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We perform a thorough theoretical analysis of the band-offset problem at strained Si/Ge interfaces.
The difference between the two materials is small enough to warrant a linear-response treatment: Owing
to this feature, chemical and elastic effects can be studied independently. Our main finding is that the
band offset is a bulk property, depending only upon the macroscopic strain present in the two materials
far from the interface, and independent of any interface feature, such as abruptness, interface strain, or
buckling. In agreement with previous work, our results also indicate that the strain variations affect
only weakly the valence-band offset, when it is measured between the averages of the split manifolds in
the two materials. Starting from these reference levels, simple band-structure effects are responsible for
a rather large strain-induced tunability of the offset between the topmost valence states.

I. INTRODUCTION

The Si/Ge superlattices are quite interesting systems
either from a fundamental point of view or for technolog-
ical applications.! In fact, they are the paradigmatic case
of isovalent, nonpolar, lattice-mismatched superlattices
and, on the other hand, they may offer the opportunity of
direct integration on Si-fabricated devices (optoelectron-
ics) and of band-gap engineering.

In the present paper we report on a thorough investiga-
tion of the band-offset problem at Si/Ge heterojunctions.
From an experimental viewpoint, Si/Ge superlattices can
be grown pseudomorphically without misfits up to a cer-
tain critical thickness. In the present theoretical study,
we only consider those superlattices which are thick
enough to warrant well-separated interfaces; our main is-
sue is then whether the valence-band offset (VBO) can be
tuned by means of either chemistry (i.e., altering the
abruptness of the interface) or strain. The latter is due to
the lattice mismatch between Si and Ge, and can be ex-
perimentally varied by choosing the direction of growth
and by varying the composition of the substrate, which is
usually a Si; _, Ge, alloy.

The rationale for the behavior of the VBO is achieved
in this work through a decoupling of the chemical and
elastic effects, allowed by linear-response theory (LRT).
We explicitly show that both the chemical difference be-
tween Si and Ge, and their lattice mismatch, are small
enough to be treated by LRT starting from an average
virtual crystal. The present theoretical study has been
performed using density-functional theory (DFT), within
the local-density approximation (LDA). Other calcula-
tions>> have been performed—within this same
framework— for Si/Ge heterostructures; these calcula-
tions, however, were mainly aimed at different issues.
Wherever comparable, previous results are discussed in
relationship with the present work, and found in good
agreement.

In Sec. II we summarize our theoretical framework. In
Sec. III we discuss the concept of macroscopic average,6
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generalized for lattice-mismatched heterojunctions. In
Sec. IV we isolate the pure effect due to the chemical
difference between Si and Ge on the band offset. In Sec.
V we discuss the possible relevance of interface-specific
features, such as alloying in the interface plane, interface
strain, or buckling. In Sec. VI we investigate the depen-
dence of the offset upon bulk strain, and we provide our
final results for realistic superlattices. Finally in Sec. VII
we draw our main conclusions.

II. THEORETICAL FRAMEWORK

Let us consider the valence-band offset, which is split
as usual in two terms:

AEygo=AE,+AV . 50

Here AE,, which is referred to as the band-structure
term, is the difference between the two bands edges, when
the single-particle eigenvalues are measured with respect
to the (arbitrary) average of the electrostatic potential in
each bulk material. In the presence of homogeneous
strain (generally nonhydrostatic), the threefold degen-
erate valence-band edges split: the relative deformation
potentials governing such splittings are well known? and
they will not be further considered in this work, unless
otherwise explicitly stated. By AEypgy we indicate here
the offset between the averages of the split manifolds on
the two sides of the junction. Possible many-body effects
on the quasiparticle spectra—which are beyond DFT—
as well as spin-orbit effects, may only affect the AE, term
in Eq. (1). This term is however characteristic of the two
individual bulks, and can be evaluated from two separate
(lattice-periodical) calculations for the two materials, al-
though in uniformly strained geometries.

