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Total-energy band calculations based on the augmented-spherical-wave method are used to determine
the binding curves of the elements and of selected compounds in the Ag-Cu system. The calculated total
energies, together with vibrational free energies determined by a Debye-Griineisen analysis of the bind-
ing curves and configurational entropies determined by the cluster variation method, are used to calcu-
late the solid-state portion of the Ag-Cu phase diagram. The solubilities at both ends of the phase dia-
gram, calculated with no adjustable parameters, are in excellent agreement with experiment. For the
Ag-Cu system, it is shown that local volume relaxation effects are very important and that significant im-
provement in the calculated phase diagram is obtained by including vibrational free energies.

I. INTRODUCTION

The development of local-density-functional theory!
has led to total-energy band calculations as a function of
volume, which, using only atomic numbers, correctly
reproduce 0-K ground-state properties of the elements?
and of ordered compounds. More recently, a Debye-
Griineisen analysis® of calculated binding energies has
yielded theoretical bulk moduli Debye temperatures, and
Griineisen constants that lead to free energies and to
theoretical thermal properties that, for simple elemental
systems, are in reasonable agreement with experiment.
Furthermore, in the past several years, there has been
considerable interest in combining these total-energy cal-
culations with configurational statistical mechanics in or-
der to obtain temperature-composition phase diagrams of
alloys. Such computations require, of course, a tractable
representation for both the configurational energy and
entropy.

The cluster variation method (CVM) proposed by Ki-
kuchi* provides an elegant and relatively simple solution
to the computation of configurational entropy. This
method has been successfully used, for example, to inves-
tigate alloy phase equilibrium for complex Hamiltonians,
which include pair and many-body interactions.’~® The
CVM, which was originally proposed in the context of
the variational principle of statistical mechanics, can also
be shown to follow from a truncated cluster expansion of
the configurational entropy.”!® Implementation of the
CVM requires the description of atomic configurations of
clusters of lattice sites, which can be conveniently accom-
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plished using multisite correlation functions.!®!! More
generally, it has been shown by Sanchez, Ducastelle, and
Gratias'® that any function of configuration can be for-
mulated in terms of multisite characteristic functions
which form an orthonormal basis in configuration space.
Although this cluster expansion can be applied to any
function that depends upon the configuration of the sys-
tem, of which the energy is only a particular case, its use-
fulness rests heavily on the rate of convergence in terms
of the size and complexity of the clusters.

The cluster expansion of the expectation value of the
configurational energy results in the commonly used bi-
linear expression in terms of effective multisite interac-
tions and correlation functions, the latter being expecta-
tion values of the orthogonal characteristic functions.!® !}
Connolly and Williams'? proposed to use ab initio total-
energy calculations of ordered compounds together with
the a priori knowledge of the multisite correlation func-
tions in these compounds in order to obtain a set of
effective pair and multisite chemical interactions that
could be used to describe the energy of disordered alloys.
The attractiveness of the proposal of Connolly and
Williams rests on the fact that the treatment of the
configurational thermodynamics of partially ordered al-
loys, i.e., alloys displaying both short- and/or long-range
order, becomes essentially isomorphic to a generalized Is-
ing model where the chemical interactions are of relative-
ly short range. Although these interactions will in gen-
eral include many-body terms, as well as temperature and
volume dependence, they can be easily treated using the
CVM to calculate configurational free energies and, from
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them, the solid-state portion of phase diagrams.

Among the first applications of the Connolly-Williams
method were studies of temperature-composition phase
diagrams of noble-metal alloys'* and semiconductor al-
loys.!* Subsequently, numerous other cases have been in-
vestigated with relatively good results.!*>~2! In general,
these calculations show that the cluster expansion of the
configurational energy converges relatively fast. Thus,
the Connolly-Williams approach is seen to offer a practi-
cal method for the determination of the chemical interac-
tions in a disordered alloy system from total-energy band
calculations of a relatively small set of ordered com-
pounds.

