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Chiral phase states of the Hubbard Hamiltonian
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We present a variational approach diff'erent from that based on Gutzwiller's ansatz by investigating
chiral flux-phase states of the Hubbard Hamiltonian in analogy to the treatment of the fractional
quantum Hall eAect. The proposed class of generalized Laughlin trial functions is specialized to per-
mit detailed consideration of a set of states that includes a ferromagnetic ground state generated by a
spontaneous gauge field in conjunction with a fictitious magnetic field having a flux commensurate
with the filling. We evaluate the trial energy expectation values and demonstrate that the treatment
is, at least, appropriate for the Hubbard model with su%ciently large on-site Coulomb repulsion and
low electron densities. The members of the special set of trial states may be suitably classified by the
flux quanta of the associated field and may be characterized either by integer or fractional quantum
numbers. The excitations designated by fractional quantum numbers, which are not commensurate
with the filling, are identified as flux-phase states breaking the symmetries of the lattice.

An understanding of the ground state of a strongly
correlated electron system may perhaps come from im-
proved studies of the ground-state properties of the Hub-
bard model and of its excitation. s. Anderson' proposed the
concept of resonant valence-bond states in which the
many-body system is viewed as a Bose liquid of singlet or
triplet pairs of fermions bound to a lattice. Reference 2
provides a study of such states within a mean-field
description.

Alternative studies are based on the hypothesis that the
ground state may be generated by electrons which con-
dense on a two-dimensional lattice and carry spontaneous
orbital currents. ' This idea may be developed by intro-
ducing so-called Aux-phase states which break the discrete
translational symmetry and parity of the lattice. Such
an approach leads to a pointlike Fermi surface, a locally
relativistic Dirac spectrum, and interesting transport phe-
nomena. For example, the optical resistivity decreases
linearly with decreasing temperature. 9'

Various Aux-phase states have been studied for rather
simple two-dimensional models and for a Hubbard model
with SU(n) symmetry. Here, we shall concentrate on
the standard two-dimensional Hubbard Hamiltonian.
Our analysis is based on the assumption that the ground-
state correlations and excitations of the model are driven
by the presence of a spontaneous gauge field with magnet-
ic length lo and a fictitious magnetic field B. This premise
connects our study with Laughlin's treatment of the frac-
tional quantum Hall eff'ect. '' Therefore we are particu-
larly interested in the properties of the Hubbard Hamil-
tonian for large on-site Coulomb repulsion, U
Within the context of the Hubbard model, we employ a
set of suitably correlated wave functions of a generalized
Laughlin form. For simplicity, the wave functions are
adapted to a L xL lattice, the associated one-body density
matrices being required to obey periodic boundary condi-
tions. The members of the set of trial wave functions may
be properly specified by the total flux through an elemen-
tary lattice plaquette generated by the gauge and fictitious

fields. The total Aux is quantized and may carry either in-
teger multiples or fractions of an elementary quantum @,.
These states are chiral flux states. They break the lattice
symmetries, parity P, translation T, charge conjugation C,
and the composite symmetries except CPT symmetry,
which is still conserved.

For large Coulomb repulsion we may specialize the set
of correlated wave functions and evaluate analytically the
corresponding energy expectation values of the Hubbard
Hamiltonian. The calculated energies represent upper
bounds on the ground-state energy and are independent of
the on-site Coulomb repulsion. The lowest energy is at-
tained for the state with zero or integer total flux. This is
a ferromagnetic state in which the flux of the fictitious
magnetic field is commensurate with the filling. This state
has not been investigated before. The chiral flux states
with fractional total flux represent excitations and may be
separated into two branches, one branch with non-
negative energies and another branch with zero energy for
which the states are infinitely degenerate.

We begin with an extended version of the Hubbard
Hamiltonian,

H= —t g a;aI+Ugn~n; +V g n;nI
&i j&,o i (i j),o

involving as parameters the electron hopping integral t,
the on-site repulsive Coulomb potential U, and an addi-
tional potential V. The parameter V measures the
Coulomb —and/or polarization —potential between elec-
trons on neighboring lattice sites. The operator a;~ (a; )
creates (destroys) an electron with spin projection cr

(a =+ or —) at a lattice site i, and n; is the occupation
number operator a; a; . The summations in Eq. (1) ex-
tend over the lattice sites i or—as indicated by (i,j&, o.
—over all distinct pairs of nearest-neighbor sites, along
with the spin projection cr.

The Hamiltonian (1) models a system of N+ electrons
with spin projection a =+ and N electrons with o = —.
For simplicity, we limit ourselves to a study of the impor-
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tant case N —=N+ ——N and we assume that the electrons
are uniformly distributed over a I, xL square lattice with
lattice constant a. The Pauli exclusion principle restricts
the electron density p =N/L to values p ~ 1.