The second term AV in Eq. (1) is the lineup of the elec-
trostatic potential generated by the electronic pseudo-
charge distribution and by the charge of the bare ion
cores: it is a macroscopic quantity containing all of the
genuine interface effects.® This term is evaluated here
from either the LRT approach or from supercell calcula-
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44 VALENCE-BAND OFFSETS AT STRAINED Si/Ge INTERFACES

tions. In both cases we are not interested in the thin su-
perlattice case (which is studied, e.g., in Ref. 4) and we
focus instead on the isolated-interface limit.

Some of the calculations presented in this work are
used to extract the basic building blocks which are the
main ingredients of LRT, in complete analogy with the
work previously performed on different systems.® Some
other supercell calculations which are needed here are
more standard, similar to those performed by different
authors for this same system.?™>

For a given Si/Ge interface, the potential lineup results
from two interwoven physical effects: (i) the chemical
difference between Si and Ge; (ii) the macroscopic strain
due to the pseudomorphic growth. Using LRT, the two
effects can be easily disentangled by studying hypotheti-
cal structures where only one of the effects is present: by
linearity, the total result is simply the sum of the two
separate effects. The effect of chemistry is studied here
along the same lines as in our previous work for lattice-
matched systems;® strain is investigated studying the
difference in the ‘“‘absolute” deformation potentials’?
(ADP) of the two materials. Of course, only the com-
bined effect of strain and chemistry is experimentally ob-
servable upon varying—for a given growth direction— a
single parameter: the concentration of the Si;_,Ge, al-
loy used as a substrate, which controls the in-plane lattice
constant a; of the pseudomorphic growth. We have also
investigated the relevance of interface-specific features—
which can possibly be controlled during the growth—
such as abruptness, interface (microscopic) strain, or
buckling.

In our DFT-LDA calculations we use plane-wave basis
sets up to a kinetic energy of 16 Ry and Ceperley-Alder
exchange-correlation data.” Most of the periodic super-
cells used in this work contain either 12 or 16 atoms;
some study of disorder at the (001) interface required up
to 32 atoms per supercell. The k-space integration has
been performed with the special-point technique; wherev-
er possible, commensurate meshes have been used to deal
with supercells of different size and shape. For instance,
a supercell of 12 atoms has been dealt with using a mesh
obtained by folding of the (666) Monkhorst-Pack cubic
mesh'? for the bulk crystal. We use the norm-conserving
pseudopotentials of Ref. 11; with these pseudopotentials
the (very-well-converged) values of the equilibrium lattice
constants are ag; =10.20 a.u. and ag,=10.60 a.u. Such
theoretical bulk lattice constants reproduce the experi-
mental lattice mismatch which amounts to 4%: this al-
lows us to study the effect of the strain induced by the
mismatch on a realistic ground.

III. THE MACROSCOPIC AVERAGE

DFT-LDA supercell calculations provide the micro-
scopic electronic density and electrostatic potential which
are the basic ingredients for obtaining the potential line-
up AV: however the evaluation of the macroscopic quan-
tity AV from these data is not an easy task. A major ad-
vance has been achieved by introducing the technique of
the macroscopic average, proposed a few years ago by
some of us,'? and widely applied since then. This tech-
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nique allows us to filter our, via a suitable convolution,
the uninteresting microscopic periodic oscillations of the
original data, and to blow up the very weak macroscopic
features we are interested in. The way such a macroscop-
ic average works has been illustrated in detail® only for
lattice-matched cases. Since qualitative new features are
important for lattice-mismatched systems we outline here
the basic features of the macroscopic average, generalized
for these systems.

Let us consider the specific example of the (Si),/(Ge)y
superlattice grown on Si substrate along [001], whose
electronic (pseudo)density is shown in Figs. 1(a) and 1(b).
In such contour plots, the presence of the two interfaces
is barely visible. Because of pseudomorphism, the system
is periodic in the (x,y) planes: the first obvious
simplification is to consider planar averages as functions
of the z coordinate only: f(z)=1/S fsf(x,y,z)dx dy.
From the three-dimensional electronic density we thus
obtain the one-dimensional density 7i(z) shown in Fig.
1(c); the ionic charge—not shown in Fig. 1(c)—has &-
like spikes and contributes as well to electrostatics: the
planar average of the fotal charge density is related to the
one of the electrostatic potential by a one-dimensional
Poisson equation. This feature is conserved when further
performing the macroscopic average, defined below.

