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Many-electron variational calculation for the one-dimensional Anderson lattice
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We present a variational method for studying the ground-state properties of the one-dimensional An-
derson model with periodic boundary conditions. Our results are compared with exact Monte Carlo re-
sults and show excellent agreement in the large-U limit. We argue that poor results in the vanishing-U
range are due to the truncated basis chosen, as well as the fact that all fluctuations are treated equally.

I. INTRODUCTION

Recently there has been a great deal of interest in the
ground-state properties of a lattice of localized moments
as a description of mixed-valence systems. ' The interest-
ing physics of such systems arises from the interaction of
the localized f orbitals (with energy close to the Fermi
energy) with the conduction d bands and by the f-orbital
intrasite Coulomb energy. At high temperature they
tend to have isolated moments. A model appropriate to
describe such systems is the periodic Anderson model
(PAM). Theoretical work on this model has included
perturbation expansions in the Coulomb energy U, vari-
ous Green's-function approaches, functional-integration
methods, real-space renormalization, and direct diago-
nalization of finite clusters. A wide variety of variation-
al schemes has also been applied to this model. These
include a number of Gutzwiller-type approaches where-
by an initial trial function is chosen to project out the
two-particle states on the localized f orbitals. Such an
approach represents a mean-field theory and thus no in-
formation regarding spin correlations of neighboring lo-
calized orbitals may be extracted. Another important
work, relevant to the present study, is that of Blanken-
becler et al. who utilized a stochastic Monte Carlo tech-
nique to study the ground-state properties of the one-
dimensional PAM. Comparisons with this work, which
we take to represent the true ground state, shall be made
throughout.

This work represents a continuation of an earlier pre-
liminary study' on the Anderson model in which the lo-
calized f orbitals were found to be antiferromagnetically
correlated in the ground state via a Ruderman-Kittel-
Kasuya-Yosida (RKKY) type of interaction. ln this pa-
per a variational ground-state energy as well as magnetic
correlation functions and hybridization matrix elements
are evaluated. The method utilizes a finite matrix trunca-
tion scheme whereby a limited subspace of the full Ham-
iltonian is generated. " The power of the method lies in
the fact that for modest computation times one may
study very large systems with extensions to higher dimen-
sions being straightforward. A drawback of the tech-
nique is that excitations near the Fermi energy are ap-

proximated as average band energies thus obscuring any
information on low-lying energies leading to the Fermi-
liquid behavior of intermediate valence systems. We
study here the ground-state properties of the one-
dimensional PAM for an S-site, 16-site, 32-site, and 64-
site lattice. Comparisons are made with a stochastic
Monte Carlo calculation performed on a 16-site chain.
Our results are in excellent agreement with those of the
Monte Carlo calculations in the Kondo lattice regime
(Coulomb energy U large). However, in the mixed
valence parameter range our results are rather disap-
pointing. This we argue is a consequence of choosing a
finite basis whereby important vectors containing the hy-
bridization matrix elements as well as those which
represent excitations close to the Fermi energy have been
left out. We shall reserve further discussion on this
rnatter until the final section.

The paper is organized as follows. In Sec. II we discuss
the method and the set of vectors chosen to span the sub-
space of the PAM Hamiltonian. We also introduce a di-
agrammatic representation of these vectors which facili-
tates the choosing of a linearly independent set of vectors
as well as rendering the orthogonalization (via a Gram-
Schmidt orthogonalization process) of this set more
manageable. In Sec. III we give our results and compar-
isons with other methods are made. Discussion and con-
clusion are given in Sec. IV.

II. FORMALISM

The Hamiltonian for the nondegenerate one-
dimensional periodic Anderson model has the form

2 8ks Cks C ks +2 Etf'ts, fts, + U 2ft tf t tft &ft &

1

+ —g (e 'fit ck, +H. c.), (l)

where c (c) and f (f) are the creation (annihilation)
operators for the conduction d-orbital and localized f
orbital electrons, respectively. Here U is the on-site
Coulomb energy of the localized f electrons. V
represents the hybridization of the two bands, taken to be
k independent, and
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Ek, = 2—t cos(k), (2)

ly, &= n&:—

with the normalization
l P, l

= 1.
A truncated basis consisting of various particle-hole

excitations may be constructed by repeated operations of
Eq. (1) on lQ&. The set of states generated may be
represented diagrammatically, with rules for their con-
struction not given here. Repeated operations of the
Hamiltonian' yield a set of nineteen vectors. After
checking for linear independence and performing a
Gram-Schmidt orthogonalization, the basis was reduced
to a set of thirteen independent vectors. Each of these
vectors represents a different physical excitation of the
ground state. We shall be interested in obtaining the
lowest eigenvalue of the 13X 13 Hamiltonian matrix
within this basis. This matrix is both small and sparse al-
lowing the calculations to be performed on a desk-top
computer using standard matrix routines. It is hoped
that such a small amount of computational effort will
yield qualitatively useful information on the ground state.