The most serious shortcomings of the first-principles
phase-diagram calculations carried out to date!3> % are
the inadequate treatment of local volume and elastic re-
laxation and the neglect of vibrational entropies. The
treatment of local relaxations presents such a formidable
task that no attempts have been made to include this
effect in the application of the Connolly-Williams
method. The contributions due to local volume relaxa-
tions as distinguished from global volume relaxations
which are routinely and easily incorporated,’>™2! and of
vibrational entropies are expected to be more tractable.
In particular, local volume relaxations should play an im-
portant role for systems where there is a significant
difference in the molar volumes of the constituents ele-
ments, such as the Ag-Cu alloys considered here. This
point is well illustrated, for example, by the large
difference between the calculated Ag-Cu phase diagram
of Mohri et al.,!® and that of Wei et al.?* The former
uses a global volume relaxation scheme and shows large
discrepancies, while the latter uses a total volume relaxa-
tion scheme and gets much better agreement with experi-
ment.

Although local volume relaxations and vibrational con-
tributions to the free energy are generally acknowledged
to be important, most theoretical determinations of phase
diagrams have either neglected them,'3~!® or have includ-
ed them by using empirical methods and parameters
determined experimentally.'>?° Recently, a local volume
relaxation scheme that uses only calculated total energies
has been proposed and applied to the Ru-Nb system.?!

In the present work, we carry out a first-principles cal-
culation of the solid-state portion of the Ag-Cu phase di-
agram, which includes vibrational free energies in the
Debye-Griineisen approximation, and which allows for
the relaxation of local volumes. Thus, all quantities need-
ed to determine the total free energy are obtained from
first principles with no adjustable parameters. The pro-
posed first-principles theory of alloy phase equilibrium
yields a Ag-Cu phase diagram that exhibits solubility lim-
its in good agreement with experiment. In particular, we
point to the significant discrepancies between our results
and previous first-principles theories that neglect both lo-
cal volume relaxations and vibrational free energies.

II. CLUSTER EXPANSION
Here we briefly summarize the main aspects of the

cluster expansion of configurational properties in binary
alloys. A more general treatment of the theory, applic-
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able to multicomponent systems, is given in Ref. 10. As
mentioned, the cluster expansion provides the basis for
the description of disordered alloys from the knowledge
of the energy (binding curves) of ordered compounds.

In a binary crystal with N sites, there are 2" different
atomic configurations that may be formally described by
assigning a spin operator o;, taking values +1 and —1
for each of the atomic species, at each crystal site i. A
configuration in the crystal is then fully specified by the
N-dimensional vector 0 ={0,0,,...,0y]}.

Consider a single site i. The set of two polynomials in
the discrete variable o;, namely the polynomial of order
0, ¢o(0;)=1, and the polynomial of order 1, ¢,(c,)=0;,
form a complete and orthonormal set, with the inner
product between two functions of configuration f(o;)
and g(o;) in the one-dimensional discrete space spanned
by o; defined as

o==%1
The set of orthonormal characteristic functions in the
N-dimensional discrete space spanned by the vector o is
obtained from the direct product of the ¢y(o;),é,(0;),
where i/ spans all crystal sites (i=1,2,...,N). For a
binary system, the resulting characteristic functions
@ (0) are given by products of the spin operator o; over

the sites of all possible clusters a={i,,i,,...,i,} in the
crystal by !0
Q 0)=J]0,=0,40, .0, )

i€a

where n labels the set of inequivalent clusters in the crys-
tal. Accordingly, there is a one-to-one correspondence
between the set of orthogonal functions ®,(o) and the
set of all clusters a in the crystal, including the empty
cluster for which ®y(o)=1.

Since the characteristic functions ® (o) form a com-
plete and orthonormal set, '

2—1N S @ (0)Pya)=5,4, 3)

any function of configuration, F(o ), may be written as

Flo)=3 F,®,0), @)

where the sum extends over all clusters in the crystal, in-
cluding the empty cluster, and where F,, is given by

Fa=(F(a)-<I>a(cr))=2—1NZF(O)d)a(a). (5)

Thus, the terms F, are the projections of F(o') on the or-
thogonal cluster basis.

It should be noted that the space-group symmetry of
the crystal requires that the cluster projections F, of the
function F(o ) be the same for all clusters o which are re-
lated by a symmetry operation (translation or point
group). Accordingly, the cluster expansion in Eq. (4) be-
comes

N
Flo)=3 F,0,(c) . (6)
n=0
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In the case of a disordered lattice, these clusters are only
distinguished by their number of points and their
geometry. In Eq. (6), the ©, (o) are given by

O,(o0)= 3 d,l0). )

a€n

In view of the orthogonality of the ® (o), we also have

—21; 36,(0)0,,(6)=2,N5,,, , (8)

where z, N is the total number of n-type clusters in the
crystal.