The electron density, shown in Fig. 1(c), behaves as
two different—though closely similar—periodic func-
tions apart from the interfaces, which join smoothly
across them; in the periodic bulklike regions, the two
linear periods /; and /, are slightly different. We now
just convolute twice, with two different filter functions, in
a similar way as for the standard macroscopic average.®
To be more explicit, we define

w,(z)‘:L@ é_

] , (2)

|z

where ® is the unit-step function, and we perform the
double macroscopic average as

fo=[dz' [dz"w, (z —z"w, (z'=z")f(z") 5 (3)

convolutions appearing in Eq. (3) are most easily per-
formed in reciprocal space, using Fourier techniques.
Starting from the plot of Fig. 1(c), we get the averaged
density 7i(z) shown in Fig. 1(d): it displays indeed flat
plateaus in the bulk Si and Ge regions, demonstrating the
effectiveness of this double macroscopic average in wash-
ing out periodic oscillations. We also observe that the
plateau values are different for the two regions, due to
lattice mismatch.

We now come to the contribution of the bare ion cores.
In the lattice-matched case, their macroscopically aver-
aged charge simply provides a uniform neutralizing back-
ground; in the present case, their averaged density is
nonuniform, although constant in each of the bulklike re-
gions. Needless to say, the total (electronic plus ionic)
charge density averages to zero in the bulklike regions.
We first perform the macroscopic average, and then we
solve the one-dimensional Poisson equation, taking ad-
vantage of the commutativity of the two processes. The
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FIG. 1. Results of a calculation for a (Si);/(Ge)y superlattice,
grown upon Si along the [001] direction. (a) Contour plot of the
electronic density in the (110) plane. Vertical dashed lines indi-
cate the interface positions; the Ge region is at the figure center,
and the Si region at the borders. (b) Same as in (a), for the (100)
plane. (c) Average of the electronic density over the planes per-
pendicular to the [001] axis. (d) Macroscopic average per-
formed over the planar average shown in (c). (e) Macroscopic
average of the total Coulomb potential (solid line). The two
contributions due to the electrons (dashed line) and to the ions
(dotted line) are also shown separately, using a scale factor of
100.
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result, for the same superlattice considered so far, is
shown in Fig. 1(e), where the ionic and electronic terms
are shown, together with their sum. The two terms un-
dergo a large cancellation, and a scale factor of 100 has
been used in Fig. 1(d) for the purpose of display. The
kinks which can be detected in the total electrostatic po-
tential are the vestiges of the &-like nature of ionic
charges, which shows up in this way after macroscopical-
ly averaging and integrating Poisson equation. Despite
their cumbersome shape, such plots correctly describe
macroscopic electrostatic, and are in fact completely flat
in the bulk regions.

IV. EFFECT OF CHEMISTRY

In this section we isolate the pure effect due to the
chemical difference between Si and Ge on AEygy. Of
course in real Si/Ge heterojunctions chemical and strain
effects cannot be disentangled; therefore we study
artificial lattice-matched structures where the lattice con-
stant of both materials has been chosen as the average of
the two. Incidentally, this value is very close to the
Si,_, Ge, alloy lattice constant at x =0.5.1%14

In order to apply LRT,® we define a reference system,
which we choose as the virtual crystal. Its ionic pseudo-
potentials v are averages between the Si and Ge ones (vg;
and v, respectively):

ViD= v(r=R), @)
R

where R are the diamond Ilattice sites and
v=4(vg;+tvg.). The bare perturbation leading from the
virtual crystal to the real interface is

AV, (r)=3 Av(r—R)og , (5)
R

where Av=1(vg;—vg.) and oy is an Ising-like variable
whose value is + 1 if the R site is occupied by Si, or —1 if
it is occupied by Ge.

The basic building block of LRT is the density
response An(r) to a single isovalent substitution; in prac-
tical work, planar substitutions are more convenient.
Typical results for the present system, obtained along the
same lines as explained in Ref. 6, are reported in Fig. 2.
According to the general theory for lattice-matched sys-
tems, the charge density of the isolated interface is ob-
tained from the suitable superposition of such building
blocks.

