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Wannier functions for the Kronig-penney model
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Explicit Wannier functions for the Kronig-Penney model are determined. In the discussion we em-
phasize phase choices connected with maximally localized Wannier functions, here denoted Wannier-
Kohn functions, and the tight-binding limit of Wannier-Kohn functions that do not approach atomic
bound states.

I. INTRODUCTION

The eigenfunctions of the Schrodinger equation with a
periodic potential are the Bloch wave functions g„„(z),
characterized by the wave number k and the band in-
dex. n. An equivalent set of functions are the Wan-
nier functionsi W„(r —R), defined in terms of the Bloch
functions as

Wn(r —R) = dk Q„„(r)e
1

The integration goes over the first Brillouin zone (BZ),
of volume v(BZ). There exists, for each band n, a set of
Wannier functions, all identical except for simple trans-
lations through lattice vectors B..

The Wannier functions are not eigenfunctions of the
Hamiltonian, but are nevertheless useful for many the-
oretical discussions. The usefulness stems from the fact
that the Wannier functions W„(r —R,), in contradistinc-
tion to the Bloch functions, are to some degree localized
near the atomic sites R.

The Wannier functions centered around diA'erent lat-
tice points form a complete set, which is orthogonal in
the sense that

II. WANNIER FUNCTIONS

The Hamiltonian for the one-dimensional Kronig-
Penney model with lattice constant a and b wells at

z, = (v —2)a, v = integer, (4)

can be parametrized as follows:

(ii) It is known (although often not mentioned2s)
that Eq. (I) does not provide a unique definition of the
Wannier functions, since a Bloch function is merely de-
termined up to an arbitrary (position-independent, but
wave-vector-dependent) phase. How much does the form
of a Wannier function depend upon the phase choice?
Although all types of Wannier functions yield a com-
plete set, their form matters in all computational schemes
where strongly localized Wannier functions are assumed.

Explicit Wannier functions are seldom seen, and we
thought it worthwhile to evaluate them for an exactly
solvable model, viz. , the Kronig-Penney model. 4 In ad-
dition, we find this setting useful for discussing the more
general questions listed above.

dr W„*(r —R)W„(r —R') = 6„„bRn . (2) The Schrodinger equation has Bloch functions

The normalization in (2) presupposes that the Bloch
functions are normalized in a unit cell of the lattice:

(z) = e'" u„i(z) (6)

In spite of the apparently simple definition (I), the
properties of the Wannier functions are not obvious, and
there are, we believe, questions that deserve to be eluci-
dated. Some of these questions are the following.

(i) In the tight-binding limit the Wannier function
W„(r) of the nth band is supposed to approach the nth
atomic orbital g„(r), ordered by the energy value. What
happens to the higher Wannier functions in this limit
when merely one (say) atomic orbital exists, as the situ-
ation is for a one-dimensional periodic lattice of b func-
tions'?

as solutions. Between the 6 wells the wave function sat-
isfies the free-particle Schrodinger equation, and the gen-
eral solution is easily written down. For positive energies,

E= ~Oq

2&la

we have in the central interval —a/2 ( z ( a/2,

g~ z~(z) = AI cos(ka/2) sin(q/2) cos(qz/a)
+i sin(ka/2) cos(q/2) sin(qz/a)].

Here k and q are connected via the "dispersion relation"
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cos(ka) = cos q —nq sinsin g.

This relation, with k real, determ
h be ottom of the nth band cor

q = nx (n = 1 2 3 ...)
an corresponds to

edge corresponds to k = f
or n even the lower band

o = ) foi A odd) to k= 7f'

The lowest (zeroth) b d
which corresponds to

o an can have ne ag tive energies,

bo . h =—-h'' ' yqs o purely imaginar in

fun't' "' ""l "d b th po g yp

(o) z0& (z) = A[cos(ka/2) sinh(q/2) cosh(qz/a
+x srn(ka/2) cosh(q/2) sinh(qz/a)j. (]O)

In both cases the och functions in another inte
z & z +~ are given b

no er interval z„&

q()( )
& o (o) z —va).

The mo ulus of the constant A in E s.
determined by the normaliza

IAI '= "" q q -""q(""q q'"q) f Eor )0,
q nq sinh q (sinh q —q cosh q) for E ( 0 (12)

2.0— The Wannier unctions are given bn y

wo(~) W (z) = 2' dk @„y.(z).
m. i'a
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Insertion of the Bloch functions (11), with

A= fA/, (14)

yields a straightforward numerical integration problem.
Figure 1 shows the result for the two lowest Wannier

functions for shallow b wells, and Fig. 2 for deep wells.
These Vfannier functions are real and symmetric, as can
easily be shown from the explicit formula.

