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Dynamic susceptibility of the Anderson model: A quantum Monte Carlo study
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Using a highly accurate method of analytic continuation, we calculated the dynamic susceptibility
and NMR relaxation rate 1/T~ of magnetic (Anderson or Kondo) impurities over the entire range
T«TI(, to T»TI(, . We find that the susceptibility and NMR relaxation rate are universal functions
when properly scaled and that the NMR relaxation rate is directly proportional to the universal Kondo
resistivity.

The properties of a metal with a dilute concentration of
magnetic impurities has been an enduring problem in
condensed-matter physics. The spin- —,

' Anderson impuri-

ty model is a paradigm for this problem. The model de-
scribes the formation, and more importantly, the screen-
ing of the magnetic moments. ' At high temperatures, this
screening is inhibited by thermal fluctuations; however, as
the temperature is lowered below the Kondo temperature
Ttr, a screening cloud forms that strongly affects the mag-
netic, thermodynamic, and transport properties of the sys-
tem.

In this paper, we provide a calculation of the dynamic
magnetic susceptibility and NMR relaxation rate for the
symmetric spin- 2 single-impurity Anderson model. As
shown in Fig. I, the dynamic susceptibility g" (to) devel-
ops a narrow peak of width = Tg as the temperature is
lowered. The width of this peak increases monotonically
with temperature, as shown in the inset. In Fig. 3, we
demonstrate that the shape of this peak is universal, since
it depends only upon the ratio T/Tz.

In Fig. 4, we present our most startling result. Here, we
plot the NMR relaxation rate versus T/T~ for various
values of the model parameters and demonstrate that is
universal. The solid line is a fit to our previously pub-
lished results for the resistivity ratio p(T)/p(0). We find,
to the accuracy of our Monte Carlo procedure, that the
two functions are identical when plotted as a function of
T/Ttr.

We model the impurities with an infinite bandwidth
symmetric Anderson model that is characterized by a hy-
bridization width I =trN(0) V [where V is the hybridiza-
tion matrix element, and N(0) is the density of states at
the Fermi surface] and an on-site repulsion U. The Ham-
iltonian for this model is

H = get Ct, ~Ct ~+ V+ (Ct ~d~+d~Ct, ~)
k, o k, cr

+ ed End + Und 1nd 1 . (I)
In the symmetric limit, ed = —U/2. The Kondo tempera-

ture Ttc is a function of U and I, and is determined empir-
ically. In the limit U&&I, a spin- & magnetic moment
forms on the impurity orbital which couples antiferromag-
netically to the conduction electrons with an exchangeI= —8I/trN(0)U. In this paper, we are primarily in-
terested in the dynamic susceptibility g"(to) of the Ander-
son model. It is defined through the following two rela-
tions:

g(r) = dto g"(to)e
—oo ~ l +

—P (2)

~p
g(z) =2 dr(dl ( )rdl ( )dry (0)di(0)) . (3)

For reasons which will become clear below, we chose to
work with the function f(to), which is related to g"(to)
through the relation

II

f(ro) =
2rog(T)

(4)

where g(T) is the static susceptibility.
Previous attempts to calculate the dynamic susceptibili-

ty of this model have met with limited success. Using
high-temperature perturbation theory, Spencer and
Doniach found a Kondo-like logarithmic term in the dy-
namic susceptibility. This term leads to a ln(T) depen-
dence of the NMR relaxation rate for T & Tg. The ap-
proximation of Nagaoka and Suhl yielded inconclusive
results for the static susceptibility. To our knowledge,
this approximation has not been applied to the calculation
of the dynamic susceptibility. The virtual bound-state ap-
proximation has been applied to this model by Salomaa.
This result may be written as a complicated expression of
digamma and trigamma functions, and thus will not be
reproduced here. It is sufficient to say that the result is a
function of m, T, and I ~, ~here I ~ is an arbitrary param-
eter. However, this result is only exact in the U=O limit
in which I tr =I. The I/N approximation has been ap-
plied to the asymmetric Anderson model in the limit as
U ~. This approximation becomes exact as the orbit-
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al degeneracy W of the impurity becomes large; however,
for finite N, low temperatures, or (more importantly) low
frequencies, the approximation breaks down. For this
reason, the NMR rate (corresponding to the zero-
frequency limit of the dynamic susceptibility) could not be
calculated accurately. The dynamic susceptibility has
also been calculated using perturbation theory in
u=U/(xI ). ' This approximation, however, is uncon-
trolled for large u.

