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Two-step transitions in noncollinear magnets
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A possibility for a two-step transition in noncollinear (twisted) magnets is studied by means of a
renormalization-group (RG) technique near two dimensions. The microscopically derived RG equa-
tions allow a single transition governed by O(4) exponents but also two-step transitions with prelimi-
nary SO(2) or S2 ordering, depending on the microscopical Hamiltonian. A possible experimental sig-
nature of partial ordering is discussed.

In the last few years there has been considerable in-
terest in the study of frustrated antiferromagnets where a
lattice type or a competition between couplings favors
noncollinear spin ordering, which completely breaks down
SO(3) symmetry. Well-known examples are helical mag-
nets (Ho, Dy, Tb) where the spins are aligned ferromag-
netically in a plane and form spirals in the perpendicular
direction, ' antiferromagnets on a stacked triangular lat-
tice [CsNiCli, CsMnBrs, VC12, VBrz (Ref. 4)] and on a
body-centered-tetragonal lattice [MnAu2, P-Mn02 (Ref.
5)] and antiferromagnets on a Kagome lattice [ He ad-
sorbed on graphite (Ref. 6), SrCr7 /3Ga4 s70]9].

There are two independent items which ensure an in-
terest in the study of noncollinear spin systems. First is an
apparent nonuniversality in the measured critical ex-
ponents for three-dimensional (3D) ordering transitions;
these diA'er from each other significantly in different sub-
stances. Moreover, perturbation expansion near four di-
mensions shows no stable fixed point in two orders in e.
Two possible explanations involve a prediction of a new
universality class associated with the relevance of a chiral-
ity operator and a proposal' that all the systems under
study are close to the tricritical point separating a first-
order transition from a continuous one governed by the
n =4 exponents.

On the other hand, a study of the magnetic properties
of doped antiferromagnets in the context of high-T, su-
perconductivity focused attention on 2D square-lattice
models with first-, second- (diagonao, and third-neighbor
antiferromagnetic couplings (J~-J2-Ji model). ' ' ' This
model is predicted to have a region of a disordered spin-
liquid state even for large S, since quantum corrections,
normally finite in 2D at zero temperature, diverge loga-
rithmically on a second-order transition line J] =2J2
+4J3 between the antiferromagnetic (tr, tr) phase and
noncommensurate phases [(Q,Q ) or (tr, g ) depending on
the ratio of second- and third-neighbor couplings]. ' A
conjecture made by Haldane, ' that in the 2D case a
paramagnetic phase with completely restored symmetry
due to quantum Auctuations exists only for 25=0 (mod
4) while for the other S at least some discrete symmetry
(presumably, a symmetry of translations by one site) must
be broken, initiated an intensive study of a disordered
state of this model with special attention to S= &. "
Apart fram a possible breakdown of a discrete symmetry,

Chandra, Coleman, and Larkin' argued that the growth
of noncommensurate SO(3) helical ordering may occur in
two steps via an intermediate partly ordered state which
resembles a P-type spin nematic' and has long-range or-
der in a twist correlation function but no site magnetiza-
tion in a plane perpendicular to the twist. More generally,
the idea is that the twist and site magnetization —the con-
stituents of the SO(3) order parameter —may decouple
from each other.

In the present paper, I study the possibility for a decou-
pling by means of the now familiar RG technique near
one dimension for zero-temperature transitions and near
two dimensions for T&0. The results of the e expansion
for microscopica/ Hamiltonians show that besides a single
transition governed by O(4) exponents, two-step transi-
tions with preliminary S2 or SO2 ordering are also possi-
ble. For definiteness, I will focus on a situation near two
dimensions.

The standard approach to the stacked triangular anti-
ferromagnet is based on a Landau-Ginzburg-Wilson
efI'ective action for noncollinear order parameter given
by two vectors, N] and @2. ' This action obviously has
SO(3) XSO(2) symmetry. In the ground state +& +2=0
and &] =&2 which implies that the system is invariant
under SO(2) rotations. This subgroup of SO(3) X SO(2)
is referred to as SO(2)d;.,s. The low-energy theory for
2+a expansion is then given by a nonlinear o model on
a coset space, [SO(3)&SO(2)l/SO(2)d;, s.

' Once the
order-parameter manifold is fixed, the action is expressed
in a unique way in terms of the SO(3) rotation matrix R,

5=
2 „d XTr[P(R 'V„R) ],

P =diag(g i,gi, g2) .