The accuracy of the LRT results has been checked
against standard self-consistent-field supercell calcula-
tions, and found to be =~0.01 eV (i.e., of the same order
as found,®"® e.g., for GaAs/AlAs). In other words, the
chemical difference between Si and Ge is small enough to
allow the neglect of quadratic response in the valence
electron system.

The only new relevant feature for this system is the
rather wide spatial extent of the charge induced by a sub-
stitutional plane, clearly evident in Fig. 2. This fact has
some consequences particularly for the (110) geometry,
where a (Si)g/(Ge)g superlattice is not thick enough to
warrant well-separated interfaces and to recover bulklike
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character midway between the two interfaces: 16-atom
supercells—such as in the middle panel of Fig. 2—are
mandatory. This same fact also affects (Si),,/(Ge),, super-
lattices grown along [001]: whenever either n or m are
smaller than (say) 6, effects of interaction between inter-
faces are expected. Such a feature is indeed in qualitative
agreement with the findings of Ref. 4, where it is shown
that for ultrathin superlattices a sizable interface contri-
bution to the total energy affects structural equilibrium.

The applicability of LRT to lattice-matched Si/Ge in-
terfaces has a very important implication: the chemical
term in AEyy arising from the difference between Si and
Ge is a bulk effect, independent of the growth direction
and of the abruptness of the interface.

V. INTERFACE-SPECIFIC FEATURES

For (001)-oriented heterojunctions, we have directly
verified the insensitivity of AEyg, to interface-specific
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FIG. 2. Density response of a virtual crystal Si, sGeg s to a
single planar substitution, in three different directions. Calcula-
tions performed for the artificially lattice-matched case, at the
virtual-crystal lattice constant. The supercell contains 12 atoms
(for [001] and [111] directions) or 16 atoms (for [110] direction).
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features, such as alloying in the interface plane, or allow-
ing the atoms close to the interface plane to relax. Such
studies have been performed over a realistic, lattice-
mismatched, structure, such as a Si/Ge interface grown
at the @ of Si. To this aim, we have repeated the same
calculation as used for Fig. 1, but where two Ge
planes—nearest neighbors to the interface—are replaced
with alloyed planes: the structure is therefore of the kind
(Si);/X /(Ge),/X, where we indicate with X the Siy sGe s
alloy. This calculation has been repeated twice, using
two different models for the alloy: one using virtual
atoms and one using a more realistic structure where Si
and Ge atoms occupy alternate lattice sites in the alloyed
planes; the latter calculation requires a 32-atom supercell.
In Fig. 3 we show the macroscopically averaged poten-
tials for these two cases: despite the different behavior in
the neighborhood of the interfaces, the lineup between
the midbulk regions is equal—within our accuracy—in
the two cases, and it is also equal to the lineup for the
abrupt case, indicated in Fig. 1(e) by a solid line.

We investigate then the issue of whether atomic relaxa-
tions close to the interface may significantly affect the
band offset: the rigid displacement of a whole atomic
plane has been called “interface strain” in the band-offset
context.'®!” We have performed calculations upon struc-
tures where atomic planes close to the interface have
been artificially displaced: we find that for any reason-
able value of the displacement (i.e., for displacements of
the same order as the difference between bulk lattice con-
stants of Si and Ge) and for the three orientations (001),
(111), and (110), the variation of the electrostatic poten-
tial lineup is smaller than our accuracy. The reasons for
such behavior are easy to understand. In general the dis-
placement of a whole ionic plane in a crystal induces a di-
pole which is proportional to the Born effective charge
Z* of the ions in the plane. For instance, the displace-
ment of a plane in the [001] direction by an amount u
generates a potential lineup equal to AV, =(8we%Z*/
a€,)u/a),'® where € is the electronic static dielectric
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FIG. 3. Macroscopic average of the Coulomb potential for a
(8i);/X/(Ge),/X (001) superlattice, where X indicates planes of
Si-Ge alloy. Solid line: the alloy atoms are approximated as
virtual atoms. Dashed line: the alloy planes are built of Si and
Ge atoms occupying alternate lattice site.
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constant. The effective charges of the bulk Si and Ge
atoms vanish by symmetry; this is no longer true for
atoms at low-symmetry sites close to the interface. How-
ever, the actual values of such charges are expected to be
fairly small, as it is in fact indicated by our calculations.
We also quote that for the artificial SiGe zinc-blende
structure the effective charges are found to be of the or-
der of 0.1:!° this is a very conservative upper bound for
our interface Z*, leading to a contribution to a potential
lineup of some hundredths of eV. The possible relevance
of interface buckling in affecting AEygp, is obviously
ruled out on the same ground.

