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Influence of doping on the dielectric function in narrow-gap semiconductors
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The inAuence of doping on the intraband Lindhard dielectric functions of free carriers in narrow-gap
semiconductors has been studied at zero temperature using a geometric approach in momentum space
for two extreme cases, i.e., light and heavy doping corresponding to parabolic and linear energy bands,
respectively. In the case of heavy doping, the dielectric function turns out to be different, and free car-
riers also behave differently, showing no coupling between single-carrier transitions and the collective
excitations of the carriers. This accounts well for the experimental results measured on an In-doped

Hg& Cd Te sample reported previously.

I. INTRODUCTION

The response of a many-electron system to an external
perturbation can be discussed most generally in terms of
a frequency- and wave-number-dependent dielectric func-
tion e(q, co). This is a very important quantity because it
contains a great deal of information about the properties
of the electron system in addition to the system's
response to external probes. Under certain circum-
stances, when only the effect of q —+0 or co —+0 are need-
ed, the task becomes considerably simpler. In one limit,
e(q, O) describes the electrostatic screening of the
electron-electron, electron-lattice, and electron-impurity
interaction in crystals and can be used to study the effect
of these screenings on free carrier scattering in transport
phenomena as well as in free carrier absorption in semi-
conductors. In another limit, e(O, to) describes the collec-
tive excitation of the Fermi sea, i.e., the volume and sur-
face plasmons. The purpose of this paper is to calculate
the dielectric function in the region between the two lim-
iting cases, i.e., a region of infrared and rather long wave-

lengths, for narrow-gap semiconductors of which the en-

ergy bands are described by Kane's model. ' However,
the actual evaluation of e(q, co) even in the framework of
random-phase approximation is generally very difficult; if
the system under consideration is other than a free-
electron gas, one has to deal with the many-body problem
of a gas of electrons interacting with each other. These
interactions are strong, and are of long range, having the
Coulomb force between them and along with the so-
called exchange force associated with the antisymmetry
of the wave functions. A lot of effort has been expended
on the problem of a gas of electrons interacting via their
Coulomb potential, and the basic effects of the interac-
tion are now well understood. Much of the theory is ex-
pressed in complicated formal language, but the main re-
sults are surprisingly simple, and can be derived by ele-
mentary arguments.

In a semiconductor, Lindhard's expression for the
frequency- and wave-number-dependent dielectric func-
tion can be obtained by a simple perturbation theory:

4~e'
I
&q'Ie"'Iq'+q& I' [f'(q') —f'(q'+q) j

where q is the wave vector, a the damping constant,
E(q) the energy eigenvalue at state q, ~q) the corre-
sponding eigenvector, and f (q) distribution function, re-
spectively. e is the contribution due to all interband
transitions, which is, strictly speaking, complex, but at

low temperatures the imaginary part goes to zero in the
region where the energy is less than the Fermi level. "
The contribution from the phonon can be omitted if its
frequency is much less than the frequency region of in-
terest. The matrix element represents an overlap between
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the spatially periodic part of the two Bloch functions, so
it is accurate enough for free electrons in narrow-gap
semiconductors to take it as a unit.

Taking into account the property of 5 functions,

2 2

g [f'(q') —f'(q'+q)1
q

X5(E(q'+q) —E(q') f—ico) .
(3)

1 = 1
lim =P i i—r5(x —xo),
a~p x xp+Lcx x xp

(2) For the purpose of calculation, substitution can be
made:

where P denotes the principal part. The imaginary part
of the dielectric function given in Eq. (1) can then be ob-
tained from Eq. (2):

q'
f f f (q') dq'dp dc',

where p =cos9 and 9/( q', q ).
At absolute zero temperature, Eq. (3) gives

(4)

2 2 2 kF
be„'„,(q, co)= 2, f f f (q') 5(E(q'+q) E(q') ——A c)odq'dp dP,q' (2ir)'

(5)

where kF is the wave vector at the Fermi surface and E(q) is the energy of a free carrier in a semiconductor described
by the Kane model in the case of narrow-gap semiconductors, namely,

( q )
1 [ (E2 + 8

q 2P 2
)

1 /2 E ] (6)

where P is the element of momentum matrix and Eg is the energy gap at the I point between I 6 and I 8. The algebraic
calculation of Eq. (5) for the linear band was previously performed by Szuszkiewicz and Bardyszewski.