The shallow-well results in Fig. 1 are easily interpreted
as approximations to the free parti-cle Wannier functions
(with the same choice of phase)

The corresponding Wannier function is

~/a
W„(z) = ) dk e'" " g„(z —z, )2/0 ~/g

= ) c,y„(z —z„)

with

2 (—1)"
Ã2v+ 1

(20)

(21)

2 a
W„(z) = sin(z. z/2a) cos[(n+ -', )xz/aj.

Multiplying (19) with the phase factor e '" /~, as in (18),
yields instead the c = b o, i.e. ,

W (z) = y„(z —zp). (22)
The deep-mell results in Fig. 2 are puzzling, however.

One expects in particular the lowest Wannier function
Wp(z) to be close to the one-well orbital

We see that the tight-binding result (20) and (21), in
agreement with the observation (17) based on Fig. 1, is

(16)

in this tight-binding limit. Instead, we observe a series
of peaks of similar form but with decreasing amplitudes.
Quantitatively the relative amplitudes c„ofthese satel-
lites are falling oA'roughly inversely proportional to their
distance from the origin. That is, the relative amplitudes
on the right-hand side of the origin behave as

1 1 11 3) 5) 7)

We will show below that this phenomenon, including the
quantitative result (17), is not peculiar for the Kronig-
Penney model, but occurs more generally. I et us, how-
ever, first see how Wannier functions can be constructed
such that Wp(z) does approach the "atomic" orbital
gp(z) in the tight-binding limit.

2.0—

1.0—

0.0

III. WANNIER-KOHN FUNCTIONS —1.0

For a given solid there exist many sets of Wannier func-
tions, since one is free to choose k-dependent phase fac-
tors in the normalization of the Bloch functions. As a
simple example, choosing A in Eqs. (8) and (10) not real,
but as

2.0—

e-i@a/2
(A(

1.0—

has a dramatic efFect on the Wannier functions (see
Figs. 3 and 4). Rom, the Wannier function Wp(z) in
Fig. 4 seems to approach the "atomic" eigenfunction (16)
in the tight-binding limit.

The difference between the two alternatives is easily il-
lustrated by means of the lowest-order tight-binding form
of the Bloch function (nonoverlapping atomic orbitals,
normalized to unity). A natural choice of a tight-binding
Bloch function, with atomic sites at z„= (v+ z)a, is

0.0

—1.0
—5

g„g(z) = ) e'" " y„(z —z„). (19) FIG. 3. The same as Fig. 1, but with the phase choice
(»).
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not associated with the Kronig- Penney model. It is gen-
eral for one-dimensional potentials, and associated with
a phase choice in the normalization. Note that

+OO

Cv Cv+ p —~@0~ (23)

as required by the orthonormality condition (2).
Our findings exemplify the fundamental investigations

by Kohn on one-dimensional periodic potentials sym-
metric with respect to the origin. Kohn proves that for
each band there exists a unique real Wannier function
W„(z) that falls off exponentially when z —+ koo. Fur-
thermore, W„(z) is symmetric or antisymmetric with re-
spect to either z = 0 or z = a/2. This unique Wannier
function in the set of all Wannier functions for the sys-
tem we denote the Wannier-E'ohn function for the band
in question.

The recipe for constructing the Wannier-Kohn func-
tions is simple. First of all, Bloch functions @„y(z) an-

alytic in the wave vector k should be used. Second, one
should consider the values of g„p(0) and g„g (0). There
are three alternatives. (i) If g„p(0) and g„~ (0) both
are nonzero, the phase of the Bloch function must be
chosen such that g„y(0) is real. (ii) If both g p(0) and

~ (0) vanish, the phase must be chosen such that
g„q(0) is purely imaginary. (iii) If merely one of g„p(0)
and g„~,(0) vanishes, one can shift the origin in z space
by one-half lattice constant. With respect to the new ori-
gin one will then be back to case (i) or (ii).

When applying this phase prescription to the Kronig-
Penney Bloch functions (8) and (10) one must also take
into account the possibility that the normalization con-
stant ~A( vanishes at the band edges. In fact, (A(
vanishes at all lower band edges (where q is a multiple of
n), except in the lowest band.

In the zeroth band g„p(0) g 0, but g„~ (0) = 0, i.e.,
case (iii). By a shift of the origin, z ~ z+ 2a, we obtain
for positive energies

@~&~ ——e' ~ [sin q cos(qz/a)(p) A ika z

3.0— —(e ' —cos q) sin(qz/a)]. (24)

2.0—

1.0—

0.0

Now g„p(0) and Q„~ (0) both are nonzero, and the
choice (18), A = e '~~~z~A(, makes @„y(0) real and
g„y(z) analytic in k. The same holds for E ( 0. Hence
this choice makes the Bloch function the proper input to
construct the Wannier-Kohn function Wp(z), as expected
from Fig. 4.