Finally, there are several exact results for the Anderson
model s dynamic susceptibility. First, by applying the
Friedel sum rule, Shiba'' was able to determine the co =0
and T&&Tz limit of the dynamic susceptibility. In our
case, since limT ng(T) = [(x/2) Tlr]

lim f(0) 1.
T 0

(5)

By standard perturbation-theory techniques, one may
show that in the high-frequency limit (ro » U/2)

lim f(ro) = (6)
QP ~ oo

In addition, the NMR relation rate 1/T~ due to the Kondo
scattering of conduction electrons is ' '

A f(0) .
T]T KTj{

where A is a constant composed of the g factor of the im-
purity nucleus, the nuclear Bohr magneton, arid the cou-
pling between the nuclear spin and the d- electron spin.

To calculate the dynamic susceptibility of the Anderson
model, we employed a combination of quantum Monte
Carlo and maximum entropy methods. The Monte Carlo
was used to generate the two-particle Green's function
g(z ) as a function of imaginary time, and the maximum
entropy method was used to analytically continue this re-
sult to produce the dynamic susceptibility.

Our Monte Carlo calculations are based upon an algo-
rithm developed by Hirsch and Fye. ' The problem is
cast into a discrete path integral formalism in imaginary
time zI, where z~ =lhz, Az =p/L, p is the inverse temper-
ature, and L is the number of imaginary-time slices. In
order to minimize systematic discretization errors, we
took d, z I U (0.20 and studied p values as large as 100.
A detailed discussion of the treatment of the statistical er-
ror appears in Ref. 13.

Analytic continuation of this data [deconvolution of Eq.
(2)] was accomplished with the maximum entropy
method. ' ' Here we find the f(ro) which maximizes the
constrained entropy eS —L. L is a least-squares measure
which determines how well f(ro) reproduces the Monte
Carlo data, and the entropy S is given by

all possible images f(ro). However, in this case, we also
chose to marginalize over all possible values of the
Lagrange parameter a. In doing so, we obtain the posteri-
or probability given the data and model P[D,ml. '3'4

We chose the result of Salomaa for the default model
m(ro). The parameter I x was chosen to maximize
P[D,m], which causes m(ro) =f(ro) for small co. How-
ever, our results are independent of variations of I x from
this optimal value by as much as a factor of 2. When
chosen this way, I Er is a roughly universal function of
T/Tg. It increases monotonically with increasing T/Tlr.
At low temperatures, we find I x. = (rr/2) Tlr. ' With this
low-temperature limit, the default model satisfies the Shi-
ba sum rule, so that limy nm(0) 1. We found that this
default model produced a larger P[D,m] than a default
model constructed from the moments of the distributionf(ro), which is often used for problems of this type. '

With this method, we were able to calculate f(ro) over
a wide range of model parameters and temperatures. At
sufliciently high temperatures, the dynamic susceptibility
displays deviations from universality. For a given value of
u, these deviations occur at roughly the same tempera-
tures at which the static susceptibility g(T) deviates from
universality. However, in this manuscript we will only
report results which are in the universal regime.

The evolution of the dynamic susceptibility as a func-
tion of T/TIr for fixed u =U/(xI ) =1.5 is shown in Fig.
l. As the temperature is lowered toward TK, f(co) devel-
ops a Kondo-like peak centered at co =0. The evolution of
the half width at half maximum of the f(ro) as a function
of T/TK is shown in the inset. Contrary to results ob-
tained with the 1/N expansion this plot does not display a
minimum at T= Tg. Rather, the half width increases
monotonically. This discrepancy is probably due to the
difl'erence in orbital degeneracy between the two calcula-
tions (as was surmised from experimental evidence' ).
The solid line in the inset demonstrates that the half width
varies as (T/TK)' for T»TK as found in the 1/N ap-
proximation. However, we find that to an excellent ap-
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The function m(ro) serves as a default model for our re-
sults. It is our assumed answer in the absence of Monte
Carlo data. In most applications of maximum entropy,
the parameter a is set by maximizing its posterior proba-
bility, the probability obtained after marginalizing over

