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Tag difFusion in driven systems, growing interfaces, and anomalous fluctuations
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Tagged diffusion in a one-dimensional hard-core lattice gas with biased nearest-neighbor hopping is

mapped to a model of a growing interface. Based on the Kardar-Parisi-Zhang theory of interface dy-

namics, it is suggested that fluctuations, in the separation of the initial position of a tagged particle from
the position at time t of a particle with tag shifted by vt at time t, grow at t ' for most v, and as t ' for
a critical v, . This is verified by numerical simulation, and the dependence of v, on bias and density is

found. The t' growth of fluctuations in the unbiased case is unstable with respect to both bias and

C'

Tagged-particle diffusion in hard-core lattice gases
with nearest-neighbor hopping has been of interest for
several years. ' ' In one dimension, the result is known
to depend strongly on whether there is an external field,
i.e, whether the hopping is biased or not. In the unbiased
case, the root-mean-squared (RMS) displacement of a
tagged particle grows anomalously slowly, ' and varies
as t at time t; on the other hand, when the bias is
nonzero, the more familiar diffusive dependence t' is
found for the RMS fluctuation of a tagged particle
around its mean position.

It is then interesting to ask whether there is any tagged
correlation function which is anomalous even with
nonzero bias. In this paper we answer this question in
the a%rmative, by mapping the tagged-particle problem
to a one-dimensional model of interface dynamics. Be-
sides reproducing known results, our mapping leads to
the identification of an important parameter, by varying
which, fluctuations cross over from the diffusive t' be-
havior to an anomalous t' behavior. Consider a "slid-
ing tag" process, in which we follow the Quctuations in
the separation between a tagged particle (at t =0) and a
particle (at time t) whose tag is shifted from the original
one by vt. We show that for almost all values of the tag
velocity v (including v=0, the customary tagged process)
the RMS fluctuations in the presence of bias vary as t '

but for a critical value v, (which depends on bias and
density) the RMS fiuctuations vary anomalously, as t'~
We confirm these predictions, determine v, and demon-
strate various crossovers by a Monte Carlo study of the
dynamics of tracer diffusion in the one-dimensional lat-
tice gas.

Consider a one-dimensional lattice of Xz sites, of
which Np =pXg are occupied by particles, and assume
periodic boundary conditions. In the simple exclusion
process, a particle chosen at random attempts to hop
with probability p to the right and probability q to the
left (p +q = 1 ); the hop is completed only if the site
sought is unoccupied. N such attempted hops constitute
a single time step. This model has been studied earlier
and the dynamic exponent z found to be —', (for

p Wq, p =
—,
' ), by Monte Carlo methods" and a Bethe an-

satz treatment of the relaxation matrix. ' . Also, from a
hydrodynamic description, ' density fluctuations were
found to spread anomalously rapidly —t

For the tagged process in the presence of bias, the drift
velocity Up of any particular tagged particle is given by
(p —q)(1 —p) and the corresponding diffusion constant D
is known to be —,'~p —q~(1 —p). ' Below, we map the
tagged process to the dynamics of an interface model in
which the tag appears very naturally, and thereby deduce
an anomalous -t' behavior, not found earlier in the
tagged problem.

Consider the tagged process with particles labeled
n = 1,2, . . . ,Np sequentially at t =0. The ordering is
preserved by the dynamics of the exclusion process. The
configuration of the system is specified by the set [y(n) I
where y(n) denotes the location of the nth particle. The
corresponding interface model, which we call the particle
height (PH) model, is obtained by interpreting the tag la-
bel n as a horizontal coordinate, and y(n) as a local
height. Each configuration Iy(n) I then defines a one-
dimensional interface in the form of a staircase inclined
to the horizontal with mean slope I/p. The interface
coordinates satisfy y (n +1)&y(n)+ I, and the periodic
boundary conditions translate into y (n +Nt ) =y (n)+Ns
The evolution rule is as follows: in each time step, y (n)
tends to increase (or decrease) by 1 with probability p (or
q); it actually increases (or decreases) if and only if
y (n +1)—y(n) & 1 (or y (n) —y (n —1)& 1). In the un-
biased case (p =q =

—,
' ), the interface does not move with

a net velocity, but fluctuates around its initial position.
But in the biased case (pAq), the interface moves verti-
cally with the particle drift velocity vp in the steady state.
Our mapping differs from earlier equivalences between
the particle and interface problems" ' in that it uses the
particle tag in a direct and essential way in the transla-
tion. As a consequence, height fluctuations around the
mean position of the interface translate directly into
tagged particle correlations.