Let us first evaluate the ground-state energy corre-
sponding to the Hamiltonian (I). It is given by the stan-
dard expression

E = —tp g n(z;, zj )+Up gg(z;~, z;-)
(i,j ),o l

+ Vp g g(z;, z~ ) .
&i,j),a

Equation (2) involves the one-body density matrix
n (z;,zj ) and the two-body density-matrix elements
g(z;, z~ ). These quantities are functions of the coordi-
nates z; x;+t'y;, z~ x~+iyj of the lattice sites i,j on

I

which an electron or electrons of the given spin projection
cr are located. The matrix elements are defined by the
standard multidimensional integrals over the probability
distribution associated with the chosen many-body wave
function. ' These quantities are normalized such that
n(z;, z; ) =1 and g(z;, zj )~ I as ~z;

—zj
The microscopic treatment of the fractional quantum

Hall effect by Laughlin'' offers a fruitful prescription for
tailoring a set of correlated wave functions that may ap-
proximately describe the ground state and excited states
of the Hubbard Hamiltonian (1). In analogy to the elec-
trodynamic gauge field driving the Hall mechanism, we
assume the occurrence of a spontaneous gauge field that
generates the correlations present in the eigenstates of the
Hubbard Hamiltonian and is responsible for the orbital
currents on the lattice. This picture motivates the trial
ansatz

V(mq (z
~ +,z 2+, . . . , Zg+, z ] —z 2 —,. . . , Zg —)

1V+ 1V N+, W N N+
=N., ri (;.—;.)' ri (,--;-)- ri (...—;) II~(.,-) ri~(, .),l=i&j l=i&j i,j =1 i=1 i=1

(3)

for approximate representation of the ground state and
excited states of the Hubbard model. Expression (3) gen-
eralizes the familiar Laughlin form of wave function. The
factor Nt ~ normalizes the function (3) to unity. To en-
sure complete antisymmetry of ansatz (3), the exponents 1

and m must be odd integers, but at this point the exponent
q may be any non-negative number. The single-particle
wave function entering (3) is

IP

@(z)=exp — i-z ' . Aa

4I 4
(4)

wherein the magnetic length lo characterizes the effect of
a spontaneous gauge field" inducing orbital currents on
the lattice. The additional phase pg/4 is associated with a
fictitious magnetic field B given by pg =2fAds, where the
gauge A =(—y, x,0)B is used.

The parameters B, lo, I, m, and q may be chosen op-
timally to minimize the ground-state energy (2) with
respect to trial function (3). Many-body techniques are
available' ' for evaluating the density-matrix elements
needed in Eq. (2). Postponing such numerical calcula-
tions for the complete set of parametrized functions (3),
we may test the quality of the proposed description by
focusing on the properties of Hamiltonian (1) for large
on-site Coulomb repulsion at low electron densities. In
the limiting regime defined by U ~ and p 0, the as-
sociated ground-state energy may be exactly calculated in
analogy to the treatment of Refs. 1S and 16, with the re-
sult

E = —8gpL2. (s)

In this particular case an adequate specialization of (3) is
provided by l =m =q =1, a choice of which permits ana-
lytic evaluation of the requisite one- and two-body
density-matrix elements. ' In the thermodynamic limit

I

(N ~, density p held constant), the results are

n(z;.,z). ) =exp ', (2z;.z,'. —~z(.)' —(z). ~')
4I2

i
4 i

(6)

g(z;, zj ) =I —exp( —
~z;

—zj ~
/2lo) .

To match the electron distribution properly to the square
L x L lattice, Laughlin's relation ' '

ap=
4xlo

(8)

between the density p and the magnetic length !0 must
hold.

Inserting Eqs. (6)-(8) into Eq. (2) and performing the
lattice summations we arrive at the intermediate result

E = —8tpLF(@)exp( —
harp) +4Vp L [I —exp( —2') ]

for the trial energy. The function F(@) is defined by

F(N) =g cos
l@

1=1 2
(IO)

where @ is the value of the total Aux through an elementa-
ry plaquette of area a,

a —Ba
l2

Following Ref. 4, the latter expression may be obtained by
extracting the phases of the one-body density matrix (6).
For example, in the x direction the phase corresponding to
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the link (i,i 1& of lattice site i is

1 8
21

xia . (i2)

alculating the sum of the relevant phases by going
around the links of the elementary plaquette in the clock-
wise direction, we arrive at the result (11) for the flux per
plaquette.

To proceed further, we impose periodic (toroidal)
boundary conditions on the phase of the one-body density
matrix appropriately matched to the square lattice. '

This implies a quantization of the total flux (11) ac-
cording to @„=4nx/L or @„=4nz/(L+ 2), with
n =0, 1,2, . . .. The quantized Auxes may be separated
into three different classes,

n@„n=0, 1,2, . . . ,

—+k @„n=0, 1,2, . . . , L —1,
n

L
n

(i 3)

L+2 +k @„n=0, 1,2, . . . , I, +1,

where k is an integer and @,=4m is the elementary quan-
tum. The first branch is characterized by an integral
quantum number n, and the second and third branches by
fractional quantum numbers n/L and n/(L+2), respec-
tively. Consequently, the function F(@) is quantized
through conditions (13), leading to the respective cases

L,
F(4) ='0,

—[1+cos(@/2)].
(i4)

and

E2/L ' =4Vp'[1 —exp( —2np) ]

E3/L (8tp/L)exp( —xp) [1+cos(@/2)]

(i6)

+4Vp [1 —exp( —2np)], (i7)
for the second and third branches, respectively. A value
of @ for the third branch is to be inserted from (13) into
(17).