To illustrate the method, we note that explicit opera-
tion of the Hamiltonian on the initial vector lP& & yields
the following two new vectors. Each vector represents
linear combinations of all distinct single particle-hole ex-
citations,

where t is the hopping energy and —m & k & ~. In this
work we shall consider particle-hole symmetry with
El = —U/2, and for numerical calculations we use a
linear dispersion for the conduction electrons
—1 ~ ck ~ 1. The calculation is variational and we
choose our initial trial wave function to consist of a filled
Fermi sea of conduction electrons together with a set of
singly occupied localized orbitals.

We denote the filled Fermi sea of conduction electrons
with the symbol ~ and the set of singly occupied local-

ized orbitals by a horizontal line , where I
denotes a particular site. Hence the initial trial wave
function is represented by

1 —ikR(
p4&= —g pe '(sk, E—

&, )ck, fh, 0&,
& k)k, I
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in which kz is the momentum at the Fermi surface, and 6
the Kronecker delta. The collection of the diagrammatic
representations of these 13 many-electron state basis vec-
tors is shown in Fig. 1.

The ground-state energy for the truncated basis of thir-
teen vectors is obtained by finding the lowest eigenvalue
of the Hamiltonian matrix H;1 = ( p, lH pl &. These ma-

trix elements are given in the Appendix.

—y ye' 'f,", ck,-l»,
k&k IF

zz&k)k, I

The vector i/2& represents the physical event whereby a
conduction electron with momentum k &kF and spin

S~ =——
S~ hybridize to a localized f orbital labeled by l

with an already existing spin S&. Vector i/3 & represents
the hopping of a localized electron from site I with spin
Sl to the conduction band with momentum k )kF. We
note that just as in Oguchi's work we have that while the
number off electrons is not fixed, the total electron num-
ber is conserved. He uses this condition to determine his
variational parameters. The remaining vectors are given
below.

We have

III. RESULTS

In this section we wish to compare our results with
those of the exact Monte Carlo calculation of Blanken-
becler et aI. , and also with the strong-coupling limit.
The values of parameters used are the same as those in
Ref. 9: t =0.5 and V =0.375. In the strong-coupling re-
gime, U))5, where the band gap

5=+(1+4V ) —1

and the ground-state energy is given by

2 2V'E ( U) = —
—,
' U+ —g skf (Ek )—

U
&k+

2

with f ( Ek ) the zero temperature Fermi function.
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FIG. 2. Ground-state energy per site of the 16-site lattice
comparing with the Monte Carlo calculation and strong-
coupling approximation results. The dot-dashed line represents
the small-U approximation result [Eq. (10)]. Parameters used
are t =0.5 and V=0.375.

FIG. 1. Diagrammatic representation of the thirteen truncat-
ed basis states, where up to second order in particle-hole excita-
tions with spin flips have been included. The bubbles appearing
in (4) and (10) constitute correction in self-energies. Diagrams
(6) and (13) are vectors which include explicitly the RKKY-type
interaction.

Figure 2 is a plot of the variational ground-state energy
Eo(U) for the sixteen-site lattice. For the large-U limit
the variational ground-state energy converges quite nice-
ly to the Monte Carlo results of Ref. 9 and for U ~ 1.8
are as good or better than the strong-coupling theory.

The success of this basis in the large-U limit for this
symmetric Anderson model is due to the fact that
particle-hole excitations with a filled f orbital and "aver-
age" conduction-band hole dominate the variational sub-
space. The energies of these states have the form
(
—0.5 U + ( E & ) where ( E & is an average of hole energies

over the band. The Coulomb interactions between f or-
bitals are also treated exactly in this basis.