II. LIGHT DOPING (PARABOLIC BAND)

All states are at the bottom of the conduction band E &)kp It is seen. from Eq. (6) that the energy dispersion rela-
tion is parabolic:

3A E
E(q)= q, m*=

2m * 4P2
(7)

In this case, Eq. (5) turns out to be

be „'„,(q co)= f f f (q') 5 (q +2q'qp) fico dq'dpdP . —
q' (2ir)' 2m

(8)

The integral is to be carried out in the volume outside the left Fermi sphere and inside the right Fermi sphere in k
space (Fig. 6). However, because of the 5 function, which sets a confinement for q' and 9, they are not independent any
longer; the volume integral then reduces to a surface integral on a disk or ring depending on the value of q' and co. It is
known from Appendix A that (a) when 0 & iiico & —(fi /2m *)(q —2qkz) [equivalent to q +q' q & kz, from Eq. (A2)],

~ (9 ) (k2 2 )1/2 k2 2m
1/2 (9)

and (b) when 0& —(i' /2m*)(q 2qkz) &A'co & (iri /—2m*)(q +2qkz) (equivalent to kz &q +q' q&q +kF),

q', (9, ) =kF,
2 2

q2(92) =
2q

q
2

'

(10)

From Eqs. (8), (9), and (10) one has
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2 q (g
be„'„,(q, co)=, f dq'

Rq

, , Ilql(~ ) 1'—[q'(~ )]']
q

2e (m') co
when 0&Aco&-

Aq
2 4128 Pl kF ~m +

q1—
$2q 3 AqkF 2kF

0 elsewhere,

(q —2qkF )
2m

2 f2
when 0& — (q —2qkF) fico & (q +2qkF)

2m 2m

or in a more brief notation,

nr, Q A
when & 1 —k

8k 4k

b,e,", (k, Q)= . ar,
8k

0 elsewhere,

2

when (1 —ki & 1+k0
4k

(12)

where k=q/2k+, Q=colcof, iiicof =A' kr /2mf*, a=(4/9ir)', ao=A lm "e, ro=(3/4irn)'r, and r, =rolcro
The real part can be calculated from Eq. (12) using the well-known Kramers-Kronig transformation, namely,

„sb,e „'„,(k, s)
be„„,(k, Q)= Pf— ds .

0 s2 —Q2
(13)

Only those terms in Eqs. (11) and (12) that are odd with respect to frequency give nonvanishing results. Substituting
Eq. (12) into Eq. (13) yields

ar,
be„„,(k Q)= '1+ 1—

4k

2 —0/4+k +k 1 Q
Q/4 —k'+k 4k

2
Q/4+k +k

ln —Q/4 —k +k
ar,

I 1+A (k, Q)+8 (k, Q)],
2+k

(14)