It is convenient to rewrite this action through three Euler
angles which parametrize SO(3) rotations

5 =g i (Vp p +cos OVp I/f )

+ p (g]+gz)[(Vpe)'+sin'e(Vga)']. (2)

As is clearly seen from (2), a nonlinear o model on a coset
space describes Auctuations of a unit vector [second term
in (2)] combined in a particular way dictated by the sym-
metry manifold [SO(3)&&SO(2)]/SO(2)d;, s with the Auc-
tuations of a scalar field p.
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One way to obtain RG equations near two dimensions,
which I will follow by the purposes clarified below, is to
bosonize Eq. (2) assuming the initial ordering with
8=n/2. This procedure reduces Eq. (2) to a system of
three initially Goldstone bosons with quadric anharmon-
isms, which come from the 8 (V„y) term in (2) (8
=ir/2 —8) and describe interactions between the constitu-
ents of the vector part of the order parameter, and cubic
anharmonisms, which are produced by W'„yV„y and de-
scribe the interactions between vector and scalar parts of
the order parameter. The coupling constants measuring
the strength of these fluctuations are

g2 gl g~
gA

= gB=(gi+g»' (gi+g2)' ' (3)

respectively. The RG equations are obtained in the same
manner as for bipartite antiferromagnets. ' Up to first or-
der in e they read

g8 gB+ 2gAgB &gB s gA gA gAgB &gA- (4)

FIG. 1. Renormalization-group flows governed by the RG
equations (4) and (5) [Figs. (a) and (b), respectively). In both

cases, RG equations produce a stable fixed point A, which de-

scribes a single second-order transition governed by O(4) ex-

ponents. However, a fixed point 8 at gq(f~) 0, which corre-

sponds to a decoupling between S2 and SO(2) Auctuations, is

unstable within a rotation matrix approach, but has a finite

basin of attraction for microscopically derived RG equations.

These equations were obtained by Friedan' and applied
to triangular antiferromagnets by Azaria, Delamotte, and
Jolicoeur. '

Apart from a trivial fixed point, g~ =g~ =0, Eqs. (4)
produce three nontrivial fixed points (Fig. I). One of
them, g~ =2e/3, gs = —e/3, though stable, is only sugges-
tive in a gradient approach since it corresponds to nega-
tive gi. The remaining two are g~ =0, gs =e (point A)
and gs =0, g~ =e (point 8). Point A is a stable fixed
point (i.e. , it has only one direction of instability). It cor-
responds to g~ =gi and describes an ordinary second-
order transition with O(4) critical exponents, when the
symmetry breaks simultaneously for both the vector and
scalar constituents of the SO(3) order parameter, which
become indistinguishable at g~ =g2. On the other hand,
point 8 corresponds to g~ =0, i.e., to a decoupling between
Si and SO(2) Auctuations. However, this fixed point is
unstable (both eigenfrequencies are equal to e) and has no
basin of attraction. It thus follows that a description of
noncollinear magnets in terms of a nonlinear a model on a
coset space violates any possibility for a two-step transi-
tion through a partly ordered phase.

In principle, Eq. (1) can be derived for any particular
Hamiltonian of a noncollinear magnet by expressing the
site spin as S(r) =R(r)So(r), where So(r) is a classical
spin configuration. This was done by Dombre and Read
for triangular antiferromagnets with nearest-neighbor
Heisenberg coupling J. For bare couplings, they obtained

gg = —gg = (4/43 ) (T/JS ) .

The same procedure applied to J~-J2-J3 model yields for
J2=0,

16J3
2J g2 ] 6J2 J2

(helical ordering is present when 4J3 &
~
J ~ I ).

Contrary to the results of a macroscopic approach,
Chandra and Coleman ' argued that, in a real quantum
spiral structure, Auctuations of the twist director and of
the on-site magnetization are quite diA'erent from each
other, and, in particular, the slow rotations of the twist
director are described not by conventional spin waves,
which were predicted to acquire a finite gap at the corre-
sponding momenta k = +' (Q, Q), but by longitudinal col-
lective modes. From the symmetry point of view, this sep-
aration of the Auctuations of the twist director and of on-

site magnetization, if it actually exists, would imply that
the Auctuating fields are defined on a manifold S2&& SO(2)
rather than on a coset space [SO(3)XSO(2)]/SO(2)d;, s.
In this case, there are no reasons to expect that O(4) fixed

point will survive as the only stable fixed point in 2+ 1. ex-
pansion.