For the higher bands it is necessary to distinguish be-
tween odd and even band index n. Since from Eq. (8)

g„& (0) = A cos(ka/2) sin(q/2),

—1.0

2.0—

1.0—

we see that for n odd (when the upper band edge cor-
responds to k = 0) both @„p(0) and g„~ (0) will be
nonzero. (To show the latter involves evaluating a 0/0 ex-
pression. ) In this case we consequently take A = ~A ~. The
corresponding Wannier-Kohn functions are easily seen to
be real and symmetric in z.

For n even we find that both g„p(0) and @„~ (0)
vanish. The recipe requires A to be purely imaginary,
and it is tempting to take A = i~A~. This is incorrect,
however, since the resulting Bloch function will then not
be analytic in k at k = 0. (The basic reason is that
[A( oc 1/~k) near k = 0.) The correct choice in the first
Brillouin zone is

A = —i)A( sgn(k), (26)

—1.0

FIG. 4. The same as Fig. 2, but vvith the phase choice
(is).

with an arbitrary overall sign. Now A is an odd function
of k, and one sees readily from (8) that these Wannier-
Kohn functions will be real and antisymmetric in z.

After these preliminaries, which we hope are useful il-
lustrations of the subtleties of the Wannier functions, we
proceed to present in Figs. 5 and 6 the Wannier-Kohn
functions for the four lowest bands.
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IV. TICHT-BINDINC SITUATIONS 1.0—

In the extreme tightbinding limit o, —+ oo the
Wannier-Kohn function Wp(z) and the atomic wave func-
tion yp(z) coincide, as discussed above. Their overlap,

t =
( & Wpfyp ) f, (27)

may be taken as a natural measure of "tightness. " The
tightness parameter t is shown in Fig. 7 as a function of
the potential strength o, .

All higher bands become exceedingly narrow and con-
centrated at the values q = nm for positive energies, and
it is therefore straightforward to evaluate the VVannier-
Kohn functions in this limit.

For odd n we obtain

0.8—

0.2—

0.0

W„(z) (2/a)~~~ c os(nx z/a) for ]z( & a/2,
0 otherwise FIG. 7. The tightness parameter t (27) shown as a func-

tion of the potential strength u.

and for even n

(2/a)'I~ sin(nxz/a) for (z( & a/2,
0 otherwise.

This is in qualitative agreement with Fig. 6.
For our model, in which the atomic potential carries

merely one bound state, one sees that only one Wannier-
Kohn function becomes extremely localized in the tight-
binding limit, the others fill one lattice cell in this limit.
This is no doubt a general feature.

It is not possible to draw this conclusion from the stan-
dard construction (19) of the lowest-order. tight-binding
Bloch function. This is not paradoxical, since atomic
eigenfunctions in the continuous spectrum are not in-
cluded in this construction.

Bloch functions can be composed into identical Wan-
nier functions located at different lattice sites:

) ~( R) akim

K
(30)

This is the inversion of Eq. (1). It is interesting to note
that in the tight-binding limit the Bloch functions can
be built up by simply appending nonoverlapping pieces of
Wannier-Kohn functions, multiplied with the appropriate
exponential factor. (This is not so for other Wannier
functions. )

V. CO~CI.UDIXG REM~a.KS

Above we have illustrated, in the Kronig-Penney
model, how diA'erent choices of phase factors for Bloch
functions lead to Wannier functions with different prop-
erties. For the maximally localized Wannier functions,
here denoted Wannier-Kohn functions, several interest-
ing properties emerge.

I et us use the abbreviation "bound-state Wannier-
Kohn function" for a Wannier-Kohn function correspond-
ing to one of the np lowest bands, where np is the number
of atomic orbitals for an isolated well. (For the Kronig-
Penney model np ——1.) We have then found the following
proper ties.

(i) The bound-state Wannier-Kohn function has an
atomic well as symmetry center, the other Wannier-Kohn
functions are symmetric or antisymmetric with respect to
midpoints between two neighboring wells.

(ii) In the tight-binding limit (strong-potential limit)
the bound-state Wannier-Kohn functions approach ex-
tremely localized atomic bound-state wave functions,
while the other Wannier-Kohn functions approach a
nonzero limit in one unit cell and are zero outside.

These properties are probably general for one-
dimensional periodic potentials.
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