where A (k, Q) and 8 (k, Q) refer to the second and the third terms, respectively. Equations (12) and (14) are the ex-
pressions for the dielectric function most widely used in the literature. They are the same as in Refs. 7—9 excluding the
printing errors there. However, Eq. (14) is only nominally correct in the case of a long wavelength. As a matter of fact,
A (k, Q) and 8 (k, Q) are close to each other in their absolute values and are opposite in their signs (Fig. 1). Their abso-
lute values increase with the decreasing k, but A (k, Q)+8(k, Q) remain negative, with an absolute value slightly
greater than one. It is seen from the curves in Fig. 1, where the evaluation was performed in double precision, that
when k is smaller than 5X10 (q &0.01k+), the absolute values of A (k, Q) and 8 (k, Q) are 6 orders of magnitude
higher than 1+ A (k, Q)+8(k, Q), which fails to yield an accurate value of he,'„„,(k, Q). There is an expression [Eq.
(25)] for e'(q, co) in the case of q ~0; however, as will be shown, the expression is not accurate enough in the infrared re-
gion, so that one needs a suitable expression for the case between q~0 and large q to deal with the long-wavelength
case, for example, the plasmon dispersion in the infrared region. To eliminate this error, it is expected that expanding
A (k, Q) and 8 (k, Q) into a series will enable us to cancel out the terms with large absolute values and opposite signs
leaving only the real value. Let x =Q/4k and assume ~x —ki) 1, which is always correct for k &0.1, even in the in-
frared region. Then one has

)
1 —x +2xk —k 1

2k =o (2n + 1)x r =o

8(k Q)
1 x 2xk k

2k

(2n+1)(2n+2). . . (2n+I) k
X

I
1 r (2n +1)(2n +2) (2n +I) k

(2n+1)x "+' X
4

(16)
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00
1

A (k, A)+B(k, Q)= —g 2+
„=o (2n + 1)x " I=1,3, . . .

r

1 —x —k (2n+1)(2n+2) . (2n+I) k
kx I! x

(2n+1)(2n+2) . . (2n+I) k
I) x

X
2I

(1—x —k )+22 2

k (2n +2I)

+2
I=2,4, . . .

2I
1

" k (2n +1)(2n +2) (2n +2I)
(2n+1)x " (2I)!

(17)

Following is the term separated from Eq. (17):
2I

k (2n +1)(2n +2) . . (2n +2I) x I
x (2I)! k~ n+I

2I —2
(2n +1)(2n +2). . . (2n +2I) I k

(2I)! n+I x

(2n + 1)(2n +2) 1

2t n+1
2I —2

(2n +1)(2n +2) . . (2n +2I) I k
(2I)! n+I x

' 2J
(2n +1)(2n +2) (2n +2J) 2n +2J+1 k

(2J)! 2J+1 x
(18)

where I —1 has been substituted by J. Substituting Eq. (18) into Eq. (17) and replacing Jby I yields

1 2n —1 ~ ~ k (2n +2)(2n +3) (2n +2I) I 1 2n (I+1)
2n 2n +1 ~ ~ 2n+2I (2I)! n +I k~ I(2I + 1)

1 2n —1

x~~ 2n+1

k [2(J I)+2][2(J—I)+3] . —. 2J I 1 2(J I)(I+1)—
&=is=i x (2I)! J k' I (2I +1)

where J has been employed again to substitute for n +I. One of the terms in Eq. (19) can be revised as

(19)

2JJ=1I=1
k [2(J—I)+2][2(J I)+3] . 2J I—

(2I)! J
' K~~ [2(J I')][2(J I'—)+1] 2J I'—+1

=iv=0 x [2(I'+ 1)]! J
(20)

1 2J —1
"

1
" J ' k [2(J—I)][2(J—I)+1] . 2J I+1

[2(I+1)]! J
—X X

' k [2(J I)+2][2(J I)—+3] 2J 2—(J I)(I+1)—
J=2 I=1 (2I)! J(2I +1)

1 2
x~J 2J+1

' k [2(J I)][2(J I)+1] .—.2J-
J=zs=t x (2I + 1)!

