelope wave function of the superlattice potential.

Cho and Prucnal! calculated the envelope wave func-
tions at the edges of each subband (corresponding to the
superlattice wave number k =0 and 7/d). These en-
velope wave functions are useful to analyze the superlat-
tice properties. The purpose of this paper is to give the
envelope wave functions for all values of k, and to show
that the wave functions corresponding to the values of k
other than zero or 7/d have mixed parities in general.

II. ODD- AND EVEN-INDEX ENERGY BANDS

From the solution of the Schrédinger equation the en-
velope wave function in the period —b <z <a can be
written as

1//0+cos(az)+%¢(')+sin(az) , 0<z=<a

Y(z)= (1)

¥y-cosh(8z)+ 5-4-sinh(8z) , —b <z <0
Here ¢+ and ¢+ denote ¥(z)|,— +o and d¥(z)/dz|,- 1o,
respectively, a and 8 are defined as

a=02m,E)?/# ,

()
d=[2m,(V—E)"*/# ,

44

where E is the electron energy, and m, and m, are the
effective masses at the well and at the barrier, respective-
ly. The inverse 1/8 of & is called the wave-function
penetration depth in the barrier. For simplicity we con-
sider the case of E <V only; the extension to the case of
E > Vis straightforward. The wave function ¥(z) in oth-
er periods can be obtained by using Bloch’s theorem and
Eq. (1). Using Bastard’s boundary condition? at z =0,
Le., Yo+ =19 =1 and ¢+ /m, =4, /m,, and applying
the relation (a)=v (—b)exp(ikd) from Bloch’s
theorem, we can eliminate ¢+ and ¢ from Eq. (1) to
obtain

Yolcos(az)+yPsin(az)], 0<z=<a
W2)= 1y [cosh(8z)+Psinh(8z)], —b<z<0, 3
where ¥ and P are defined as
y=6m,/am, , 4)

__cosh(8b )exp(ikd)—cos(aa)
~ v sin(aa)+sinh(8b Jexp(ikd)

From Egs. (3) and (5) we can directly verify the symmetry
relations in the periodic square potential

[Yla/2+x)=|pla/2—x)|, |x|<a/2; (6a)

(5)

and

lW(—b/2+x)|=|P—b/2—x)|, |x|<b/2. (6b)

-

FIG. 1. The periodic square potential of a superlattice; a is
the well width, b is the barrier width, V is the barrier height.
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Substituting Egs. (3) and (5) into the normalization condi-
tion

J° lwa)az=1

and using the symmetry relations (6a) and (6b) to simplify
the result, we obtain

1+92%P|*> | yRe(P)
= +
Yo [a 2 aa
—1/2
b 1—]P|2+Re(P) o
2 8b ’

where Re(P) denotes the real part of P.
Using Bloch’s theorem and Bastard’s boundary condi-
tion we have

Y¥'(a —0)=9¢'(—b —0)exp(ikd)
=(m,/my)Y'(—b +0)explikd) .

_ cos(kd)—cos(aa )cosh(8&b)
14 sin(aa )sinh(8b)

_ (=1)/{[cosh(8b)—cos(kd)cos(aa)]*—sin’*(kd)sin*(aa)}'"?
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Substituting Egs. (3) and (5) into this equation we obtain
cos(kd)=cos(aa )cosh(8b)
+ 3y —1/v )sin(aa )sinh(8b) , (8)

the same equation as that derived in Ref. 1.

Equation (8) is useful in analyzing the connection and
distinction between MQWS’s and SL’s. The distinction
between MQWS’s and SL’s depends on the relative mag-
nitude of the barrier width b and of the wave-function
penetration depth in the barrier 1/8.3 In MQWS’s,
b>>1/8, i.e., 6b >>1, so most of the physical properties
are those of a series of uncoupled wells. Conversely, in
SL’s, b <1/8, i.e., 8b <1, and the tunnel coupling among
wells significantly modifies the physical properties of the
system. In particular, tunnel coupling results in the
broadening of the energy levels into subbands with finite
widths. The situation can be seen more clearly by rewrit-
ing Eq. (8) as

sin(aa )sinh(8b)

) 9)

where the index j indicates the two sets of solutions for ¥ and j can be any odd or even number. When 8b >>1, Eq. (9)

can be simplified as

tan(aa /2), j=1,3,5,...
Y= |—cotlaa /2), j=2,4,6,... .