The mapping is useful as there has recently been
significant progress in understanding universality classes
in interface dynamics in one dimension. A continuum
model of a growing interface was introduced and ana-
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lyzed by Kardar, Parisi, and Zhang' (KPZ):
2

Qy Q y By By=D +a, +a2 +q(n, t) .
Bt Qn2 Bn Bn

Here D is the diffusion constant, the coefficients a, and
a2 are nonzero if the interface has a net velocity, and
g(n, t) is a noise term which satisfies the condition
(q(n i, && )g(nz, t& )) =5(&i —t2)5(n i

—n2). The KPZ
model is generic in that several discrete (1+1)-
dimensional interfacial models are known to exhibit the
KPZ exponents. ' "" ' We thus expect the PH model
also to belong to the KPZ universality class.

If ai =a2=0 (nongrowing case), Eq. (1) reduces to a
harmonic model with noise, solved by Hammersley' and
by Edwards and Wilkinson (HEW). The RMS Auctua-
tions of the local height in the HEW model are propor-
tional to t', which agrees with the answer in the
tagged-particle problem in the absence of bias.

A nonzero bias implies a finite velocity Uz of the PH in-
terface in the vertical direction. In the corresponding
KPZ description, both a& and a2 are nonzero for the
growing interface. ' ' With a& nonzero, RMS fiuctua-
tions of the height around the mean position, for fixed n,
grow as t' . However, the second term on the right-
hand side of Eq. (1) can be eliminated by making the
transformation n'=n +ait, t'=t corresponding to a
Galilean shift into a frame in which the drift motion of
the interface is arrested. In such a frame, the growth of
the interfacial width (for fixed n') is anomalously slow;
the KPZ analysis leads to the conclusion that RMS Auc-
tuations grow as t

Let us examine the implications for the tagged-particle
problem. The fact that Auctuations vary as t' for a
growing interface, if n is fixed, accords with the known
diffusive spread of a tagged-particle displacement around
its mean in the presence of bias. A Galiliean shift in the
interface problem corresponds to a shift in "tag space" in
the exclusion problem, rather than in real space. We are
thus led to examine correlations of the form

(1—p)b, (p)+pb, (1—p)=1 . (3)

For p= —,', this condition implies b, (1/2) =1 which corre-
sponds to a critical velocity v, =0. For pW —,', Eq. (3) pro-
vides a connection between b, (p) in the range p( —,

' and
the range p & —,'.

We performed a Monte Carlo study of the exclusion
process to check the predictions based on the mapping,
and to determine the dependence of b, on bias and densi-
ty. We used N& =90 000, and accessed particles in a ran-
dom order in each Monte Carlo time step. Figure 1

shows the time dependence of o. for various values of b,
for p= —,', p =

—,'. As expected from Eq. (3) the data for
b =1 show the smallest o. While o. varies linearly with t
for b&1, the variation is sublinear —t for the critical
value b, =1; as shown in the inset in Fig. 1 we find that
for b =b„ the exponent is 0=0.32+0.015, consistent
with o.-t'

We did similar b scans for several values of p and p.
We observed a crossover from 0= —,

' (for most values of b)

to 8= —,
' (for the critical value b, ) for all pA —,', and thus

obtained estimates of b, . We observed that b, is indepen-
dent of the bias (p —q) and that it depends on the density

that the relative order of tagged holes is also preserved.
The average velocity of any particular hole is
vH= —(p —q)p. Consider the hole analog of the correla-
tion function of Eq. (2b). Let the rate of change of the
hole tag be v'=b'(I —p)vH. The corresponding inertial
frame velocity is then v'~=(1 b'—)vH. The value of b'
(for holes) that corresponds to a certain value of b (for
particles) can be found by equating the corresponding v'~
and UF, as both refer to the velocity of the same moving
frame. Moreover, the condition for criticality should be
rejected simultaneously in particle and hole correlation
functions, so that b', (p)=b, (1—p). Putting these rela-
tions together we find

cr&(t)=( t(y(n„t) —y(n, O) —(1 b)v~t)} —)
with"

n, =n —bpU~t . (2b)