1 1+1 I+1
2I +2 J J [2(J I)+1]—

1 2 " ' k [2(J—I)][2(J I)+1] [2J—1] —2(I+1)
(2I +1)! 2(J I)+1—

where I'=I + 1. Separating the term given by /= 1 and I'=0 and noticing that the second part of the third term of Eq.
(19) contributes nothing in the case of J=I yields

1 2 J ' k [2(J I)—1+S] 2J+3-
,

x~J 2J+1 J ~~, x~J s, 5+1 2(J —I)+1 (21)
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re
14):

[2(J I)—I —+S]
277k g=i (2J + 1)x g —2 x

2J+3
2(J I)—+1

can be obtained fromf dielectric function can21), the real part o ie ecI. With the results of Eq.whe asI' h s been replaced by I. i
Eq. (

where

=e„— C(k, x),
2+k

2 2 77 k4 11+ — —k + —+6k +3k1 2 2 4
6 7 X

C(k, x)= +
3x

(23)

/ 2 1C'(k, )= +
3X X

E (22), one hasTaking C'(k, x) for C(k, x) 1n Eq.
2

(24)

r e value terms left in Eq. (22), only the-.,---. - h.. This expression is verymall value terms.
case of small q. . e.he curve o,x

ld the correct valuesce ee onl way to yie
of dielectric function in

f x' sometimes onlyuickl for large values o x,
the erst two terms of it are nee e:

where

CK 7' $

2mk 3x

2

When q —+0, q.E . (25) turns out to be

2
Gap

E'(q, co) =@~ 1
2

(26)

~ ~

under the approximationThe plasmon disps ersion relation un er ion
d b setting e (q, co-of Eq. (24 can then be obtaine y

namely,
Q)p

e'(q, co)=E„—e„ q COF1+4 2 2
3 UFQ 2 322—CO +—UFgp 5

(27)

10

3 7 qX —+—
I

ri'
0=0.85

kd
kd

k,B
d~

d~
h~

d~
4~

h

2

(25)

and U is the veloc-=Ak /2&lF = 2PlF UF and
h . Equations (26) andt of carriers at t e Fermi sp ere.

d in the literature,ssions frequent y use

o
'

rre (22) and (25), the
an

To verify the corre
nd C'(k, x) are comparared in a varied

5=0.10, 0.25, 0.5, Ml 0.7,frequency region, where co/cc)F =

0.9

10

10

0.3-

I
I

I

I

to
10

a I a

10 O. i.
0.01

(4, positive), B(k,Q) (A,lues of A (k,Q), ' ', (A,
1+ A (k, Q)+B(k,negative), an

e i
'

1 expression Eq.) evaluated from t ee ana tica
d

'
evaluated from t ehe series expressionvalue of C(k, Q) (solid ine eva

Eq. (22) for co/aF=0. 2 .=0.25 ~

f C{k,Q) {solid line) andand C'(k, Q)
E (22) d

F!6.
the series expression q.shed hne) given by t e

roxim
' . 4 res ectively in our ca

075 (D) ti e yo = .1 (A), 0.25 (B),0.5 (C,
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respectively (Fig. 2). It is seen that instead of Eqs. (25)
and (26), Eq. (22) should be used in infrared region.

extent that qP » ~Eg ~
the energy dispersion relation for

most of the states is linear [Eq. (6)]:

III. HEAVY DOPING (LINEAR BAND)

It happens frequently in narrow-gap semiconductors
that a conduction band can be filled by doping to such an

E(q)=v 2/3qP .

It can be obtained from Eq. (5):

(28)

b,e „'„,(q, eo) =
2

f f f (q') 5(( —,
')'~ P[[(q') +q +2q'qp)'~ q'J —fico—)dq'dpdP

v'6e' f f [q'k„+(q') )5(p po)d—p dq'
Pq —

& o

+6e2 k)(8)f [q'k +(q') ]dq', (29)

where
' 1/2

3 %co

2 P

(k„+q') —[(q') +q ] k +2q'k —
q

Po
2q q 2q'q

and
&(q(p))= dg(po)=0, g(p)

8p
%0.

g(p)
~P P Po

Again, because of the confinement set by the argument of the 5 function, q' and 9 are no longer 1ndependent and the
integral should be carried out on a hyperbolic surface in the space inside the right Fermi sphere and outside the left
Fermi surface (Fig. 7). It is known from Appendix B that (a) when k & q and 0 & k & 2kF —

q («0 & k & q & 4 )i

q', (8, ) =kF,
q~(8~) =kF —k

and (b) when 0 & 2k~ —
q & k„&q (or 0 & k„&q and kF & q & 2kF ),

q', (8, )=k~,

q~(8z) =(q —k )/2 .

