Erratum: Correlation length and free energy of the $S = \frac{1}{2} XYZ$ chain [Phys. Rev. B 43, 5788 (1991)]

Minoru Takahashi

In the left-hand column of page 5790, the second line from the bottom, " $v_l \rightarrow v_l + v$ in . . ." should read " $v_l \rightarrow v_l - v$ in" In Eq. (12),

$$\sum_{l=1}^{M} \dots \text{ should read } \prod_{l=1}^{M} \dots$$

On page 5791, the line below Eq. (19), "If we put $\alpha \equiv -\frac{1}{2}(\eta + v_1)$, ..., should read "If we put $\eta + v_1 = 2K - 2\alpha$, $2\alpha = \operatorname{sn}^{-1}[\operatorname{sn}(2\eta)a/c]$," In Eq. (37),

$$\left[\frac{J_z}{4\pi T(l-1)}\right]^2\dots$$
 should read $\left[\frac{J_z}{4\pi T(l-1)}\right]^2\dots$

© 1991 The American Physical Society

Erratum: Mass enhancement close to a Mott transition [Phys. Rev. B 43, 6292 (1991)]

Mucio A. Continentino

On the top of p. 6293, left-hand column, line 8, should read: "For this purpose we first notice that the ground-state-energy density can be expanded as $E_T = E_0 + a_1 Z (k_F^2/2m) + O(Z^2)$, where k_F is the Fermi momentum of the noninteracting system according to Luttinger's theorem^{8,9} and a_1 is a constant. We now consider a finite hypercubic system of finite size L and calculate the difference in ground-state-energy density ΔE_T between the situations where we impose periodic and antiperiodic boundary conditions.¹⁰" The scaling properties of the effective mass signaling the metal-insulator transition can be obtained more rigorously if we consider the charge stiffness D_c as defined by Shastry and Sutherland [Phys. Rev. Lett. 65, 243 (1990)]. In fact, D_c is proportional to the inverse of the conductivity effective mass and scales, as we obtained for Z, as $D_c \propto \xi^{-(d+z-2)}$ close to the transition.

© 1991 The American Physical Society