This variational basis does not do well for small U
where the actual band structure would begin to dom-
inate. This sequence of vectors represents the band ener-
gies by certain averages over the whole band. This
characterizes the bands by a sequence of averages closely
related to the cumulants of statistics. To recover the de-
tailed band structure itself would require large numbers
of these vectors. To illustrate this it is useful to examine
the simplest cornplernentary variational basis set: one
which treats the hybridized bands exactly and treats the
f-f Coulomb interaction in mean field only. For this se-
quence of many-particle states we define hybridized
single-particle operators yk(k) to diagonalize the U =0

Hamiltonian. The one-electron operators are defined as

Vc„,+[kk, (+) Ek, ]f„, —
yk. (+)=

Q V + [A,k, (+)—Ek, ]

where

~ks( —) Y~(sks +E!s )—2 +(eks 1s ) + (8)

(10)

In Fig. 3 we plot the ground state energy for 8-, 32-,
and 64-site lattices. In the large-U limit where diagonal
terms of the Hamiltonian matrix elements dominate and
thus where our truncation does well, the energy per site
decreases slightly as the size of the lattice increases. As
the lattice size is allowed to increase, the number of states
present in the true ground state also increases. Thus it is
seen then that in the mixed-valence regime (small U), for
larger and larger lattices our finite basis becomes a poorer
approximation.

Further investigation of Fig. 3 shows that there is
another effect to be considered. As U becomes very large
the doubly occupied sites which appear in the true
ground state will have a vanishingly small amplitude.

are the exact energies of the hybridized bands for U =0.
The initial variational ground state for this sequence of
states is a filled Fermi sea of yk, ( —):

~G&=+yt, ( —)I0& . (9)
k, s

The dot-dashed line in Fig. 2 that agrees with the Monte
Carlo results at U =0 represents the expectation value of
&GH~G&:

U V'+ [~k, ( —)
—Ek, 1'

Eo(U) =g Ak, ( —)+-
[Xk,(+)—X„,( —)]'
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the large-U limit with the Monte Carlo results of Ref. 9,
but fail completely in the mixed-valence regime because
of the poor approximation to the ground-state wave func-
tion.

It is interesting to investigate the interplay between the
Coulomb energy U and the effective hybridization V. As
pointed out by Blankenbecler et aI. , a useful measure of
this is given by the ratio of (fI,c»+ c&,f&, ) in the interact-
ing ground state to the U=O ground state. Results of
Ref. 9 demonstrate that the effect of U is to decrease the
hybridization. Our calculation of this quantity using the
13X13 basis yields very poor results as expected. We
would expect better agreement if more states which cou-
ple to the Coulomb energy were added to the basis.

IV. CONCLUSION
FIG. 3. Ground-state energy per site of 8-, 32-, and 64-site

lattices for the same parameters as those used in Fig. 2. Note in
the mixed-valence regime (small U), the energy of smaller clus-
ter is lower than that of the larger ones in the present approxi-
mation.

Thus if one were to ignore such states then the effective
number of states in the true ground state would be dimin-
ished, tending to improve any finite basis truncation
scheme. Thus one needs to investigate the full range of
parameter space for a given Hamiltonian before drawing
conclusions on size effects and also on the limitations in-
volved in finite-basis methods.

The square of the f-orbital single-site magnetization
(m, (I) ) =1 2(n(&n—(& ) is shown in Fig. 4 for a 16-site
lattice. Use of the Feynman-Hellmann relation enables
one to write this function in terms of a derivative of the
ground-state energy,

We see that once again our results compare favorably in

1.2

By using a Lanczos-type of variational method, we
have studied the ground-state properties of a one-
dimensional periodic Anderson model. With a fairly
small amount of computing time, we achieved excellent
agreement with the exact Monte Carlo result on the
ground-state-energy calculation of a 16-site lattice in the
large-U limit. With a fixed number of basis states, this
method allows us to carry out the calculation for much
larger size lattices easily. But for this same reason (limit-
ed number of basis states), our results for properties
strongly depending on the wave function of the ground
state are poor. Also, we included particular linear com-
binations of many-electron states representing a particu-
lar phasing (constant phase) of particle-hole excitations
both close to the Fermi energy and far away from it in
energy. The importance of the other linear combinations
of excited states in the variational ground state particu-
larly for small hybridization is emphasized by the poor
showing of these "fixed phase" excited states that are
mixed into the system. We expect that they can be im-
proved by increasing the size of the truncated matrix,
thus taking account of more basis states. Since the for-
malism introduced here does not depend on the dimen-
sionality explicitly, it can be easily applied to multidimen-
sional models. The calculation of the ground-state ener-

gy of the two-dimensional Anderson lattice model using
this variational scheme is presented elsewhere. '
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APPENDIX

FICx. 4. The square of the f-orbital single-site magnetization
vs U for a 16-site lattice.

With un-normalized basis vectors ~P, ) through ~P»)
defined in Sec. II, the nonzero elements of the upper half
of the Hamiltonian matrix are
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The normalization factors are

l(t), I'= a', ,

l2 —e2 ly l2 —+2

The variables used above are defined as
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where X is the number of sites, and Eo the ground-state
energy of the half-filled conduction band.
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