To reformulate these findings in a LRT framework, let
us again consider the Si/Ge system as a perturbation on
the virtual crystal. Then the interface effective charges
Z* are first order in the perturbation (i.e., in the chemical
difference between Si and Ge): any possible interface
strain is first order as well. The dipole is therefore a
second-order quantity, when expanded in such chemical
difference: for this reason, interface strain or buckling
come out to affect Eypg in an irrelevant way for this sys-
tem. Matters are different when considering heterojunc-
tions between polar materials.!® !’

VI. EFFECT OF BULK STRAIN

Due to the pseudomorphism of the structure, macro-
scopic strain is in general present in both materials.
Given the alloy concentration of the Si;_, Ge, substrate,
i.e., given the in-plane lattice constants a, we can easily
determine the macroscopic lattice constants a, in the two
materials by means of elasticity theory.?

For thin superlattices grown on Si substrate, it has
been shown® that the lattice constant along the growth
axis in the Ge slab is slightly smaller than predicted by
elasticity. This feature can be accounted for by the ex-
istence of an interface energy term in the expression for
the total elastic energy of the superlattice.* However, the
effect of this contribution decreases upon increasing the
number of Ge layers and vanishes in the thick superlat-
tice limit considered here. For a (Si)¢/(Ge)g (001) super-
lattice the interface energy term determines a correction
for the interplanar Ge distance smaller than 1072 a.u.;
i.e., smaller than the accuracy by which we actually
determined the equilibrium lattice constants of bulk ele-
ments.

The explicit check of macroscopic elasticity theory —
within the present theoretical framework —is shown in
Fig. 4, where the microscopic relaxations are plotted
versus the predictions of elasticity theory, for three
different choices of a;. Deviations from the elasticity
theory appear to be negligibly small; furthermore, the
interplanar distance across the interface is very close to
the average between the ones of the Si and Ge slabs. The
latter finding is not surprising in view of previous theoret-
ical work!>!* about the bondlengths in Si-Ge alloys.
Very recently, accurate measurements of the bond
lengths in Si/Ge superlattices have confirmed such
features.?’ As a consequence, from now on we assume
that the superlattice equilibrium structure is determined
by the theory of elasticity in order to obtain our final re-
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sults for the realistic strained interfaces.

The results of Fig. 4 show that interface strain, i.e., the
microscopic relaxation in the interface region, is small in
Si/Ge. Furthermore, the results of the previous section
indicate that interface strain or buckling does not affect
AEyyo at Si/Ge interfaces, because of the nonpolarity of
both materials. Therefore the offset depends only on the
macroscopic strain which is present in the two materials
far from the interface and not on any structural details of
the interface.

Having assessed the bulk nature of the strain effect on
AEygo at Si/Ge heterojunctions, we notice that such
effect coincides indeed with the difference between the
ADP’s of the two materials. Since the nontrivial orienta-
tion dependence of the ADP’s has been recently demon-
strated in a paper by us,® a nontrivial dependence of
AEygo upon the bulk strain tensors in the two materials
is expected as well.

In practice, the quantitative evaluation of the depen-
dence of AEygg upon strain as a difference of the ADP’s
of elemental Si and Ge is affected at present by severe
cancellation errors, which however touch only the poten-
tial lineup term in Eq. (1). A further major difficulty is
the fact that the theory of the ADP’s in its present formu-
lation,® is in good shape only for the case of variable a, at
constant .