From Eqs. (29), (30), and (31) one has

(30)

(31)

(k~k —
—,'k ) when 0&k &q &k~

Pq

[—,'kFk„+ —,'k~ —
—,', (2k' —3qk'+q')] when 0&k &q and kF &q &2kF

Pq

0 elsewhere .

(32)

The real part can be obtained from Kramers-Kronig transformation:
T

&6e'
b, e „,„,(q, co) = q (2kF —

—,'k„) ,'q k(k~ —
—,'k—)—ln— (33)

as
Equation (33) can be revised into various forms, using one of which the real part of dielectric function can be written

COp
e'(q, co) =F.„+—', e

coy

2

2 ——1 q
9 kF

1 q

3y ky

1 1— 1 q

6y kF

2
1+y

ln
1 —y

(34)
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not differ too much from the plots for parabolic bands.
However, a detailed study will reveal an essential
difference.

3 3

2 0

(0
1~

0.5 1.0 2.0

=- 0.63

1.58

0.25

0. 10

IV. PLASMON DISPERSION RELATION

The case of small q corresponds to the collective exci-
tation of free carriers. For a volume plasmon, the disper-
sion relation can be obtained from setting the real part of
the dielectric function given by Eq. (1) to zero. Numeri-
cal evaluations were performed. The parameters used in
the evaluations are the same as those used in Figs. 3 and
4. In addition, co~/co~=3 has been chosen to be the
value of effective mass IF .

For the parabolic band, Eq. (22) was used for the evalu-
ation. Also, the upper boundary for electron-hole pair
excitation in that case was evaluated, namely,

E (kF +q) E(kF )—
co(q)= = (q +2kFq) .

j5 2IF
(36)

FIG. 3. The value of Ae„„,(q, co) evaluated from Eq. (33) for
linear band. E (kF +q) E(kF )—

td(q) =
1/2

2
3

(37)

In the case of a linear band, Eq. (34) was used for the
evaluation. The upper boundary for electron-hole pair
excitation, in this case, is

where y =q//'k, and it is worthwhile to point out that in
the case of a linear band the effective mass of a free car-
rier at the Fermi surface is

1/2
1 1 dE(q) 1 2

mF* A kF ~q fi kF
(35)

The numerical evaluation of Eqs. (32) and (33) was per-
formed for kF=4.795X10 cm ', ~~ =676.8 cm ' and
I' =8X10 eVcm, e =13.01. Figures 3 and 4 are the
results shown in three-dimensional plots in the region of
co/co =0—2.0, q/kF=0. 1—1.58 (real part), and 0.25—2.5
(imaginary part). It seems, at first glance, that they do

The results are presented in Fig. 5. In the case of a para-
bolic band, the boundary of the pair excitation increases
with q faster than the plasmon oscillation does. When

q )q„a strong coupling between them takes place. As a
result of the coupling, the plasmon oscillation could no
longer exist. Contrary to this behavior, in the case of a
linear band, the coupling between the two excitations of
free carriers does not take place at all. In other words,
the damping to a plasmon oscillation does not exist for
the linear band, which is a unique behavior resulting

80-,

40-

20:

0 0.5 1.0
I

1.5
;:2.5

2.0

0.25 qc
l

0.8

/

/

/

/ /
//

//

//

0
0.4

/k

FICz. 4. The value of Ae,'„'„,(q, cu) evaluated from Eq. (32) for
linear band.