(10)

These results correspond, respectively, to odd- and even-index energy levels in a single well.* When 8b becomes smaller
the terms with k in Eq. (9) cannot be neglected, resulting in a band structure with finite width. Since the index j in Eq.
(10) indicates the order of the energy levels, and since the + signs, i.e., —(— 1)/, before the radical expression in Eq. (9)
cannot be changed abruptly when 8b becomes smaller, we can judge that j in Eq. (9) represents the index of the sub-

band. For example, from Eq. (9), we can obtain

tan(aa /2)coth(8b /2) for j=1,3,5,... and kd =0
tan(aa /2)tnh(8b /2) for j=1,3,5,... and kd=mw

Y= | —cot(aa /2)coth(8b /2) for j=2,4,6, . .. and kd == (1D
—cot(aa /2)tanh(8b /2) for j=2,4,6,... and kd =0 .

Note that both kd =0 of odd-index bands and kd = of even-index bands correspond to minimum energies; both
kd = of odd-index bands and kd =0 of even-index bands correspond to maximum energies. Equation (11) is identical
to the edge-energy equations in Ref. 1 which can thus be regarded as special cases of Eq. (9) of this paper.

II1. PARITIES OF ENVELOPE WAVE FUNCTIONS

We first consider the case of b >>1. Substituting Eqs. (5) and (10) into Eq. (3) we obtain the wave function for the
barrier ¥yexp(—8|z|) and the wave functions in the well

Agycos[alz —a /2)], j=13,5,...

VD= 1B sin(alz—a/2)], j=2,4,6, ..., (12a)
where
Ag=1y/cos(aa /2), By=—1,/sin(aa /2) . (12b)
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The wave functions in Eq. (12a) have even parity for j =1,3,5, . .. and odd parity for j =2,4,6, .., .

SHAO-HUA PAN AND SI-MIN FENG 44

These are identi-

cal to the well-known results for a single well. When 8b becomes smaller the wave functions have the following more

general forms:

A cos[alz —a/2)]+Bsin[alz —a/2)], 0=z=a

D= | C cosh[8(z +b /2)]+D sinh[8(z +b/2)], —b<z<0.

By comparing the two sets of expressions for ¢(z), Egs.
(3) and (13), we obtain the new coefficients

A =1gy[cos(aa /2)+yPsin(aa /2)] , (14a)
B =1,[yP cos(aa /2)—sin(aa /2)] , (14b)
C =1y[cosh(8b /2)— P sinh(8b /2)] , (14¢)
D =1fy[ P cosh(8b /2)—sinh(8b /2)] . (144)

Substituting Egs. (5) and (11) into Eq. (3), or equivalently,
substituting Egs. (5), (11), and (14) into Eq. (13), we ob-
tain for j=1,3,5, ... and kd =0,

Agcos[alz —a/2)], 05z=<a
W2)= | cosh[8(z +b/2), —b<z<0; (152)
for j=1,3,5,... and kd =,
Agcos[alz —a/2)], 0<z=<a
W2)=\p sinh[8(z +b/2)], —b<z<0; (159
for j=2,4,6, ... and kd =,
Bgsin[a(z —a/2)], 0=z=a
¥2)= ¢ cosh[8(z +b/2)], —b<z<0; 159

I=(

—1 )jl sin(kd)sin(aa )y sin(aa )cosh(8b )+ cos(aa )sinh(8b )]

(13)
[
and for j =2,4,6, ... and kd =0,
Bgsin[a(z —a/2)], 0=z=a
W2)= D sinh[8(z +b/2)], —b<z<0 (15d)

where Cy=1,/cosh(8b /2), Dy=1),/sinh(8b /2). Equa-
tions (15a)-(15d) are identical to the equations of wave
function at the edges for odd- and even-index bands in
Ref. 1 which were obtained by the observation that the
wave functions corresponding to maximum and
minimum energies of each band have definite parities.
The equations of Ref. 1 can thus be regarded as special
cases of Eq. (13) of this paper.

Although the wave functions at the edges of each band
have definite parities, Eq. (13) shows that the wave func-
tions corresponding to values of kd other than zero and 7
have mixed parities in general. To see this fact more
clearly we rewrite Eq. (14) as

Ao[1—=(R +iI), j=1,3,5,...
= |4o(R +iD), j=2,4,6,..., (162)
By(R +iI), j=1,3,5,...
" |Bo[1=(R +iD)], j=2,4,6,..., (16b)
and similar expressions of C and D, where
, 17)

R=1[1—(1—41)'].

