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Excited states of donors in quantum wells in a magnetic field
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Calculations of energy levels of a hydrogenic donor in the center of a quantum well show that, al-

though the energy of the lowest-lying state of each symmetry tunes with the magnetic field much like its
bulk counterpart, energies of the excited states in the well and in bulk have entirely dissimilar behaviors.
Plots of energy versus magnetic field for these former states show a Landau-level fanlike structure start-
ing near the lowest or first excited subband energy but interrupted by anticrossings with fans originating
from alternating higher subbands. One interesting consequence is that certain states (the 2s and 2p+1
levels, for example), which in bulk become widely separated in energy with increasing magnetic field,

may remain close together over a wide range of fields in quantum wells.

INTRODUCTION

Recent experimental advances have stimulated interest
in the excited states of shallow donors in quantum wells.
Since the initial magnetospectroscopic study of Jarosik
et al. ' on the "1s-2p+," transition for shallow donors in
quantum wells, improvements in sample quality and ex-
perimental sensitivity have revealed a number of much
weaker transitions, ' which have been attributed to final
states of higher energy than 2p+&. Very recently an-
ticrossings involving the 2p+& and 2po levels have been
observed in magnetic fields which are tipped away from
the normal to the quantum-well planes. These latter ex-
periments suggest that the strong 1s~2p+, absorption
line can be used as a probe to explore higher excited
states of the well donors, states to which transitions from
the ground state may be parity forbidden in fields normal
to the well planes. In general one expects that n-doped
molecular-beam epitaxy GaAs will have significant com-
pensation and that therefore there will be internal ran-
dom electric fields throughout the quantum-well samples,
arising from donor and acceptor ions present in the wells.
Such fields produce Stark shifts of neutral donor levels,
broadening the spectral transitions. It is necessary to
know the energy levels and wave functions of the excited
states, especially those in close proximity to the 2p+ „if
one wishes to understand fully the spectral line shapes
observed in magnetic fields. For all these reasons it is of
interest to develop a scheme for practical calculations of
the magnetic-field dependence of excited-state levels for
donors in a quantum well. Such a scheme is presented in
this paper.

Let us begin with the simplest possible model for a
donor in a quantum well in the presence of a magnetic
field. We take the quantum well to be a square well with
infinite walls, place the donor at its center, and assume
that the magnetic field points normal to the plane of the
well. In this model all states can be labeled by the quan-
tum number M for the component of orbital angular
momentum along the magnetic field, and by a parity
quantum number P„which is +1 if the wave function

does not change sign upon the reAection carrying z into—z and —1 otherwise. We employ the e6'ective-mass
Hamiltonian

%~I„=L~(g)exp( g /2)c—os(k„z)exp( iMQ)—

with unperturbed energies

E~M „=(2N+1)y+k„.

(2)

In (2) L& is an associated Laguerre polynomial,

g =0.5yp, and k„=n~/L with n an odd integer. [For
P, = —1 one replaces the cosine by the sine function in (2)
and allows only even values of n ]The low. est-order ei-
genvalues of H in the wave functions of (2) can be found
by taking expectation values of (1) in those wave func-
tions. Figure 1 shows the unperturbed spectrum obtained
in this way for levels with M =0 and P, =+1 using a
well of width L =6 (in units of ao). Qualitatively similar
spectra are obtained for other values of M and P, . Ener-
gies in Fig. 1 and elsewhere in this paper are measured
relative to E&„„the lowest energy level of a free electron
in the quantum well, given by

EI= —V' ——+ —. x —y + —,'y p + V(z),
r I'. By Bx

V(z)=0 for ~z~ &L/2, V(z)= 00 for ~z~ )L/2,
where r =(p +z )'~, and all lengths and energies are
taken in units of the bulk donor Bohr radius, ao, and
rydberg, %, respectively, where ao=fi eolm*e, A=iit /
2m*ao=e /2eoao, m* is the bulk electron conduction-
band mass, and eo is the bulk static dielectric constant.
The magnetic field in (1) is contained in the dimensionless
constant y, where y=A'co, /2R and co, =eB/m*c is the
bulk cyclotron resonance frequency.

Consider the case in which both the subband splittings
and the Landau-level splittings are not small compared to

Then one might expect that a useful basis set for ex-
panding eigenfunctions of H would be the eigenstates of
(1) with the Coulomb term set equal to zero. For
P, = + 1 these are product states of the form
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M = —1, P, = —1 (3d, -like states):

@,(r) =F,(r)sin(kzz),
5

@z(r)=F,(r) g A„sin(kz„z),
n=1

where

(6d)

TABLE II. Comparison of upper bounds to the energy of the
lowest-lying donor level with M = —1 and P, =1 as calculated
from the Hamiltonian matrix (Ep) and from the trial functions
of Eqs. (6b) (E& and E2) with L =6. The zero of energy is taken
as E&„„given, relative to the bottom of the square well, by Eq.
(4).

(2p, -like states)

F~M~(r) =p exp[ rl—p K—(p +az )' ]exp(iMP), Ep E

k„=n~/L, and g, K, a, and A„are parameters which
are optimized for each state calculated.