Cd/TK

FIG. 1. f(ro) =[rrTK/2g(T)][@ "(ro)/col plotted vs ro/TK for
various values of T/TK when u =1.5. The peak is sharpest at
low temperatures and broadens as the temperature is raised.
The half width of the peak is plotted in the inset. Note that it
increases monotonically and is proportional to (T/TK)' when
T/TK » 1.
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FIG. 2. X(c0) w f(a&)/[rr TIKI /g(T)] plotted vs co when

U 2.35, I =0.5, and T/Tie=1. 5 (solid line), and the corre-
spondingly normalized default model (dashed line) with I z

2.08. Note the small additional feature beginning at
co= U/2.
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proximation, the prefactor of this dependence is the Wil-
son number x /4 (determined exactly by the Bethe an-
satz' ) which describes the relation between the high- and
low-temperature energy scales of the Kondo problem.

In addition to the low-frequency peak, the data also
displayed a very small secondary feature beginning
around co=U/2. This is demonstrated in Fig. 2. Here,
X(co) =w f(co)/[rrTicI /g(T)] is plotted versus co. As-
ymptotically, X(co)—1, as predicted from perturbation
theory. Because this secondary feature is small, its ex-
istence is most likely of little experimental relevance. Its
presence in our results, on the other hand, demonstrates
the remarkable resolution of our method: small features
are not lost in the statistical noise.

With our choice of normalization, f(co/Trc) is also a
universal function, as shown in Fig. 3 where f is plotted
versus cu/TIc for several values of u and fixed T/TIc =1.5.
All these curves roughly coincide indicating universality.
Universality off(w) results in the observed universality of
g(T) =f dcog" (co)/(rrco).

As shown in Fig. 4, the low-frequency intercept f(0),
which is related to the NMR relaxation rate [Eq. (7)], is

FIG. 4. f(0) for various values of u plotted vs T/Tg. The
solid line is a fit to our previously published resistivity data (Ref.
2).

universal for all T/Tic calculated. Universality is indicat-
ed by the fact that the data for diA'erent values of u over-
lap to form a single curve. The data for T = Tlc is rough-
ly log linear, as predicted by Walker. As discussed in a
previous publication, ' it is not possible to accurately
determine the error bar for a single point in a continuous
distribution like f(co). However, error bars due to statist-
ical sources are roughly determined by the spread of the
data. The solid line in Fig. 4 is a fit to the universal resis-
tivity p(T)/p(0) determined earlier. The coincidence of
the two data sets is our most surprising result.

Our result is surprising given the diA'erent nature of the
two results when explored diagrammatically. However,
this result does have a physical basis. Spin-flip scattering
from the impurity is the primary source of resistivity of
the conduction electrons. It is also the mechanism which
relaxes the nuclear moment. Thus, both the NMR relaxa-
tion rate and the resistivity are in some sense a measure of
the spin-flip scattering rate from the impurity. Hence,
one might expect them to be qualitatively similar. It is the
quantitative similarity which is surprising.

In conclusion, we have demonstrated that the dynamic
susceptibility of the Anderson model, when properly
scaled, is a universal function of co/Tg and T/Trc. Conse-
quently, the scaled NMR relaxation rate is a universal
function of T/Trc. Surprisingly, we find that the scaled
NMR rate is identical to the universal Kondo resistivity
for a dilute magnetic alloy. This correspondence could be
explored with NMR experiments. The predicted univer-
sal shape of the dynamic susceptibility as a function of m

can, in principle, be explored by inelastic neutron-
scattering experiments. In the dilute impurity limit, the
dynamic structure function measured in neutron scatter-
ing is proportional to the produce of the e-dependent dy-
namic susceptibility calculated here with the squares of
the momentum-dependent atomic form factors.
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FIG. 3. f(co) vs m for various values of u when T/T& =1.5

and I =0.5.
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