In the following, we deal separately with the two terms
in Eq. (1). The band-structure term AE, is evaluated
essentially as the difference of suitably defined “relative”
deformation potentials of the two materials, while the po-
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FIG. 4. Interplanar distances for a (Si)¢/(Ge)s superlattice,
normalized as a;. Solid line: computed from fully relaxed total
energy minimization. Dashed line: predictions from macro-
scopic elasticity theory.
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tential lineup term AV is directly studied, via the super-
cell method, for Si/Ge interfaces within selected
geometries.

A. The band-structure term

It is trivial to prove that, up to linear order in the mac-
roscopic strain, the variation of AE, can only depend
upon the volume variations in the two regions, i.e., upon
the traces of the macroscopic strain tensors. We recall at
this point that we always refer to AE, as the average of
the (possibly split) valence-band-edge manifold.

Exploiting the above fact, the term AE, has been eval-
uated from a series of bulk DFT-LDA self-consistent cal-
culations in the two materials, all of them performed
within the diamond structure, at several values of the cu-
bic lattice constant a in the neighborhood of the virtual-
crystal value a.,=+4(ag+ag.)=10.40 a.u. The two
functions E,ﬂ”(a), where (i)=Si, Ge, have been interpolat-
ed quadratically:

Ezgi)(a):Exsi)(avirt)+B<i)(a _avirt)+c(“(a _avirt)2 > (6)

the relevant parameters are reported in Table I. The de-
viations from linearity turn out to be fairly small over the
physically interesting range ag; <a <ag., being smaller
than 0.02 eV.

Given a Si/Ge interface, the bulk strains on the two
sides are uniquely defined by the (common) value of g
and by the two values of a, in each material. We define
an effective cubic lattice constants @g;=(ata,)'”?, where
a, refers to the Si region, and analogously for @;.. Then
the band-structure term is easily obtained from Eq. (6), in
the linear approximation, as

AEU :El?e(aGe )_EUSI(aSl)
2Ezfje(avirt )-EUSi(avirt)

+B a6, —ay)— BN — i) - @)

B. The potential lineup term

The lineup term AV in Eq. (1) is much less trivial; we
have directly evaluated it for a series of selected cases, all
of them within the (001) geometry.

We begin studying the effect of macroscopic strain on
the same artificial, lattice-matched structure introduced
above in the context of chemical effects. Starting from
the reference structure, where atoms sit at the perfect di-
amond sites and the lattice constant is the virtual-crystal
one, we vary independently the in-plane lattice constant
a; and the interplanar one a,, using however the same
values on both sides of the junction. In other words, in
this series of calculations the macroscopic strain is the
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same in the two materials, when measured starting from
the virtual configurations.

A typical result is shown in Fig. S, which shows the po-
tential lineups for three values of a at constant a,. Very
good linearity is found via numerical differentiation
throughout the range of interest, i.e., @, and a; both con-
tained in the interval [ag;,ag.]. Numerical differentiation
yields

%A_V =0.50 eV, -a——aé—'i—w= —0.75evV. (8
€, (€xx TE€y,)
Using now Eq. (7) we get, for this lattice-matched case,
JAE JAE ;
v _ . =BCGc—BSi=—0.35¢eV. (9)
¢, O(€,, T€,,)

For the longitudinal case we thus get
(8AEypo)/0€,=0.15 eV; the smallness of this figure is
in agreement with the fact that the longitudinal ADP’s of
Si and Ge have very close values.® The transverse value
is larger; nonetheless the maximum variation of AEygg
for the relevant range of parameters is fairly small, of the
order of a few hundredths of an eV, as is also evident
from Fig. 5.

Last but not least, we have studied realistic interfaces,
where a single parameter (the in-plane lattice constant
a;) is the only independent variable, the other structural
parameters being chosen such as to minimize the total en-
ergy. We have already observed above (see Fig. 4)
that—in the thick superlattice limit considered in this
work —straightforward elasticity theory? is adequate for
energy minimization: we have thus used such structural
information in the present calculations. A typical calcu-
lation of this kind has been already presented above in
Sec. III (Fig. 1), where we aimed at illustrating the mac-
roscopic average for the lattice-mismatched case.