The most common applications of Eq. (6) are for the
cluster expansion of expectation values of functions of
configurations, such as the average of the configurational
energy in the Connolly-Williams method. With the nota-
tion £,=(®, (o)) for the expectation value of the
characteristic functions, where a is any cluster belonging
to the equivalent set n, we obtain

N
F=(F(o))=N 3 z,F,E, . 9)

n=0

As mentioned, the usefulness of this cluster expansion
rests on the fast convergence of the projections F,. In
Sec. IV, the cluster expansion given by Eq. (9) is used to
obtain the renormalized contributions to the
configurational energy arising from chemical interac-
tions, local volume relaxations, and vibrational modes.

III. BAND CALCULATIONS

The experimental Ag-Cu phase diagram displays a
wide miscibility gap separating Ag- and Cu-rich fcc solid
solutions with, respectively, maximum solubilities of ap-
proximately 14% Cu and 5% Ag occurring at a eutectic
temperature of 1052 K.2 Therefore, only fcc structures
and fcc-based compounds need to be considered in our
calculations. In particular, the band-structure calcula-
tions are carried out for the fcc end members and for the
set of ordered compounds, which include AgCu in the
L1, structure and Ag;Cu and AgCus; in the L1, struc-
ture. These five systems are sufficient to determine the
chemical interaction parameters for all clusters up to the
regular nearest-neighbor tetrahedron cluster in the fcc
lattice.

Our electronic-structure calculations utilize the
augmented-spherical-wave (ASW) method,?* with ex-
change and correlation treated in the local-density ap-
proximation. Total-energy calculations for the pure ele-
ments and for each compound are performed for approxi-
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mately 30 values of the volume per atom, (, centered
around the equilibrium volume, 2, using 570 k points in
the irreducible wedge of the Brillouin zone. Energy
minimization is used to find both , and the ratio of
atomic radii 75, /7y

As outlined by Moruzzi, Janak, and Schwarz,> the re-
sulting total-energy curves are fit to a Morse function of
the form

—AMr—r, —2Mr—ry)

E(r)=A—2Ce "+ Ce ) (10)

where E(r) is the calculated electronic total energy of the
rigid lattice, and A4, C, A, and r are fitting parameters.
Here, the independent parameter r is the Wigner-Seitz
atomic radius related to the volume per atom by the rela-
tion Q=(47/3)r3. For the compounds, we use an
effective Wigner-Seitz radius, which is a weighted average
of the constituent atomic radii. It is easily verified that r
is the Wigner-Seitz radius corresponding to Q, and that
C is the cohesive energy for the rigid lattice.

Table I shows the result of a least-squares fit to the
Morse function of Eq. (10) for the systems considered.
Also listed for each system are the theoretical bulk
modulus B, Debye temperature ®,, and Griineisen con-
stant y, determined within the Debye-Griineisen approxi-
mation following the method of Ref. 3. With increasing
Cu concentration, we note a relatively smooth decrease in
7o, A, and ¥, and an increase in C, B, and ®p,,.

The calculated binding curves for the rigid lattice, to-
gether with the Debye temperatures and the Griineisen
constants listed in Table I, permit the determination of
the vibrational free energy as a function of the Wigner-
Seitz radius (or the volume per atom) and temperature for
chemically ordered compounds. In the Debye-Griineisen
approximation, the free energy F(r,T) is given by?’

F(r,T)=%kB®D +E(r)

-0,/T

—kyT[D(®,/T)—31In(1—e ), an

where the kjp is Boltzmann’s constant and D is the Debye
function. In the Griineisen approximation, the volume
dependence of the Debye temperature is given by

o 3
®D=®D0 T > (12)

where ®p, is the Debye temperature corresponding to
000

For the ordered compounds, the free-energy given by
Eq. (11) represents the volume and temperature-

TABLE I. Morse parameters for Ag (fcc), Ag;Cu (L1,), AgCu (L1,), AgCu; (L 1,), and Cu (fcc) structures.