To resolve this contradiction, I considered low-energy
Auctuations in both, triangular antiferromagnets and Ji-
J2-Ji model in the frameworks of a direct I/S expansion,
i.e., without appealing to any particular choice of the
order-parameter manifold. For simplicity, in case of the
J)-J2-J) model I restricted with the (Q, Q) helical order-
ing and set J2 =0. I did not find a breakdown of a spin-
wave description when quantum fluctuations are present
in the system, but microscopically derived RG equations
surprisingly turned out to be different from those obtained
in a o-model formalism.

The calculations were performed in a standard manner

by using a bosonization procedure based on a Dyson-
Maleev transformation. ' After diagonalization, the
quadratic in bosons part of the Hamiltonian obviously de-
scribes noninteracting transverse spin waves with the spec-
trum which has three Goldstone modes at k =0 and
k = ~ (Q, Q), where Q =2x/3 for triangular antifer-
romagnets and cosQ= —J~/4Ji for the J~-Ji model.
The k = ~ (Q, Q) zero modes result from fixing of a
direction of a twist while k =0 zero mode reflects a break-
down of a rotational symmetry in a plane perpendicular to
a twist. Higher-order terms in bosonic operators give rise
to the interactions between spin waves. For 2+m expan-
sion, one should restrict to the low-energy fluctuations
near soft modes and calculate logarithmical renormaliza-
tion of the vertex functions.

In principle, the theory contains both cubic and quartic
vertices. However, I have checked that cubic vertices do
not undergo logarithmical renormalization and thus play
no role in the perturbative expansion near two dimensions.
At the same time, the coupling constants measuring the
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strength of quartic interactions flow in passing to larger
scales.

There are two types of fourfold anharmonic terms. The
first, with a coupling f~, describes interactions between
soft modes near k = ~ (Q, Q) and near k =0 (i.e., be-
tween vector and scalar parts of the order parameter),
while the second, with a coupling f2, describes interac-
tions between soft modes at k = ~ (Q, Q), i.e., between
the constituents of the vector part of the order parame-
ter. This term is exactly the same as in the bosonized
version of Eq. (2). Moreover, the bare couplings f~ and
f2 exactly coincide with gtt and g~, correspondingly. The
calculation of f2 requires special care since if we restrict
with only fourfold terms, then the vertex function for

(Q, Q) interaction will not fit the Adler principle and
immediately will give rise to a gap 6—JS at + (Q, Q) in
the spin-wave spectra. ' However, this fourfold interac-
tion is strongly renormalized by the second-order pertur-
bation contribution from cubic terms with the momenta of
the intermediate boson around 2Q. 24 This contribution
recovers a correct structure of the fourfold vertex and,
hence, zero modes at + (Q, Q) in the spin-wave spec-
tra. Note that the cubic terms with one of the mo-
menta around 2Q represent contributions from the gap
modes and should not be confused with the cubic terms
describing the interactions between soft modes with k
near 0 and (Q, Q), which were proved to be unimportant
near two dimensions.

While the fluctuations within the vector part of the or-
der parameter are described by exactly the same bosonic
Hamiltonian in both the cr model and spin-wave ap-
proaches, the interactions between the vector and scalar
parts of the order parameter are produced by diAerent
anharmonic terms: by cubic anharmonisms in the o.-

model description and by quartic anharmonisins in the
nonlinear spin-wave theory. As a consequence, the RG
equations, obtained microscopically, diff'er from those of
Eqs. (4), and in the two-loop approximation read

f i =fi(I+fi)(fr+f2) efi, —

f2 =fBI+f~)+fBI+f2) .f2. —
In agreement with the results of a cr-model a roach,

Eqs. (5) also have a stable fixed point 2 with f&' =f2'
=e/2(1 —e/2), which represents an ordinary second-
order transition with O(4) exponents, when the symmetry
breaks simultaneously for both parts of the order parame-
ter. However, the remaining two nontrivial fixed points of
Eqs. (5) diA'er from those of Eqs. (4) and coincide with
each other within a one-loop approximation, so that one
has to go to a two-loop order to distinguish between them.
It then follows from (5) that the O(3) fixed point with
f~' =0, f2' =e(l —e) (point 8) is stable, i.e., has a
finite basin of attraction. The third fixed point (point C)
has f~' =e, f2' =e (1 —e) and is unstable. The re-
normalization-group flows in the (f~,f2) plane for small e
are presented in Fig. 1(b).