FIG. 5. The dispersion curves of plasmon oscillation [solid
line, evaluated from Eq. (22) and Eq. (34)] and the up boundary
of electron-hole pair excitation [dashed line, evaluated from
Eqs. (36) and (37)] in semiconductors with the parabolic (P) and
the linear (L) band, respectively.
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from the unique energy-band dispersion relation of free
carriers and has been observed experimentally. ' '" Fig-
ure 8 presents the measured and evaluated absorption
coca.cients of free carriers of In-doped Hg& Cd„Te
sample T26 reported in Ref. 11. It shows evidence that
with the inclusion of plasmon absorption the theory
agrees with experimental results fairly well up to a fre-
quency as high as two times that of the plasma frequency,
where it was impossible for a plasmon to exist due to
Landau damping. The parameters of sample T26 are
composition X=0.182, plasma frequency m =810 cm
lattice constant ao =6.464X 10 cm, frequency v of two
LO phonon modes v(LO&)=137.2 cm ' and
v(LOz)=155.6 cm '. It can then be evaluated (T=295)
as follows: bandgap E =0.143 eV, free carrier concen-
tration X, =6.54 X 10' cm, and Fermi wave vector
K = (3~ X, )' =5.785 X 10 cm

V. DISCUSSION

It follows from Eq. (6) that a linear band can be
achieved in the case of either nearly zero gap or heavy
doping. Only the latter case is within the scope of this
paper.

Generally, when the appreciable plasmon effect is con-
sidered, the high density of free carriers is necessary. Be-

cause of the smallness of the effective mass, the band will
become filled rather quickly as the carrier density in-
creases. One of the limitations of K-P theory is that it is
strictly valid only for the region close to the Brillouin
zone center. Would doping in turn result in going
beyond the zone center? Let us take sample T26 as an ex-
ample to elucidate the problems. The Fermi wave vector
KF (5.785X10 cm ') takes only 6% of the value of
(2vr/ao} (9.721 X 10 cm '}, so that we are still close
enough to the zone center that the K.P theory remains
valid, while the linear approximation is fairly good:

—,'(KP) =—23[(5.785X10 )(8X10 )] =0.143 eV

(Eg) =(0.143/2) =0.005 eV

and obviously ( —,')(KP) ))(E /2)~.
The LO frequencies in most narrow-gap semiconduc-

tors are low compared with the plasma frequency in a
semiconductor with a high density of free carriers. For
example, the two LO modes in sample T26 are in the re-
gion of 137.2—155.6 cm, while the plasmon oscillation
is in the region higher than 810 cm ', so that their effect
on carrier dynamics is negligible. On the other hand, be-
cause E~+EF=0.143+0.0307=0.450 eV, the interband

0 e

(b)

FIG. 6. The two Fermi spheres of radius kF
( =O'C =OH =OG) in k space separated by q ( =O'0) for
kF &q &2kF (a) and q &k~ (b) and the integral region in Eq. (8)
described by Eq. (A2), which is a plane for semiconductors with
a parabolic band. In the case of q+q'. q& kF, the region is a
ring of which the cross lines in the figure plane are CD and FE,
the corresponding integral limits of 0 and q' are 0l, q &(0&)=OD
and 02, qz(02)=OC, respectively. In the case of q+q'-q) k+,
the region is a disk of which the cross line in the figure plane is
GH, the corresponding integral limits of 0 and q' are 0l,
q & (0&)=OG =OH and 02=0, q2(02) =OX, respectively.

FIG. 7. The two Fermi spheres of radius k+ (=F2B =F,C)
in k space separated by q (=F&F2), and the integral region in
Eq. (29) described by Eq. (B1),which is a hyperbolic surface for
semiconductors with linear band. In the case of q

—AF& &kF
(a), the integral region is a belt cut from the hyperbolic surface
of which the cross lines in the plane of (a) are BC and DE, the
corresponding integral limits of 0 and q' are 0&, q &(0&)=F& C
and 02, q 2(0&)=F

& B, respectively. In the case of
kF & q

—AF& & 2k+ (b), the integral region is the top part of the
hyperbolic surface of which the cross line in the plane of (b) is
CAE, the corresponding integral limits of 0 and q' are 0l,
q ] ( 0] ) =F]C and 02 =~, q 2 ( 02) =F& A, respectively.
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q'. qo = (A2)
2q

where qo=q/q, q =2m *co/iii.
For the given q and co, Eq. (A2) describes where the in-

tegral in Eq. (8) should be performed. It is a plane in be-
tween the two Fermi spheres in the shape of a disk or
ring (Fig. 6) depending on where the plane is located,
which is determined by k„, q, and co.