System ro (a.u.) A (au.™h) C (Ry) A4 Ry) B (kbar) 0, (K) v
Ag (fcc) 3.0550 1.5470 0.1772 —10389.795 1083.3 203.6 2.363
Ag;Cu 2.9702 1.5490 0.1880 —8611.226 1185.2 251.1 2.300
AgCu 2.8769 1.5671 0.1963 —6832.662 1307.6 275.8 2.254
AgCu; 2.7764 1.5137 0.2260 —5054.081 1455.4 306.3 2.101
Cu (fce) 2.6658 1.5099 0.2481 —3275.512 1655.7 347.0 2.023
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dependent binding energy in the absence of

configurational disorder.

IV. THE EFFECTIVE INTERACTIONS

As pointed out by Connolly and Williams, the cluster
expansion of Eq. (9), applied to the energy of a set of or-
dered compounds for which the correlation functions are
known, can be used to obtain effective chemical interac-
tions. Here we propose to apply the same procedure us-
ing the vibrational free energies of the ordered com-
pounds calculated in the Debye-Griineisen approxima-
tion. The resulting temperature and volume-dependent
effective interactions are then used in a CVM treatment
of the configurational entropy in order to include contri-
butions due to configurational disorder into the total free
energy. :

In practice, the Connolly-Williams method depends
upon the convergence of the cluster expansion for rela-
tively small clusters and the availability of a set of total
energies for which the required inversion of Eq. (9) is
defined. At present, selection criteria for clusters giving a
converged cluster expansion are not available.?® Thus the
maximum interaction range is assumed a priori, much as
is done with the correlation range in the CVM. In some
instances, attempts to ascertain the accuracy of the ap-
proximation have been made by comparing the total en-
ergy of compounds not included in the inversion pro-
cedure with the values obtained using the assumed cluster
expansion.!’

For the fcc or bee lattices in the tetrahedron approxi-
mation, the inversion of Eq. (9) is straightforward, requir-
ing the calculation of total energies for only five high-
symmetry structures. For larger cluster approximations,
this inversion is not immediately apparent and ad hoc ap-
proaches, such as least-squares fitting of the calculated
total energies, have been proposed.!® It can be shown,
however, that within a given maximum cluster approxi-
mation, there is always a natural set of relevant struc-
tures, given by the vertices of a convex configurational
polyhedron, for which the inversion of Eq. (9) is
unique.?’

Here, we restrict our calculations to the case of an fcc
lattice in which the maximum range of interaction is
defined by the nearest-neighbor tetrahedron cluster. The
correlation functions &, ,, where k labels the five relevant
structures and n labels the subclusters of the tetrahedron,
i.e., the empty (n =0), point (n =1), pair (n =2), triangle
(n=3), and tetrahedron (n=4) clusters, are listed in
Table II. The cluster expansion of the vibrational free
energy (per atom) for these five ordered structures,
F,(r,T), gives

4
Fo(r,T)=3 2,V (r,T )& p » (13)
n=0

where V, (r,T) are the volume-
dependent effective interactions.

In the tetrahedron approximation, Eq. (13) can be in-
verted using general orthogonality properties of the & ,.
At a fixed Wigner-Seitz radius and temperature, we have

and temperature-
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TABLE II. Configurational parameters for Ag (fcc), Ag;Cu
(L1,), AgCu (L1,), AgCu; (L 1,), and Cu (fcc) structures.

System w0 €10 Sk &2 Ex3 4
Ag (fcc) 1 1 1 1 1 1
Ag;Cu 4 1 1 0 -3 -1
AgCu 6 1 0 -1 0 1
AgCu, 4 1 -1 0 1 -1
Cu (fcc) 1 1 —1 1 -1 1
N, 1 1 6 4 1
N, 4
V,,(r,T)= pl 2 wké‘k’an(r,T) ’ (14)
2 2y k=0

where N, is the number of n-type clusters in a tetrahed-
ron and ), is the number of equivalent configurations for
the tetrahedron cluster associated with structure k (see
Table 1I).