From Eqs. (15)-(17) it is seen that the lowest upper
bound to the exact ground-state energy of Hamiltonian
(1) is given by the first branch of (13). The corresponding
result (15) for the energy per plaquette is independent of
the total number of Aux quanta n. The other branches
give the energies (16) and (17) assigned to a set of excited
states that are described as fractional Aux-phase states.

Correspondingly, we may divide the expectation values
(9) for the Hubbard Hamiltonian into three branches.
The states described by integral multiples of the elementa-
ry quantum @,give an energy per plaquette of

E~/L = —8ptexp( —harp)+4Vp [1 —exp( —2np)].

(15)
The states with fractional quantum numbers @yield ener-
gies per plaquette of

At small densities (p 0) expression (15) correctly
reproduces the exact result (5) for the ground-state ener-
gy. At larger filling factors expression (5) represents an
upper bound to the true ground-state energy. However,
we are convinced that the proposed wave function (3) is
well suited to provide an appropriate physical description
of the ferromagnetic domain of the (U,p) phase diagram
of the Hubbard model yielding energy expectation values
reasonably close to the true energies. Ansatz (5), for in-
stance, is more flexible than a standard Gutzwiller wave
function. ' It mimics the Gutzwiller projection mecha-
nism but allows, moreover, the existence of vortices by
employing the magnetic length lo and the fictitious mag-
netic field B as additional variational parameters. We
therefore expect that the energy expectation values with
respect to ansatz (3) are lower than the corresponding
Gutzwiller expectation values. The agreement of result
(15) with result (5) in the limit of small filling factors and
the above considerations support the view that the general
ansatz (3) provides a class of many-body wave functions
well suited to describing the eigenstates of Hamiltonian
(1), even if the density is not so small and the Coulomb
strength U is not limited to the strongly repulsive region.
The principal features of our results are not affected if the
lattice structure is changed. The detailed forms of the
function F(@) and of the flux quantization condition de-
pend, of course, on the actual choice of lattice symmetry.
However, replacing the square lattice by a triangular one,
for example, does not affect the classification of the ener-
gies and states into those with integer and fractional quan-
tum numbers.

The nature of the quantum states we have constructed
may be further elucidated by determining their symmetry
properties and their spin polarization. In particular, do
the trial states (3), when specialized to the case N~ N
and the parameter choice l =m =q 1, describe a polar-
ized or an unpolarized system? This question may be
answered by evaluating the expectation values of the total
spin components M„and M~ parallel to the lattice plane
and of the component M, orthogonal to it. The com-
ponent M„ is calculated from

g(wIS; I+& =g&e'I(at+a; —+at a;+)I%"&, (18)

i.e., from the sum of site-diagonal elements of the one-
body density matrix (6) for unlike spin projections. The
result is M„=N. The components M~ and M, vanish.
Thus, we find complete spin alignment parallel to the lat-
tice plane and conclude that the fermions form a fer-
romagnetic phase. This finding is somewhat reminiscent
of Nagaoka's result. We stress, however, that Aux-

phase states (3) describe a ferromagnetic state that is very
different from the usual ferromagnetic state, by virtue of
the existence of orbital currents. States of this type have
not been explored before. It is apparent, of course, that
the microscopic approach to the Hubbard Hamiltonian
proposed here differs essentially from treatments of the
paramagnetic and antiferromagnetic phases of the Hub-
bard model based, for example, on the Gutzwiller an-
satz. "

The ferromagnetic Aux-phase states generate spontane-
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ous currents and diamagnetic moments which, effectively,
screen the electron-electron spin correlations. The mag-
netic length of the associated gauge field plays the role of
a Debye radius. The fractional flux-phase states explicitly
considered above can be further characterized by their
symmetry properties. In contrast to the commensurate
state, the flux-phase states break the symmetries of the
underlying square lattice. This may be easily checked for
parity P, translation T, charge conjugation C, and their
pairwise products. However, PCT symmetry is main-
tained. We remark that analogous symmetry-breaking
states in antiferromagnets have been predicted by Wieg-
mann.

The present study gives a deeper understanding of the
relationship between the properties of the Hubbard model
and the mechanism of the fractional quantum Hall effect.
It leads to a ground state described as a new ferromagnet-

ic commensurate flux-phase state. Our analysis also leads
naturally to an alternate class of excitations in two-
dimensional ferromagnetic systems, associated with frac-
tional flux-phase states. In the next stage of this ap-
proach, one should proceed to a broader exploration of the
properties and the consequences of wave-function ansatz
(3), allowing N to differ from N+. Moreover, by optim-
izing the parameters l, rn, and q, we may study the effects
of genuine dynamical correlations. This would permit a
proper comparison with results of other many-body ap-
proaches incorporating spatial correlation effects, notably
the Gutzwiller procedure.
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