(a) q+q' q&kF, the integral is to be performed on a
ring, and one has

q', (8, )=k~ . (A3)

q2(82) can be calculated from b, O'OC:

k~ = [q2(8&)]'+q —2q2(82)q cos(ir —8, )=[q2(82)] +q
[q2(8i)] =k~ —q2 .

(b) q+q' q) kF, the integral is to be performed on a
disk, and one has

(A5)
FIG. 8. The absorption coeKcient of free carriers of In-

doped Hg &
Cd Te at room temperature. The plasma frequen-

cy is 810 cm '. The solid line presents the theoretical results
including absorptions due to both single-carrier transitions and
collective excitations with no Landau damping. The dashed line
presents the theoretical results, which take into consideration
only single-carrier transitions.

processes also should not take place in the region of in-
terest, of which the highest frequency is only around 0.2
eV.

Finally, linear dispersion for conduction bands also im-
plies linear dispersion for a light-hole band. In principle
this should be accounted for in our calculation, but as a
matter of fact the hole concentration is very low due to
the high electron concentration, so that all hole bands in-
volving free carrier transitions have negligible contribu-
tions.

VI. CONCLUSION

The approach developed in this paper to calculate the
Lindhard function of free carriers in semiconductors with
both parabolic and linear energy bands is more efI'ective
than that employed previously. In the case of the long-
wavelength and infrared regions, Eq. (22), an expression
of the Lindhard function in series, should be used. By
virtue of doping, the degeneration could be so heavy that
the energy dispersion relation of free carriers in the vicin-
ity of Fermi surface becomes linear. This results in the
unique behavior of free carriers, namely, the absence of
the coupling between single-carrier transitions and the
collective excitations of the carriers.

APPENDIX A: PARABOLIC BAND

The confinement equation given by the argument of the
5 function in Eq. (8) is

q~ q
q2(82) =q' qo=

2q
q
2

' (A6)

APPENDIX B: LINEAR BAND

The confinement equation given by the argument of the
5 function in Eq. (29) is

q
—k„

2k [1—(q/k„)cos8] 1 —e cost9
(B1)

and

q', (8i)=kF .

q2(82) can be calculated from b,FiF,B:

kF [qz{82)] +q 2q2(82)q cos(ir 82) .

Substituting Eq. (Bl) into Eq. (B3) yields

q2(82) =kF —k

(B3)

(B4)

(b) 0 & k~ & q
—AF, and kF & q & 2k~ (equivalent to

0&2kF —
q &k„&q or 0&k &q and kz &q &2kF) and

the integral is to be performed on the hyperbolic surface
of which the cross curve in the plane is CAE. It is obv,

'

ous that
q', (8, )=kF, (B5)

where p =(q —k )/2k, e =q/k k
=&3/2(fico/p).

In order for p to be positive, q should be greater than
k so that e ) 1. This is always correct in the infrared re-
gion, so that Eq. (Bl) defines a hyperbolic surface (Fig. 7).

(a) 0 & q
—AFi & kz (equivalent to k & q and

0 & k„&2kF—
q or 0& k„&q & kF), and the integral is to

be performed on the belt cut from the hyperbolic surface
of which the cross curves in the figure plane are BC and
DE. It is obvious that

g2
(q +2q'q cos8) —A'co=0 .

277l

Equation (A 1) can be revised as

(A1)
—k

g

( 8 )
ep p p 'q cD ci)

e —1 e2 —1 e+1 2k q

=(q —k )/2 . (B6)
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