Implementation of the CVM with Egs. (13) and (14), in
which the interactions are obtained using the same
volume for all five compounds, yields a total free-energy
functional that depends on the configurational variables
&, and volume (or r). Volume relaxation is then incor-
porated globally by minimizing this functional with
respect to 7, in addition to the usual minimization with
respect to the correlation functions £,. This global
volume relaxation is based on the assumption that the
effective local volumes occupied by tetrahedron clusters
in the disordered alloy are independent of their
configuration. Although this assumption has been ap-
plied to most of the first-principles calculations done to
date,'3~% it would appear physically implausible in cases
where there is a significant difference between the atomic
volumes of the constituents elements.

In order to account for the effect of local volume relax-
ations, Becker, Sanchez, and Tien?! proposed to obtain
the cluster interactions from the total energies F;(ry,T)
of each compound calculated at different Wigner-Seitz ra-
dii r,. The Wigner-Seitz radius r, corresponds to the
equivalent volume per atom occupied by the tetrahedron
cluster characteristic of each compound k in the disor-
dered alloy. Equation (14) becomes

N, 4
4 2 a)kgk,an(rk)T) s (15)
Zy k=0

V,(r,T)=

where r stands for the set of Wigner-Seitz radii.

The set r may be chosen, for example, by minimization
of the total free energy with respect to each of the ry,
which may be easily shown to be equivalent to the
minimization of the vibrational free energy for each of
the five compounds independently. Thus, in this scheme,
the local volume of each tetrahedron cluster in the alloy
is allowed to relax fully to the value found in the ordered
state. An alternative approach intermediate to global
volume relaxation and total relaxation of local volumes,
both of which appear physically implausible, is to define
atomic volumes (1,, and Q, for each component in the
alloy. Adopting a microscopic version of Vegard’s law,
the Wigner-Seitz radius r, for each ordered structure k,
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or equivalently the volume per atom €, is given by
Qk=(1—ck)QAg+ckQCu N (16)

where ¢, is the concentration of Cu in the ordered com-
pound k. The local atomic volumes are then obtained
variationally by minimization of the total free energy
with respect to both Q,, and Q¢,. This approach, which
results in partial relaxation of the local volumes in the al-
loy, has been shown to accurately reproduce the order-
disorder phase diagram in the Ru-Nb system.?!

V. CONFIGURATIONAL ENTROPY

The CVM may be formulated in terms of a cluster ex-
pansion of the configuration entropy.”!® For a given
probability distribution X(o), the configurational entro-
py is given exactly by

S=—ky 3 X(0)nX(0), (17)

where the sum is carried over all 2% configurations in the
crystal.

Consider an infinite series of clusters with entropies
defined by

Se=—kp ¥ X, (0,)nX, (0,), (18)

a

where the cluster probability distribution X (o ,) is given
by the sum of the X(o) over all configurational variables
o; outside cluster a. This series of cluster entropies trivi-
ally converges to the exact configurational entropy as the
size of the cluster a increases to include all points in the
crystal. Using an exact Mobius transformation, we may
also write the cluster entropies S, in terms of a set of ir-
reducible cluster contributions, S, as!®

S,= 3 8,, (19)
BCa
where the sum runs over all the subclusters of a, includ-
ing a, and excludes the empty cluster.

The key approximation made in the CVM consists of
neglecting the irreducible entropy contributions § o for
clusters larger than a given maximum cluster. This clo-
sure condition allows us to express the total
configurational entropy S in terms of a finite sum of irre-
ducible contributions. Using the space-group symmetry
of the crystal, Eq. (19) for @— N becomes!®

m
S=NYS z,8, (20)

n=1

or, in terms of the cluster entropies

m
S=N '3 z,a,8S,

n=1

——Nky S z,a, S X,(0,)InX,(c,) , 1)

n=1 o,

where, as in Sec. II, n labels inequivalent clusters and m
labels the maximum cluster. The coefficients a,, obtained
by inverting Eq. (19), are given by!®
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S ag=1, (22)

BCa

where the equation is valid for each subcluster a of the
maximum cluster, and where the sum runs over all sub-
clusters S of the maximum clusters that contain or equal
a. In the tetrahedron approximation of the fcc lattice,
the coefficients a, are equal to 5, —1, 0, and 1 for the
point, pair, triangle, and tetrahedron clusters, respective-
ly.