Formally, the bare couplings fi and f2, found in a
semiclassical approximation, are in a basin of attraction of
the O(4) fixed point A. In this sense, rotation matrix and
spin-wave approaches describe the same physics. Howev-

er, the ratio of the couplings is a nonuniversal quantity
and may change due to short-range quantum corrections
or in more complicated models. In view of this, it seems
useful to also discuss a more intriguing possibility allowed
by the RG equations of Eq. (5). Specifically, in dimen-
sions higher than two a finite positive attraction between
bosonic fields describing the fluctuations of vector and
scalar parts of the order parameter (i.e., finite positive
f~ ) is necessary to produce O(4) behavior. For small
enough fI, the RG equations drive the system to the oth-
er stable fixed point 8 with f~~' =0. In this case the Auc-
tuations of vector and scalar parts of the order-parameter
decouple at large scales and for fi) f2' only S2 fluctua-
tions acquire a gap, while SO(2) Auctuations remain gap-
less up to a much higher temperature of Berezinskii-
Kosterlitz- Thouless transition. In the intermediate
phase there is no long-range magnetic order, nor chirality,
but there is a gapless branch of excitations and some
correlations decay by a power law. For example, in tri-
angular antiferromagnets this would be the case for out-
of-plane Auctuations of a total spin of a triad which are
expressed solely in terms of k =0 bosons.

In principle, Eqs. (5) also allow a second possibility.
The point is that for nonzero t. , while scaling over a tem-
perature along f2 = —gf ~ with, in a general case, arbi-
trary q, one has a chance not to cross a separatrix driving
the system to the O(4) fixed point. In the one-loop ap-
proximation, this separatrix starts near 2 as f2 = —2f ~

+(3e/2). Numerical and analytical calculations show
that for large f~ 2 (on a scale of e) it continues as
fi = —Xf~, where X =4.56. Hence, for large enollgll rt,
the bare couplings will remain in a basin of attraction of
the trivial fixed point independently on the temperature.
Assuming that this remains true up to T-J, I come to a
possibility, though suggestive, of a preliminary transition
governed solely by the f3 coupling, measuring the strength
of SO(2) Auctuations. This is a realization of a conjecture
made by Chandra, Coleman, and Larkin' that long-
range order in a twist correlation function may survive a
loss of in-plane magnetic ordering. The intermediate
phase will have zero on-site magnetization and a gap for
k =0 excitations but will keep a spontaneous symmetry
breaking with respect to a twist (pseudo)vector and,
hence, Goldstone modes at k= ~ (Q, Q). This ordering
does not break time-reversal symmetry and by this reason
the intermediate phase is referred to as a P-type spin
nematic.

To summarize, it follows from the perturbative expan-
sion near two dimensions that a continuous transition
governed by O(4) exponents is a most probable, but not
the only possibility for noncollinear antiferromagnets.
The microscopically derived RG equations also allow
two-step transitions with both the O(3) and O(2) prelimi-
nary ordering. The type of transition depends on the
values of microscopic couplings.

Of course, 2+a expansion does not necessarily com-
pletely reproduce the situation in three dimensions. In
particular, for sufficiently large e two-step continuous
transition may be substituted by a single first-order transi-
tion (which, evidently, cannot be detected within 2+ e ex-
pansion). This is a typical situation for many orientation-
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al phase transitions. In this, the present approach com-
plements the hypothesis of Azaria, Delamotte, and Jol-
icoeur ' that noncollinear antiferromagnets can undergo a
first-order transition or a second-order one with O(4) or
tricritical (classical) exponents depending on their micros-
copical Hamiltonians. Note also that as in Ref. 10, no
"chiral" fixed point was detected in the expansion near
two dimensions.

Experimentally, the situation with 3D transitions is far
from conclusive. The critical behavior with O(4) P ex-
ponent (P =0.39) was found in neutron-scattering experi-
ments with rare-earth helimagnets Ho and Dy. The
other exponents, however, differ significantly from the
O(4) ones. ' On the other hand, Monte Carlo simula-
tions and experimental results for CsMnBr3 point out
that triangular antiferromagnets undergo a transition
with nearly classical exponents and thus are likely to be
close to a tricritical point. 'o To my knowledge, no experi-
ments point to the existence of two-step transitions in

nearly isotropic 3D substances. However, there is ex-
perimental evidence that the ground state in some quasi-
2D substances may be partly ordered: Experiments with
the Kagome-lattice antiferromagnet SrCr7 ~ 36a4 840 f 9
(Ref. 7) show that below T 8 K, the excitation spectrum
is likely to be gapless [a specific heat, C(T) cc T j, while
the two-spin correlation length is only twice the inter-Cr-
atom spacing. As a possible explanation, one may assume
that the orientational SO(2) ordering survives a loss of
120' magnetic ordering. Whether this is indeed the
case requires further investigation.
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