Comparisons of variational energies are presented in
Tables I—IV, where entries EI, are calculated from the
above-described matrix, and entries E, and Ez are associ-
ated with @, and +2, respectively. Notice that E~ im-
proves relative to E, and E2 with increasing fields. No-
tice also that Ez is relatively better for p-like and d-like
states than for s-like states. It is to be expected that this
improvement will be even more marked for states of
higher M~. It is of interest to note that the energy ob-
tained by the ansatz of Bastard in his pioneering paper
on this subject is —1.2152 for the @=0 1s-like state as
compared to —1.2255 found here for EI, . Energies for
states with M = M~ can be found from their counterparts
with M = —

~
M

~
by adding 2

~

M y to the latter energies,
just as in bulk.

Errors in the energies EI, are due primarily to the trun-
cation of the expansion of the wave functions in Landau
levels (N &5 in the present calculations). One expects
that if the admixture of the Nth Landau level into the op-
timized trial function declines rapidly as N increases the
energy EI, will be relatively accurate. For my apparently
least accurate EI value (y =0 in Table I) the probability
that the N =4 Landau level is occupied is 2X10 . For
my seemingly most accurate energy, EI, at y = 5 in Table
IV, that probability is only 7X 10 . In general it would
appear that for low-lying excited states the amplitude of
the highest Landau level admixed in the optimized trial
function is a useful indicator of the accuracy of the ener-

gy obtained.
Comparisons are presented only for wells with L =6 in

Tables I—IV. The deviations of energies EI from ener-
gies E2 are, however, not very sensitive to L for L ) 1,
being usually not much greater for L =1 than for L =6.
(At y =0 we find, for example, that E~ E2 =0.0275 fo—r

0
1.0
5.0

—0.3560
—1.1110
—1.9737

—0.3573
—1.1098
—1.9725

—0.3580
—1.1112
—1.9737

the ls state at I. =1.) On the other hand, in the limit
L ~0, EI, becomes quite poor, giving, for example, a
ground-state energy of —3.781 versus the exact energy
(approached by E, and E2) of —4.000. (This large
discrepancy is presumably due to the difFiculty of
representing accurately the exact two-dimensional 1s
wave function, which has a nonvanishing p derivative at
p=0, by a small number of Landau wave functions, each
of which has zero p derivative at p =0.)

The anticrossing structure of the lowest-lying excited
state energies for the [M,P, ] pairs [0,+ 1], [—1,+ 1], and
[0,—1] are presented in Figs. 2 —4, respectively. To un-
derstand the anticrossing behavior displayed in those
plots one should compare them to Fig. 1. For example,
the bending of the curve representing level 4 in Fig. 3
near y = 1 is an eff'ect of the crossing of the N = 1 Landau
level associated with the n =3 subband [denoted (1,3) in
Fig. 1] with the N =2 Landau level associated with the
n = 1 subband [denoted (2, 1)] illustrated in Fig. 1. Excit-
ed levels 2 and 3 have reached their high-field limiting be-
havior in Fig. 3; level 4 will eventually become pinned
below the n =7 subband at higher fields.

The energies of the first eleven excited states with
P, =+ 1 and ~M~ & 2 are listed in order of increasing en-
ergy in Table V for y = 1 and L =3. The states denoted
in parentheses are the bulk states into which the corre-
sponding well states evolve as L ~ ao. Notice that, un-
like in the bulk, the 2p+&, 2s, and 3p &

levels form a
closely spaced cluster beneath the N=1 free-particle
Landau level (of energy 2Ny=2); levels labeled 3p+, ,
3s-3do, and 4p, 4f, form a similar -cluster below the

TABLE I. Comparison of upper bounds to the energy of the
lowest-lying donor level with M =0 and P, =1 as calculated
from the Hamiltonian matrix (EI ) and from the trial functions
of Eqs. (6a) (E& and E2) with L =6. The zero of energy is taken
as E&„„given, relative to the bottom of the square well, by Eq.
(4).

TABLE III. Comparison of upper bounds to the energy of
the lowest-lying donor level with M =0 and P, = —1 as calcu-
lated from the Hamiltonian matrix (Ez) and from the trial func-
tions of Eqs. (6c) (E& and E2) with L =6. The zero of energy is
taken as E&„„,given, relative to the bottom of the square well,
by Fq (4)

0
1.0
5.0

Ep

—1.2255
—1.9074
—3.0251

(1s-like states)
E,

—1.2343
—1.9119
—3.0290

E
—1.2430
—1.9183
—3.0306

0
1.0
5.0

0.1112
—0.3276
—0.6533

(2po-like states)
EI

0.1134
—0.3240
—0.6477

E

0.1109
—0.3275
—0.6529
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states with high ~M~ values and P, = —1, is argued to
give moderate accuracy even for M=O and P, =+1 at
zero magnetic field for a modest calculational effort. The
method is variational for each of the excited-state ener-
gies provided that enough of the lowest-lying basis states
are employed. By systematically increasing the size of
the basis set the accuracy of the calculations can in prin-
ciple be improved as much as required. The method can
be trivially extended to calculations of donors located
anywhere in the well or in the barrier and can be
modified to account for finite barrier height (including
different efFective masses in the barrier and in the well).
The problem of the Stark effect on donor levels in a mag-
netic field can also be treated conveniently and with an
accuracy which is anticipated to be comparable to that
obtained in the absence of electric fields.