The total free-energy functional (per atom) of the
disordered alloy, including local volume relaxations and
vibrational modes, is given by

m
F,,= z, V(r,T)E,

n=0

+kgT § z,a, 3 X,(0,)nX,(0,) . (23)

n=1 o,

Here the effective interactions V(r,T) are given by Eq.
(15). Using the cluster expansion described in Sec. II, the
cluster probability distributions can be written in terms
of the multisite correlation functions:!®

4
1+ 3 ©,(0,)&, | » (24)

n=1

1
X,,((rn)=;;

where O, (0, ) are the characteristic functions defined as
sums of products of the configurational variables o; for
lattice sites i belonging to cluster n [see Egs. (2) and (7)].
Thus the free-energy functional given by Eq. (23) is a
function only of the set of Wigner-Seitz radii r and of the
correlation functions &, .

At a given temperature and concentration, the latter
being given by the point correlation £;, the equilibrium
free energy is obtained by minimizing the free-energy
functional with respect to the remaining correlation func-
tions, £, (with n equal to 2, 3, and 4), and the set of
Wigner-Seitz radii r. As mentioned in Sec. IV, the
minimization with respect to r may be carried out using
three different schemes: (i) constraining r; to be all
equal, which results in global volume relaxation without
allowing relaxation of local volumes; (ii) varying the 7,
independently, which results in total relaxation of local
volumes: and (iii) subjection of the r; to the external con-
straints, such as that of Eq. (16), which gives partial re-
laxation of the local volumes.

VI. RESULTS AND DISCUSSION

The effective cluster interactions as a function of Cu
concentration for a random alloy without the contribu-
tion of vibrational modes are shown in Fig. 1, where the
calculations are carried out with V, (/) and without V,(g)
local volume relaxations. The latter is referred to as glo-
bal volume relaxation and, for the local volume relaxa-
tions, we use the partial relaxation scheme outlined in
Sec. IV [Eq. (16)]. We point out that there are no appre-
ciable differences between total and partial volume relax-
ations due to the fact that in the present calculations for
the Ag-Cu system Vegard’s law is closely obeyed. Al-
though, as we shall see, the contributions due to short-
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FIG. 1. Calculated effective interactions for the nearest-
neighbor (2), triangle (3), and tetrahedron (4) cluster using glo-
bal volume relaxation V,(g) and local volume relaxation V,(1).

range order and to the vibrational modes are important
in the determination of the phase diagram, these contri-
butions are small on the scale of the binding energies.
Thus, Fig. 1 is representative of the behavior of the clus-
ter interactions at all temperatures of interest.

An important feature seen in Fig. 1 for both global and
local volume relaxations is that the absolute value of the
triangle and tetrahedron interactions are over an order of
magnitude smaller than the nearest-neighbor pair interac-
tions, which underscores the fast convergence of the clus-
ter expansion, Egs. (4) or (9), with cluster size. Further-
more, the overall behavior and magnitude of the three-
and four-body interactions is similar in both cases, al-
though the variations with concentration are more pro-
nounced in the case of global volume relaxation.

The most significant difference seen in Fig. 1 is with
regard to the nearest-neighbor pair interactions V,(g)
and V,(1). Aside from the fact that V,(g) varies appreci-
ably with concentration whereas ¥,(1) remains essential-
ly constant, both interactions have opposite sign. For the
global relaxation scheme, V,(g) is positive indicating a
short-range ordering tendency in the alloy. On the other
hand, V,(1) is negative, which is indicative of the segre-
gation behavior actually observed in Ag-Cu alloys.

The profound differences between global and local re-
laxations are also seen in Fig. 2, where we plot the energy
of formation of the random alloys together with the ener-
gy of the ordered compounds, the latter connected by
straight lines. We see that both relaxation schemes pre-
dict, in general agreement with experiment, a positive en-
ergy of mixing. Therefore, the random alloys are unsta-
ble with respect to phase separation into Ag- and Cu-rich
phases. In fact, despite the short-range ordering tenden-
cy of the globally relaxed system, the positive energy of
mixing is approximately twice that of the locally relaxed
alloys. More importantly, Fig. 2 also shows that, for glo-
bal volume relaxations, the random alloy is unstable with

CONCENTRATION OF Cu

FIG. 2. Energy of formation of a random alloy without vi-
brational modes calculated using global (dashed line) and local
(solid line) volume relaxations, compared to the energy of for-
mation of the ordered compounds Ag;Cu, AgCu, and AgCu; at
OK.