Starting from double macroscopic averages such as
shown in Fig. 1(d), we have calculated the potential line-
up for three different values of a|, equal to ag;, a,;, and
ag..- We obtain AV(ag)=0.37, AV(a,,)=0.40, and
AV(ag.)=0.43. These figures demonstrate excellent
linearity; when the band structure term is added, after
Eq. (7), we get the band offsets 0.47, 0.44, and 0.41, re-
spectively. The offsets between the (averages of) valence-
band-edge levels in the two materials can therefore be
tuned only by 0.06 eV upon varying the substrate.

VII. CONCLUSIONS

We have performed in this work a thorough study of
valence-band offsets at strained Si/Ge interfaces, in the
thick superlattice limit.

First, we have studied several artificial structures, in

TABLE 1. Relevant parameters for the expansion of Eq. (6).

E (ag) (V) E, (a.) (V) E (ag.) (eV) B (eV/a.u.) C [eV/(a.u.)?]
Si 6.24 5.65 5.09 —2.875 0.500
Ge 7.06 6.38 5.76 —3.221 0.643
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FIG. 5. Variation of the potential lineup for an artificial (001)
(Si)¢/(Ge)g lattice-matched superlattice when different biaxial
strains are applied (see text for more details).

order to isolate the different physical effects contributing
to AEvypo, and in particular allowing its tunability. We
have thus demonstrated, for this isovalent heterojunction,
that chemical effects are responsible for a term having
pure bulk character. The band offset cannot be tuned by
varying anyhow the composition in the interfacial region,
via, e.g., interdiffusion. Further, interface strain or buck-
ling have been shown to be irrelevant because of the non-
polarity of both materials. Hence, no interface-specific
phenomenon allows tunability of AEygq at Si/Ge inter-
faces.

We have also demonstrated that AEypg can only de-
pend on the macroscopic strain tensors in the two bulk
regions, although such linear dependence is far from be-
ing trivial. This issue is closely related to the ADP prob-
lem, for which we have recently provided an important
theorem and some calculations.®

Finally, we have performed calculations upon realistic
structures grown along the [001] direction, where the
strain is controlled via a single parameter: the concentra-
tion of the Si;_,Ge, alloy used as a substrate, governing
the pseudomorphic growth. Our main result is recast in
Fig. 6, solid line, which displays the band offset between
the averages of the band-edge states in Si and Ge, as a
function of the concentration of the substrate. The plot
shows a very weak x dependence of this quantity, which
varies by only 0.06 eV over the whole range; a similar be-
havior was previously found in Ref. 2. We observe that
such a feature may be traced back to the very close values
of té'le absolute deformation potentials in the two materi-
als.

At this very final point, we briefly discuss the offset be-
tween the topmost valence states on the two sides of the
junction as a function of x: this is the quantity most
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FIG. 6. Dependence of the valence-band offset at a Si/Ge in-
terface upon the concentration of the Si;_,Ge, alloy used as a
substrate. Solid line: offset between the average of the valence-
band-edge states, as calculated in this work. Dashed line: offset
between the topmost valence-band-edge states; results from the
present calculations, with the inclusion of strain splittings and
spin-orbit splittings. Dotted line: drawn after Ref. 2.

directly related to the experiment. We add therefore to
the previously shown data the relative splittings due uni-
axial strain and to spin-orbit effects, evaluated for the two
bulk materials separately. The former splittings are
straightforwardly calculated in a way consistent with the
rest of this work; the latter are taken from experimental
data. Our final result for the x dependence of the band
offset between the topmost valence states is shown in Fig.
6, dashed line, where the tunability over the whole range
is now one order of magnitude larger, i.e., 0.53 eV. This
result compares well with the tabulation of Ref. 2, shown
in Fig. 6 as a dotted line, which appeared some years ago
and is therefore less converged in a supercell size and en-
ergy cutoff: despite a small systematic deviation, the
trend and the tunability range are the same as found in
this work; similar results are also reported in Ref. 5.

The conclusion of this work is that the offset between
the topmost valence-band states at a strained heterojunc-
tion between pure Si and pure Ge can be tuned by some
tenths of eV by varying the substrate which governs the
pseudomorphic growth, while it cannot be tuned by alter-
ing anyhow the conditions at which the interface is
formed. Furthermore, most of the effect is purely band
structure in nature, i.e., it depends on one-electron
features of the two bulk materials separately.
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