APPENDIX

0-

-2
0 2 3

CONCLUSION

A method of calculating excited states of a donor in
the center of a quantum well in a magnetic field is de-
scribed, which, though expected to be most accurate for

FIG. 4. Energy vs magnetic field for the three lowest-energy
donor states with M =0 and P, = —1. The donor ion is in the
center of a quantum well with L =6. Energies are measured
relative to Ef„,given by Eq. (4). Associated with each eigenvalue E (s) in the original

set is a normalized eigenfunction gi(r) To the . set g~ we
append an additional normalized basis vector P(r) which
is orthogonal to all of the y 's. In the new, (s+1)-
dimensional basis, the new eigenfunctions have the form

0= & a X +a.+id' (A 1)

which must satisfy, in the (s + 1)-dimensional subspace,

Let E (s) be the set of (discrete) approximate eigenval-
ues of H determined by diagonalizing H in an s-
dimensional basis set of given functions [for example,
functions defined by Eqs. (2) and (5)]. Assume that these
eigenvalues are nondegenerate and are labeled in order of
increasing energy with j =1 corresponding to the lowest
eigenvalue, j =2 to the next lowest, etc. We show that
augmenting the original basis set by adding an additional
basis vector produces a new set of approximate energies
E (s + 1), such that, if the inequality (A9) is satisfied,

E (s+ I) &E (s) .

TABLE V. Energies of the eleven lowest-lying donor states
with even z parity (I', = 1) and ~M~ & 1 in a quantum well with
L =3 as calculated from the Hamiltonian matrix of this paper
with y = 1. States indicated in parentheses are those into which
the corresponding well states evolve when L~ ao adiabatically
with the donor remaining in the center of the well. The zero of
energy is taken as Ef„„given, relative to the bottom of the
square well, by Eq. (4).

HP=EP .

Substituting into (A2) from (A 1) leads to

E;(s)a;+M;a, +,=Ea; (i &s+1),

g a;M, +Ea, +, =Ea, +, ,
i=1

(A2)

(A3)

0 (ls)—1 (2p
0 (2s)
1(2p+i)—1 (3p ))
0 (3s-3do )

1(3p.,
)'

—1 (4p-i-4f-i)
0
1

—1

—2.3157
—1.2554

0.6180
0.7446
0.9690
2.8605
2.9690
3.0871
5.0329
5.0871
5.1872

where we have assumed that M; is real and

E=&ylH y),
Solving in the case ~M; ~

)0 for all values of i gives

a, = —M, a, +, /[E; (s) Ej, —
(A4)

i E E,(s)—
Consider the lowest-lying solution for E in (A4). If it
should be true that
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E, (s) & E &E2(s) . (A5)

For this purpose it is convenient to rewrite (A4) in the
form

E —E-
E —E,(s),. 2 E E;(s—)

(A6)

In (A6) the left-hand side is guaranteed to be negative if
(A5) holds and

E)E2(s) . (A7)

As E sweeps from E2(s) to E, (s) the left-hand side of
(A6) varies from a finite negative value to —oc whereas
the right-hand side sweeps from —~ to a finite negative
value. Thus a solution obeying (A5) must exist. This
solution is denoted E2(s + 1).

s)E, (s),
then the left-hand side of (A4) will be negative for solu-
tions with E &E,(s). If we imagine that E sweeps from
E, (s) to —~, the left-hand side of (A4) sweeps from a
finite negative value to —~ whereas the right-hand side
of (A4) sweeps at the same time from —co to zero. Thus
a solution must exist with E &E,(s). This solution is
denoted E, (s + 1).

Let us now search for a solution of (A4) obeying

By continuing the above argument one can show that
the solution E~ (s .+1) obeys

E,(s) &E (s+1)&E (s) (AS)

e)E (s) . (A9)

[Condition (A9) is clearly suIIicient to ensure (AS) but
may not always be necessary. ]

If, for a given E (s), every allowed choice of P(r) [al-
lowed choices satisfying the requirement that P(r) be or-
thogonal to all of the y 's] results in a value of E obeying
(A9), then E (s) is an upper bound to the exact value of
the jth eigenvalue and the basis set from which EJ(s) is
calculated is an "appropriate basis set" for the jth eigen-
value. Intuitively, we see from (A4) that E on the left-
hand side is increased by those terms in the sum for
which E lies below E. We must take care not to omit
any such terms in order to be assured that the E in the
range of interest is an upper bound. For the problem dis-
cussed in this paper it is very easy to order the successive
P(r)'s to achieve this end since unperturbed Landau and
subband levels with successively higher quantum num-
bers N and n, respectively, have successively higher ener-
gies.
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