respect to ordering while, as one would expect in the Ag-
Cu system, the opposite is true for the local relaxation
scheme. Thus, although the general macroscopic thermo-
dynamic behavior, i.e., phase separation, predicted by
both relaxation schemes is the same, the microscopic pic-
tures are entirely different. In the locally relaxed system
there is a local tendency for clustering, whereas the glo-
bally relaxed system shows a local ordering tendency.
Although at present there is no experimental evidence
known to the authors to rule out either behavior, the pic-
ture presented by the global relaxation scheme would
seem unusual, if not implausible. In particular, this
scheme would predict the appearance of metastable or-
dered structures in supersaturated Ag-Cu solid solutions
obtained, for example, by rapidly quenching from the
liquid phase.

The phase diagram calculated using global volume re-
laxations, including short-range-order effects in the
tetrahedron approximation of the CVM, with and
without the contribution of the vibrational modes, is
shown in Fig. 3. Also shown in Fig. 3 is the experimental
Ag-Cu phase diagram?® displaying a eutectic temperature
at 1052 K. The high-temperature miscibility gap calcu-
lated without the contribution of the vibrational modes
extends to approximately 3400 K, well into the liquid
phase of the Ag-Cu system. These results are in agree-
ment with previous calculations by Mobhri et al.!® Al-
though the results are improved by including vibrational
modes in the total free energy, which lowers the miscibili-
ty gap at its maximum temperature by approximately 800
K, there is still a pronounced disagreement with the ex-
perimental phase diagram. We consider the discrepancy
between experiment and theory shown in Fig. 3 as further
evidence that the commonly used global relaxation
scheme!3 72 is essentially flawed. We point out that the
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FIG. 3. Calculated miscibility gap using global volume relax-
ation with (solid line) and without (dashed line) vibrational
modes. The experimental (Ref. 23) phase diagram (dash-dotted
lines) is shown for reference.

same conclusions are reached for order-disorder systems,
as shown in a recent calculation of the Ru-Nb phase dia-
gram that includes both local volume relaxations and vi-
brational modes.?!

The miscibility gaps calculated in the tetrahedron ap-
proximation of the CVM with and without vibrational
modes using the partial relaxation of local volumes de-
scribed in Sec. IV is shown in Fig. 4. As seen in the
figure, the contribution due to the vibrational modes
lowers the miscibility gap at its maximum temperature by
approximately 200 K. In particular, the theory yields
good overall agreement with the solubility limits ob-
served experimentally in the solid-state portion of the
Ag-Cu phase diagram. The agreement is excellent for the
Cu-rich side of the phase diagram and not as good on the
Ag-rich end. However, in view of the fact that the only
input to the calculations are the atomic numbers of the
constituent elements and, furthermore, that the model
used for the vibrational modes is somewhat crude, we
consider the agreement between theory and experiment
to be very satisfactory.

In conclusion, we have outlined a first-principles
theory of alloy phase equilibrium based on the cluster ex-
pansion of the vibrational free energies of
configurationally ordered compounds, the CVM, and the
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FIG. 4. Comparison between the experimental (dash-dotted
lines) phase diagram and the miscibility gap calculated using lo-
cal volume relaxations with (solid line) and without (dashed
line) vibrational modes.

implementation of a local volume relaxation scheme.
The theory applied to the Ag-Cu system yields results in
good agreement with experiment. The contribution of
the vibrational modes was shown to play an important
role, although, in general, local volume relaxations tend
to dominate the behavior of the configurational energy.
This is particularly true in the Ag-Cu system where there
is an appreciable difference in the volume of the constitu-
ent elements. The neglect of local volume relaxations
was shown to result in an unlikely microscopic picture
for Ag-Cu alloys where the system shows a much
stronger tendency to phase separate than experimentally
observed, yet, on a local scale, it shows a tendency for or-
dering. We have pointed out that this apparent flaw of
the local relaxation scheme, which manifests itself in
significant discrepancies between calculated and experi-
mental phase diagrams, is not intrinsic to segregating sys-
tems such as the Ag-Cu alloys studied here, but it is also
apparent in Ru-Nb alloys, which show order-disorder
transitions.?!
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