In obtaining Eq. (18) we have applied Eq. (6a) to simplify
the result. |R| is a monotonic increasing function of |I|
and R =0 when I =0. According to Egs. (12a) and (16),
we can define the parity-mixing degree M, (k) as follows:
172

R>+1?

M (k)= |———
®) (1—R)*+1?

,, (19)

We denote the maximum of M, (k) by max{(M,);} with
a subband-index j as the subscript. Since a, 8, and y are
also functions of k, Egs. (17)—(19) indicate that M,(k)isa
complicated function of k. Obviously, M,(k)=0 when
kd =0 and %, i.e., at the band edges. The max{(M,),;},
in general, occurs at a k value far from the band edges.
As a first example, for a GaAs/Al,;Ga, ;As superlattice
with well width a =90 A, and barrier width b =120 A,
max{(M,),} =0.035% (corresponding to 8b=38.5), and

2 [cos(kd)sinh(8b)+y sin(aa)]*+ [sin(kd)sinh(8b )]?

max{(M,),} =0.18% (8b=6.0). These both occur at the
centers of the subbands, i.e., kd =+ /2. As another ex-
ample, for the same kind of superlattice with the same
well width but a different barrier width, b=35 A,
max{(M,),} =97% (8b=0.36) at kd =+0.57m, and
max{(M,),} =99% (8b =0.20) at kd =+0.377.

The tunnel coupling among quantum wells results in
the mixing of energy levels with different parities. When
the tunnel coupling is negligible, i.e., when 8b >>1, Eq.
(17) shows that 7, and hence R and M, (k) approach zero,
as they should. Conversely, when the tunnel coupling is
strong, i.e., when 8b <1, the mixing of heteroparities is
obvious. Thus, when the well width a and barrier height
V (which is determined by the composition percentage x)
are given, e.g., for GaAs/Al Ga,_,As superlattices, the
mixing of heteroparities becomes more obvious when the
barrier width b becomes smaller. This conclusion is also
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TABLE I. The maximum parity-mixing degrees max{(M,);} for the first and second subbands in
GaAs/Aly ,5Gag 75As superlattices with well width @ =100 A, and different barrier widths b.

b (A) 150 130
max{(M,)} (%) 0.014 0.048 0.17
max{(M,);} (%) 0.092 0.23 0.55

90 70 50 30 10
0.59 2.1 7.2 26 98
1.3 33 8.2 22 95

confirmed by the two examples given. In order to see this
trend more clearly we summarize a set of calculated re-
sults in Table I. As is well known, the tunnel broadening
subband width AE; is always greater for larger j (higher
subbands), but this does not mean that (M, ) ; is also al-
ways greater for larger j, as shown in Table I. This is due
to the fact that the parity mixing comes from the interac-
tion, i.e., the mutual influence (penetration) between
higher and lower subbands.

IV. CONCLUSION

Using Bloch’s theorem and Bastard’s boundary condi-
tion followed by analysis of the connection and distinc-
tion between the weak tunnel coupling case, 8b >>1, and
the strong tunnel coupling case, 8b <1, we have derived
the odd- and even-index energy subbands and the wave
functions corresponding to all values of k. The eigenen-
ergies and wave functions at the edges of each band in
Ref. 1 can be regarded as special cases in this paper.

As pointed out by the authors of Ref. 1, the new for-
malism in Ref. 1, in particular, its expressions for the
wave functions corresponding to the edge energies of
each band, is very useful for the analysis of superlattices

and applications to device designs. According to our nu-
merical calculations, for usual doping concentrations of
about 10'®/cm?, the Fermi level at room temperature is
often above the maximum energies of the first (ground)
subband in superlattices, hence the wave functions corre-
sponding to all values of k are necessary for detailed
analysis of intersubband optical transitions between the
first (ground) subband and the next excited subbands. We
thus believe that the new formalism in this paper is a
more general one which is more suitable for the analysis
and applications of superlattices.

The tunnel coupling among wells results in the mixing
of energy levels of different parities. The wave functions
corresponding to values of k other than zero and 7/d
have mixed parities in general. These superlattice prop-
erties give rise to greater details in the interband and in-
tersubband optical transition processes because the opti-
cal transition selection rules are related to the parities of
wave functions. It may be possible in the future to apply
this new general formalism to analyze nonlinear optics
phenomena in superlattices.

Although this formalism has been derived to be suit-
able for superlattice applications it is also applicable to
bulk materials by letting m, =m,,.
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