Here b is a parameter in terms of which the tag velocity
is v=bpuz. The last term on the right-hand side of Eq.
(2a) guarantees that the mean value of the terms within
parentheses vanishes, and represents the shift in position
caused by going into a moving frame with velocity
vz=(1 b)vp Let th—e spe.cial tag velocity v, (which
eliminates the bodily drift of the interface) correspond to
a critical value b, in the particle problem. It is important
to know how b, depends on bias and density. Below we
derive a constraint on its density dependence, and deter-
mine it for p= —,'.

Although we have defined the exclusion process in
terms of particle hopping, it can equally well be viewed as
the backward motion of holes (sites on which there are no
particles). Double occupancy of holes is forbidden, so
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FIG. 1 The time dependence of Auctuations in the sliding-tag
process for various values of b, in a Monte Carlo run with
90000 sites, p=O. S and p =0.75. The growth is linear for b&1
and sublinear for b =b, =1. For b =b„ the inset shows the
variation on a log&o scale, averaged over seven longer runs. The
average slope yields 20=0.64+0.03.
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p in a simple fashion

(4)

Thus the velocity of the critical inertial frame is

v, (p)=(l —2p)(p —q) .

Our results are consistent with the simple scenario de-
picted in Fig. 2. There are two relevant parameters in the
tagged-particle problem. The first is the bias (p —q) and
the second (which comes into play only when the bias is
nonzero) is the deviation of b from its critical value b, (p)
(or equivalently, the difFerence of the velocity of the iner-
tial frame from that of the critical frame, vF —v, ). The
multicritical HEW fixed point, which describes Auctua-
tions in the unbiased case, is unstable with respect to
both parameters. If b =b, (p) is maintained, the behavior
is characterized by the KPZ fixed point (8= —,'). On the
other hand, if b&b, (p), the behavior is governed by the
"diffusive" fixed point (8= —,'). Depending on the values
of [b —b, (p)] and (p —q), various types of crossovers are
observed. In particular, if b is equal to b, (p) and (p —q)
is small, there is a regime of time over which o.-t'~ is
observed, followed by o.-t' for larger times. Details of
such crossover eAects and evidence for scaling near the
HEW multicritical point will be presented elsewhere.

The velocity v, (p) in Eq. (5), which equals B(pv&)/Bp,
arises naturally in a hydrodynamic description of the ex-
clusion process. It was shown by van Beijeren, Kutner,
and Spohn' that in the presence of bias in one dimension
the RMS fluctuation of the center of mass grows anoma-
lously —t, when viewed in a frame moving with veloc-
ity v, . Our results show that an appropriate tagged-
particle correlation function also behaves anomalously-t' in the same frame. By contrast, in the unbiased
case, center-of-mass Auctuations are diItusive —t '

HEW ( 8=&ie}

p =q, b arbltrarp,

Kpz (e=ir~)

ps q, b= b,(P)

FIG. 2. The schematic depiction of relative stability of vari-
ous types of behavior in tagged-particle correlations.
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Note added in proof. After this work was submitted for
publication, we learned of work by H. van Beijeren where
the stochastic displacement of a mass front from its aver-
age position is shown to increase as t' . We thank Prof.
van Beijeren for sending us his paper before publication.

while tracer fluctuations are anomalous —t '

We note that the anomalous behavior in the sliding-tag
process also a6'ects the time dependence of correlations
involving two Axed tags. In higher dimensions, the
equivalence between the tagged-particle problem and the
PH model breaks down as the ordering of tags is not
preserved. The calculation of sliding-tag correlation
functions [Eq. (2)] in two and higher dimensions
remains an interesting open question.
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